Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

INPUT MODELING

Lawrence Leemis

Department of Mathematics
The College of William & Mary
Williamsburg, VA 23187-8795, U.S.A.

ABSTRACT

Most discrete-event simulation models have stochastic ele-
ments that mimic the probabilistic nature of the system under
consideration. A close match between the input model and
the true underlying probabilistic mechanism associated with
the system is required for successful input modeling. The
general question considered here is how to model an ele-
ment (e.g., arrival process, service times) in a discrete-event
simulation given a data set collected on the element of in-
terest. For brevity, it is assumed that data is available on the
aspect of the simulation of interest. It is also assumed that

raw data is available, as opposed to censored data, grouped

data, or summary statistics. This example-driven tutorial
examines introductory techniques for input modeling. Most
simulation texts (e.g., Law and Kelton 2000) have a broader
treatment of input modeling than presented here. Nelson
and Yamnitsky (1998) survey advanced techniques.

1 DATA COLLECTION

There are two approaches that arise with respect to the
collection of data. The first is the classical approach, where

a designed experiment is conducted to collect the data. The
second is the exploratory approach, where questions are

addressed by means of existing data that the modeler had2

no hand in collecting. The first approach is better in terms
of control and the second approach is generally better in
terms of cost.

Collecting data on the appropriate elements of the sys-
tem of interest is one of the initial and pivotal steps in
successful input modeling. An inexperienced modeler, for
example, collects wait times on a single-server queue when
waiting time is the measure of performance of interest. Al-
though these wait times are valuable for model validation,
they do not contribute to the input model. The appropriate
data elements to collect for an input model for a single-
server queue are typically arrival and service times. An
analysis of sample data collected on such a queue is given
in Sections 3.1 and 3.2.
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Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn
that there are several things that can be “wrong” about the
data set. Vending machine sales will be used to illustrate
the difficulties.

Wrong amount of aggregation. We desire to model
daily sales, but have only monthly sales.

Wrong distribution in time. We have sales for this
month and want to model next month’s sales.
Wrong distribution in space. We want to model
sales at a vending machine in location A, but only
have sales figures on a vending machine at location
B.

Censored data. We want to modkimand but we
only havesalesdata. If the vending machine ever
sold out, this constitutes a right-censored obser-
vation. The reliability and biostatistical literature
contains technigues for accommodating censored
data sets (Lawless 1982).

Insufficient distribution resolution. We want the
distribution of number the of soda cans sold at a
particular vending machine, but our data is given
in cases, effectively rounding the data up to the
next multiple of 24.

INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy illustrating the scope of poten-
tial input models available to simulation analysts. Modelers
too often restrict their choice of input models to the top two
branches. There is certainly no uniqueness in the branching
structure chosen for the taxonomy. The branches under
stochastic processeggor example, could have beestate
followed by time, rather thantime followed by state as
presented.
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Examples of specific models that could be placed on In conclusion, modelers are too often limited to uni-
the branches of the taxonomy appear at the far right of variate, stationary models since software is typically written
the diagram. Mixed, univariate, time-independent input for fitting distributions to these models. Successful input
models have “empirical/trace-driven” given as a possible modeling requires knowledge of the full range of possible
model. All of the branches include this particular model. probabilistic input models.

A trace-driveninput model simply generates a process that

is identical to the collected data values so as not to rely 3 EXAMPLES

on a parametric model. A simple example is a sequence

of arrival times collected over a 24-hour time period. The Two simple examples illustrate the types of decisions that
trace-driven input model for the arrival process is generated often arise in input modeling. The first example determines
by having arrivals occur at the same times as the observed an input model for service times and the second example
values. determines an input model for an arrival process.

The upper half of the taxonomy contains models that
are independent of time. These models could have been 3.1 Service Time Model
referred to adMonte Carlomodels. Models are classified
by whether there is one or several variables of interest, and Consider a data set of = 23 service times collected to
whether the distribution of these random variables is dis- determine an input model in a discrete-event simulation of
crete, continuous, or contains both continuous and discrete a queuing system. The service times in seconds are
elements. Examples of univariate discrete models include
the binomial distribution and a degenerate distribution with ~ 105.84  28.92 98.64 55.56 128.04 45.60
all of its mass at one value. Examples of continuous distri- ~ 67.80 105.12 48.48 51.84 173.40 51.96
butions include the normal distribution and an exponential 54.12 68.64 93.12 68.88 84.12 68.64
distribution with a random parametér (see, for example, 41.52 12792 4212 17.88 33.00.

Martz and Waller 1982). Bézier curves (Flanigan—Wagner ) ) ) )
and Wilson 1993) offer a unique combination of the para- [Although these service times come from the life testing
metric and nonparametric approaches. An initial distribution lt€rature (Caroni 2002; Lawless 1982, p. 228), the same
is fitted to the data set, then the modeler decides whether Principles apply to both input modeling and survival anal-
differences between the empirical and fitted models rep- YSiS:]

resent sampling variability or an aspect of the distribution The first step is to assess whether the observations
that should be included in the input model. are independent and identically distributed (iid). The data

Examples ok-variable multivariate input models (John- must be given in the order collected for independence to

son 1987, Wilson 1997) include a sequenck inidependent be asges;ed. Situations where the iid assumption wuaild
binomial random variables, a multivariate normal distribu- P€ V?“dpl\n%lg\(/j\/e':[eller has been hired at a bank and the
tion with meanu and variance-covariance matri® and 23 service times represent a task that has a steep
a bivariate exponential distribution (Barlow and Proschan ; R
1081). learning curve. The expected service time is likely

The lower half of the taxonomy contains stochastic pro- :ﬁgfgsriarizraesé?ﬁecigivt\: teller learns how to perform
cess models. These models are often used to solve problems The service times repre)gent 23 times to completion
at the system level, in addition to serving as input models of a physically demanding task during an 8-hour
for simulations with stochastic elements. Models are clas- shift. I fatigue is a significant factor, the expected
sified by how time is measured (discrete/continuous), the ' '

state space (discrete/continuous) and whether the model is ::mg to complete the task is likely to increase with
stationary in time. For Markov models, the discrete-state/ ¢ 5 simple linear regression of the observation numbers

continuous-state branch typically determines whether the yergys the service times shows a significant nonzero slope,
model will be called a “chain” or a "process”, and the sta-  hen the jid assumption is probably not appropriate.
t|onary/nonst_at|onary branch t_yp|cally determines whether Assume that there is a suspicion that a learning curve
the model will be preceded with the term *homogeneous” 5 present, which makes a modeler suspect that the service

or “nonhomogeneous”. Examples of discrete-time stochas- {imes are decreasing. One appropriate hypothesis test is
tic processes include homogeneous, discrete-time Markov

chains (Ross 2003) and ARIMA time series models (Box Ho:Br=0
and Jenkins 1976). Since point processes are counting
processes, they have been placed on the continuous-time
discrete-space branch.

'versus
Hi:81<0
16
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associated with the linear model (Kutner, Nachtsheim, Neter,

Wasserman 2003) +

08 |

Y = fo+ B1X + €,

06 |
whereX is the observation numbe, is the service timegg 04 |
is the interceptps is the slope, and is an error term. Fig- A
ure 2 shows a plot of théx;, y;) pairs fori =1, 2, ..., 23, <02 |
along with the estimated regression line. Thesalue asso-
ciated with the hypothesis test is 0.14, which is not enough 0.0
evidence to conclude that there is a statistically significant
learning curve present. The negative slope is likely due to 02
sampling variability. Thep -value may, however, be small

enough to warrant further data collection.
Service

Time

150 A

Observation
Number 2
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Figure 2: Service Time vs. Observation Number

There are a number of other graphical and statistical
methods for assessing independence. These include analysis
of the sample autocorrelation function associated with the
observations and a scatterplot of adjacent observations (Law
and Kelton 2000). The sample autocorrelation function
(ACF) for the service times is plotted in Figure 3 for the

-04

Lag
Figure 3: Sample Autocorrelation Function

50 100 150
Figure 4: Histogram of Service Times

taken to assure that it is representative of the population. The

first ten |ags_ The Samp|e ACF value at |ag 1, for examp|e’ Sample mean, standard deviation, coefficient of variation,
is the sample correlation for adjacent service times. The and skewness are

sample ACF value at lag 4, for example, is the sample
correlation for service times four customers apart. The
horizontal dotted lines aﬁ:% are 95% bounds used to
determine whether the spikes in the ACF are statistically
significant. None were statistically significant for the service
time data. For this particular example, assume that we are
satisfied that the observations are truly iid in order to perform
a classical statistical analysis.

The next step in the analysis of this data set includes .
plotting a histogram and calculating the values of some
sample statistics. A histogram of the observations is shown
in Figure 4. Although the data set is small, a skewed bell- .
shaped pattern is apparent. The largest observation lies in
the far right-hand tail of the distribution, so care must be
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Examples of interpretations of these sample statistics are:

A coefficient of variatiors /x close to 1, along with
the appropriate histogram shape, indicates that the
exponential distribution is a potential input model.
A sample skewness close to O indicates that a
symmetric distribution (e.g., a normal or uniform
distribution) is a potential input model.
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The next decision that needs to be made is whether a When these equations are equated to zero, the simultaneous
parametric or nonparametric input model should be used. equations have no closed-form solution for the maximum
One simple nonparametric model would repeatedly select likelihood estimators. andz:
one of the service times with probability23. The small
size of the data set, the tied value, 68.64 seconds, and Kkn _“K,lz":x{( _0
the observation in the far right-hand tail of the distribution, A L
173.40 seconds, tend to indicate that a parametric analysis is i=1
more appropriate. For this particular data set, a parametric

approach is chosen. n n n
There are dozens of choices for a univariate parametric - tn logx + ) "logx; — Y (x;)* logrx; = O.
model for the service times. These include general fam- i=1 i=1

ilies of scalar distributions, modified scalar distributions T4 reduce the problem to a single unknown, the first equation
and commonly-used parametric distributions (see, for ex- ¢an pe solved foi in terms ofx yielding

ample, Schmeiser 1990). Since the data is drawn from a
continuous population and the support of the distribution is " 1/k
positive, a time-independent, univariate, continuous input A= (W)
model is chosen. The shape of the histogram indicates that i=1%
Law and Kelton (2000, p. 305) give an initial estimate #or

the gamma, inverse Gaussian, log normal, and Weibull dis-
tributions (Lawless 1982) are good candidates. Derivation and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimatdrandx.

of the point and interval estimates for the Weibull distribu-
:'r?n atLe rglo\llie?riijn t(ijertla" here. Similar approaches apply to Their algorithm is guaranteed to converge for any positive
€ other distributions. initial estimate forx for a complete data set.
The score vector has a mean @fand a variance-

Parameter estimates for the Weibull distribution can
be found by least squares, the method of moments, and covariance matrixt (, k) given by the 2x 2 Fisher infor-
mation matrix

maximum likelihood. Due to desirable statistical proper-
ties, maximum likelihood is emphasized here. The Weibull
distribution has probability density function E[—az Iog%(z\,:c)] E[—82 IogL(A,K)]
ER EYET:
I(h, k) = |:E[—32|ogL(x,K)] E|:—82|OgL(k.K)i|:| :

1 —(x)F
fx) = A pexk Lo x) x>0, koA K2
where A is a positive scale parameter ands a positive The observed information matrix
shapg pgrameter. L_el, X2, 05 Xn denote the data values. 2l0gLR)  —02logLOud)
The likelihood function is 0G.#) = 922 TA0K
T —82logL(,R)  —d%logLGLR) |
n n k=1 kI A2
— ) KT . = X () .
L@, x) = l_[f(xl) =ATK [Hx’} ¢ ! : can be used to estimaféh, «).
i=1 i=1

For the 23 service times, the fitted Weibull distribution

Since the natural logarithm (log) is a monotone function, the Nas maximum likelihood estimators = 0.0122 andk =
likelihood function and its logarithm achieve their maximum  2-10. The log likelihood function evaluated at the maximum
atthe same values afandx. The mathematics are typically ~ likelihood estimators is log (2, k) = —113691. Figure 5
more tractable for maximizing a log likelihood function, —shows the empirical cumulative distribution function (a step

which, for the Weibull distribution, is function with a step of height/23 at each data point) along
n " with the Weibull fit to the data.
logL(x, k) =nlogk +«knlogi + (x — 1) Z logx; — A le!{ The observed information matrix is
i=1 i=1
~ ,. _|681000 875
The 2x 1 score vector has elements O, k) = [ 875 10.4} ;
n
dlogL(. x) _ _,()kalle_« revealing a positive correlation between the elements of
dA A i1 ' the score vector. We now consider interval estimators for

A and/c.A Using the fact that the likelihood ratio statistic,
and 2[log L (%, ©)—log L(x, k)], is asymptotically 2 distributed
DogLG.)  n . Xn:m N Xn:(x . in n with 2 degrees of freedom and thgf ; ;s = 5.99, a

9% = nlog et gx; ot Xi gAxX;.

18
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Figure 5: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

95% confidence region for the parameters isiatnd «
satisfying

2[-113691— log L (1, «)] < 5.99.

The maximum likelihood estimators and 95% confidence
region are shown in Figure 6. The lire= 1 is not interior
to the region, indicating that the exponential distribution is
not an appropriate model for this particular data set.

As further proof thatc is significantly different from
1, the standard errors of the distribution of the parameter
estimators can be computed by using the inverse of the
observed information matrix

0.00000165

—0.000139

P 0000139
0 (A”‘)—[ 0.108 }

This is the asymptotic variance-covariance matrix for the
parameter estimators and <. The standard errors of the
parameter estimators are the square roots of the diagonal
elements

o; = 0.00128 6, = 0.329
Thus an asymptotic 95% confidence interval fois

2.10- (1.96)(0.329 < « < 2.10+ (1.96)(0.329

or
146 <k < 2.74,

sincezp.025 = 1.96. Since this confidence interval does not
contain 1, the inclusion of the Weibull shape parameter
is justified.
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Figure 6: 95% Confidence Region Based on the Likelihood
Ratio Statistic

The model adequacy should now be assessed. Since the
chi-square goodness-of-fit test has arbitrary interval limits,
it should not be applied to small data sets (emq.—=
23), such as the service times being considered here. The
Kolmogorov—-Smirnov, Cramer—von Mises, or Anderson—
Darling goodness-of-fit tests (Lawless 1982) are appropriate
here. The Kolmogorov—Smirnov test statistic, which is the
maximum vertical difference between the empirical and
fitted cumulative distribution functions, is 0.151 for this
data set with a Weibull fit. This test statistic corresponds
to a p -value of approximately 0.15 (Law and Kelton 2000,

p. 366), so the Weibull distribution provides a reasonable
model for these service times. The Kolmogorov—Smirnov
test statistic values for several models are shown in Table 1,
including four that are superior to the Weibull with respect
to fit.

Table 1: Kolmogorov—Smirnov Test
Statistics for Models Fitted to Ser-
vice Time Data

Model Test statistic
Exponential 0.307
Weibull 0.151
Gamma 0.123
Arctangent 0.094
Log normal 0.090
Inverse Gaussian  0.088

Many of the discrete-event simulation packages ex-
hibited at theWinter Simulation Conferencleave the ca-
pability of determining maximum likelihood estimators for
several popular parametric distributions. If the package also
performs a goodness-of-fit test such as the Kolmogorov—
Smirnov or chi-square test, the distribution that best fits the
data set can quickly be determined.
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P—P (probability—probability) and Q-Q (quantile—

same population. External factors such as the weather, day

guantile) plots can also be used to assess model adequacyof the week, advertisement, and workload should be fixed.

A P-P plot, for example, is a plot of the fitted cumulative
distribution function at theth order statistice(), F(x)),
versus the adjusted empirical cumulative distribution func-
tion, F(xq)) = =25, fori = 1,2,...,n. A plot where
the points fall close to the line passing through the origin
and (1, 1) indicates a good fit. For the 23 service times,
a P—P plot for the Weibull fit is shown in Figure 7, along
with a line connecting (0, 0) and (1, 1). P—P plots should
be constructed for all competing models.

A

F
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0.0 0.2 04 0.6 0.8 10

Figure 7: A P—P Plot for the Service Times Using the Weibull
Model

m

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation of

For this particular example, we assume that these factors
have been fixed and the three processes are representative
of the population of arrival processes to the lunch wagon.

The input model for the process comes from the lower
branch (stochastic processes) of the taxonomy in Figure 1.
Furthermore, the arrival times constitute realizations of a
continuous-time, discrete-state stochastic process, so the
remaining question concerns whether or not the process is
stationary.

If the process proves to be stationary, the techniques
from the previous example, such as drawing a histogram,
and choosing a parametric or nonparametric model for the
interarrival times, are appropriate. This results in a Poisson
or renewal process model. Onthe other hand, ifthe processis
nonstationary, a nonhomogeneous Poisson process might be
an appropriate input model. A nonhomogeneous Poisson
process is governed by an intensity functidr) which
gives an arrival rate [e.gA(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary
with time. The next paragraph describes a nonparametric
procedure for estimating the cumulative intensity function
A(t) = [y »(v)dT from k realizations.

The cumulative intensity function is to be estimated
on (0, ST, where S is a known constant which equalss4
in this case. The interval0, S] may represent the time a
system allows arrivals (e.g., 9 AM to 5 PM at a bank) or
one period of a cycle (e.g., one day at an emergency room).
Letn;,i = 1,2, ...,k be the number of observations in the
ith realization,n = Zle n;, and letty, 12, ..., tm) be
the order statistics of the superposition of thesalizations,
to) = 0 andt,41) = S. The piecewise-linear estimator of
the cumulative intensity function between the time values

whether a stationary (no time dependence) or nonstationary i, ihe superposition is

model is appropriate. Modeling arrivals to a lunch wagon
is used to illustrate the decision-making process.

Arrival times to a lunch wagon between 10:00 AM and
2:30 PM are collected on three days. The realizations were
generated from a hypothetical arrival process given by Klein
and Roberts (1984). A total of = 150 arrival times were
observed, including; = 56, np = 42 andnz = 52 on the
k = 3 days. Defining(0, 4.5] to be the time interval of
interest (in hours) the three realizations are

0.2152 0.3494 0.3943 ... 4.175 4.248,

0.3927 0.6211 0.7504 ... 4.044 4.374,
and

0.4499 0.5495 0.6921 ... 3.643 4.357.

One preliminary statistical issue concerning this data is

~ mn n(t — t(,‘))
AQt) = +
(n+ Dk (n + Dk(tivy — 16))
for tqy <t <tu41;i =0,1,2,...,n, which is given in

Leemis (1991) and extended to nonoverlapping intervals in
Arkin and Leemis (2000). Asymptotic confidence intervals
and variate generation via inversion are also contained in
these references. This estimator (solid line), along with 95%
confidence bounds (dashed lines), are given in Figure 8.
The cumulative intensity function estimator at time 4.5 is
150/3 = 50, the point estimator for the expected number
of arriving customers per day. f(7) is linear, a stationary
model is appropriate. Since customers are more likely to
arrive to the lunch wagon between 12:60< 2) and 1:00

(t = 3) than at other times and the cumulative intensity
function estimator has afi-shape, a nonstationary model
is indicated. More specifically, a nonhomogeneous Poisson

whether the three days represent processes drawn from theProcess is a reasonable model for the arrival process.

20
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Figure 8: Point and 95% Confidence Interval Estimators for
the Cumulative Intensity Function

The next question to be determined is whether a para-
metric or nonparametric model should be chosen for the
process. Figure 8 indicates that the intensity function in-
creases initially, remains fairly constant during the noon
hour, then decreases. This may be difficult to model para-
metrically, so a nonparametric approach, possibly using
A(7) in Figure 8 might be appropriate. Process generation
for simulation is straightforward (Leemis 1991).

There are many potential parametric models for non-

stationary arrival processes. The next paragraph describes

the procedure for fitting gower law processwhere the
intensity function has the same parametric form as the haz-
ard function for the Weibull distribution. Other models can
be fit in a similar fashion.

The likelihood function for estimating the vector of
unknown parameter8 = (01,62, ...,6,) from a single
realization on(0, S] is

n N
L) = []‘[ A(zi)} exp[—/ A(r)dz].
i=1 0

Maximum likelihood estimators can be determined by max-
imizing L(0) or its logarithm with respect to all unknown
parameters. Confidence intervals for the unknown param-
eters can be found in a similar manner to the service time
example. Owing to the additive property of the intensity
function for multiple realizations, the likelihood function
for the case ok realizations is

n Ky
L) = [Hkk(ti)} exp[—/o k)\(r)dz].
i=1

21

The power law process has intensity function

) = Aper<t t >0,
for A > 0 andx > 0. Thus the likelihood function fok
realizations is

n
L, k) = K" e k9" l_[ tfil.
i=1

The log likelihood function is
n
log L (A, k) = nlog(kx) — ni logh — k(AS)< + (k — 1) Z logy;.
i=1
The 2x 1 score vector has elements l
dlogL(x, k)  «n

A e

kS<icpk—1
and

dlogL(x, k) B

oK -

n

nlogi + - + Z logt; — k(AS)“ log (AS) .
K

i=1
When the score is equated to zero, the analytic expressions
for A and« are

n\ 1«
()

Substituting the arrival times into these formulas yields
maximum likelihood estimatora = 4.86 andx = 1.27.
The cumulative intensity function for the power law process

1

S

n
nlogS—Y""_;logs

i:

I%:

A@) = (A" t >0,

is plotted along with the nonparametric estimator in Figure 9.
Note that due to the peak in customer arrivals around the
noon hour, the power law process is not an appropriate
model since it is not able to adequately approximate the
intensity function.

Since the intensity function is analogous to the hazard
function for time-independent models, an appropriate 2-
parameter distribution to consider would be one with a
hazard function that increases initially, then decreases. A
log-logistic process, for example, with intensity function
(Lawless 1982)

A (A)<—1

MO =T o

t >0,

for A > 0 andx > 0, would certainly be more appropri-
ate. More generally, the EPTMP (exponential-polynomial-
trigonometric function with multiple periodicities) model,
originally given by Lee, Wilson and Crawford (1991) and
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Figure 9: Empirical and Fitted Power Law Estimators for
the Cumulative Intensity Function

generalized by Kuhl, Damerdji and Wilson (1998) with
intensity function

i=0 k=1

m )4
At) = exp[z ot + Z Y Sin(wit + ¢k):| t > 0.

can model a nonmonotonic intensity function. Goodness-
of-fit tests are given in Rigdon and Basu (2000).

4 DISCRETE-EVENT SIMULATION MODELING
FRAMEWORK

This section contains a description of a diagram that has
been developed for describing the process of constructing a

discrete-event simulation model. The purpose of providing
the description of the diagram here is t@) show where
input modeling fits into the simulation modeling process,
and(ii) isolate various sources of error involved in simula-
tion modeling. The diagram depicting a high-level, abstract
framework of a discrete-event simulation modeling process
for analyzing an existing or proposed system (labeled “Sys-
tem” in the diagram) given in Figure 10 is adapted from
Schmeiser (2001) and Nelson (1987).

The upper-case letter¥o, U, X, Y, 6, 0, and D

denote ordered sets containing one or more numbers. To

avoid writing “one or more numbers” in our descriptions

of these sets, we assume that there are multiple numbers in

the sets. The descriptions of these ordered sets follows.

Xo is a set of seeds for a random number generator,
one for each stream used in the implementation of
the discrete-event simulation model.

U is a set of random numbers created by using the
random number generatgy to transform the seeds

in the setXgp to random numbers. The random

22

System —— =6

c,
D A
P
G, 7 C s .
Xo Uu——=1v Y 6

Figure 10: A Framework for Discrete-Event Simulation

numbers inU are partitioned by the associated
stream when multiple streams are employed.

e V is a set of input data (“variates”) created by
applying the input model to the set of random
numbersU .

Y is a set of output data generated by applying
the logic modell to the set of input dat&. The
output data are typically dependent, although the
probability model for each individual observation
is often identical for a steady-state analysis once
the simulation model warms up.

« 6 is a set of point estimators for the unknown
system measures of performantecalculated as
a function of the output dati. In general, there
is some error present, i.é, 6.

» 0 is the corresponding set of measures of perfor-
mance associated with the system of interest.

* D is a set of system data values collected on
appropriate elements of the system of interest in
order to build an input modef.

Although Figure 10 conceptually lumps the thousands
or millions of random numbers into a s&t, the next-event
approach to simulation allows us to generate them one at a
time in order to save memory and CPU time.

The calligraphic lettersj,, Z, £, S, C-, P and A in
Figure 10 are all associated with arrows. These are the seven
sources of error associated with the discrete-event simulation
modeling process. These letters denote transformations,
probability models, data collection methods, assumptions,
etc., as described below.

e G, isarandom number generator used to transform
the seeds in the sé&fp to random numbers in the
setU.

e T is the input model used to transform the set of
random number# to the set of input dat&. The
process of transformin@ to V is known asran-
dom variate generatianThe input model is often
determined by analyzing a set of ddba although
in rare cases an input model is determined in the
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absence of data using expert opinion, bypassing
the setD entirely.

L is the logic model that captures assumptions
made about the system into transformations (often
formulated as algorithms) that are used to transform
the set of input dat& to the set of output dat#.

S is a statistical estimation procedure. THie&on-
necting the set of output datd and the set of
point estimates of the measures of performafice
involves computing statistics, which are functions
of the set of output datd (e.g., sample mean,
sample median, or sample variance). Confidence
intervals for measures of performance are often-
times computed to give a sense of the accuracy of
the point estimates.

C, denotes the data collection procedures from
the system of interest. It is crucial to collect
the appropriate data elements from the system.
Also, the data should be collected in an appropriate
and representative fashion using standard sampling
techniques.

P involves the process of formulating a proba-
bilistic input model that adequately describes the
set of data collected iD. The P connecting the
set of system data valud3 and the input model

7 involves either resampling the data (i.e., the
trace-driven or nonparametric approach) or fitting
a parametric model to the data set. The process
of formulatingZ is the focus of this tutorial.

A denotes assumptions made on the system of
interest. These assumptions are used to create
the logic modell describing the operation of the
system. Incorrect or simplifying assumptions lead
to modeling error.

What part of Figure 10 describes the discrete-event
simulation model? The simulation model consists of the
combination of the probabilistic input mod&l and the
logical model £. Once the simulation model, and L,
has been determined, the sequence of four arrows leading
from Xo to 6 is a sequence of four deterministic functions
for a particular random number generaghrand choice of
sample statistics collecte$l All that is needed to arrive at
6 are the random number seeds in the Xgt

Error can occur in any of the arrows labeled by a
calligraphic letter. There is no letter on the arrow attaching
the system of interest to the measures of performance
because there is no error associated with this transition. The
values of the measures of performance are unknown, which
typically necessitates the use of a discrete-event simulation
analysis for a complex system. If the model could be
simulated for an infinite length of time and an infinitely large
data set could be collected on the system of interest, then
the error betweef andd would be a constant value induced
only by “logic-modeling error”. “Sampling error”, on the
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other hand, stems from the random sampling variability
inherent inG, andC,. Thus the mean square error:

E[0? — 260 + 67

E[0?] — E[200] + E[6?]

E[0?] — 20E[0] + 62

E[6%] — E[0)? + E[0)? — 20E[0] + 62
V6] + (E[6] — 0)2,

E[(0 — )2

captures the sampling error in the first tefid] and the
modeling error in the second ter(ﬂ[é] —0)2. The mean
square error can only be computed on simple “toy” systems
where the values id are known.

The discussion here assumes an ideal system that does
not change with time. Most real-world systems are changing
with time, however, so an infinite sample drawn from the
system is about how the system performed in the past, not
how it will perform in the future.

The r subscript denotes a step in the discrete-event
modeling process where error from random sampling vari-
ability is present. Both the random number genergtand
the data collection procedurés involve random sampling
variability. An “unlucky” single random number seed on a
good generatog, could, for example, produce a sequence
of unusually small random numbefg whose average is
significantly less than /2. Likewise, an “unlucky” ran-
dom sample on a legitimate data collection procedtye
could, for example, produce a sequence of unusually large
data values inD. The error induced by random sampling
variability can be minimized by making numerous long
simulation replications (in the case @f) and by collecting
large system data sets (in the casé,9f Almost universally,
the former is cheaper than the latter.

The other sources of error are associated with the cal-
ligraphic letters in the diagram are:
using a poor random number generafpr
making poor modeling decisions # resulting in
a poor probabilistic input modéef,
using incorrect system data sampling procedures
Cr,
making incorrect or simplifying assumptions about
the system inA resulting in a poor logic modet,
making poor choices i when analyzing the set
of output datay'.

Why do we simulate? An “analytic” model is ap-
propriate when mathematics can be used to find the ex-
act values of the measures of performanceédin For
many real-world systems, however, the transformation from
U— V — Y —> f is so mathematically complex that
the axiomatic approach to probability results in mathemat-
ically intractable expressions for the elements in thegset
Equivalently, the numbers in the sEtare drawn from an
unknown or mathematically intractable probability model.
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