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ABSTRACT 

This paper presents an architecture and a design for a Fed-
eration Object Coordinator (FOC) for simulation based 
control and analysis. This research focuses on developing a 
methodology for implementing a distributed simulation 
control mechanism which can be adopted to virtual manu-
facturing or virtual enterprises. In this method, distributed 
fast or real time simulation models interact with low level 
controllers and among themselves to actively control a 
system. The timing and coordination requirements of the 
simulation models to interact with the MRP systems and 
control systems as well as the interaction among the dis-
tributed simulation models are discussed in this paper. 
 
1 INTRODUCTION 
 
As the size and complexity of simulation systems in-
creases, “conventional” sequential simulation fails to de-
liver the necessary performance (time and model fidelity 
become issues). In large interactive simulations, a distrib-
uted implementation can help decrease the simulation 
model and case representation issues. Distributed simula-
tion have been used for numerous reasons: which include 
the faster execution of models, ability to better represent a 
system physically distributed rather than localized to a 
single machine or processor and increase in model fidelity. 
An architecture for distributed simulation-based control 
and analysis are discussed in this paper. In this modeling 
methodology, an FOC plays a critical role such as time 
management and coordination among federates (or simula-
tion models).  
 
2 SYNCHRONIZATION METHODS 
 
2.1 Time Increment in Discrete Event Simulation  
 
The two phases of a Discrete Event Simulation (DES) 
model’s run - Entity Movement Phase (EMP) and the 
Clock Update Phase (CUP) has been discussed in  Schriber 

  

and Brunner (2000). In the CUP, two principal timing 
methods are used: variable ∆∆∆∆t method and fixed ∆∆∆∆t 
method. These methods have been discussed in Law and 
Kelton (2000). It needs to be noted that the performance of 
these methods also depends upon the level of interaction 
among the different models.  
 
2.2 Synchronization Techniques 
 
Methods to coordinate simulation models can be classified 
into synchronous and asynchronous methods. In the for-
mer, the required coordination is achieved using exact 
synchronous mechanism or rollback mechanism. In the 
exact synchronous mechanism, models do not process 
current events simultaneously; only one model is active. 
The synchronization is accomplished by maintaining a 
“master event calendar” with the next event for each of the 
distributed components (Misra 1986, Boukerche and Trop-
per 1995). In asynchronous method, every simulation 
model runs independently, giving the potential for 
maximum parallelism (Ghosh and Lee 2000). It can be 
achieved using conservative or optimistic approaches 
(Chandy and Misra 1979, Jefferson 1985, Misra 1986, Lin 
and Fishwick 1996, Fujii et al. 1999).  
 
3 OVERVIEW OF  METHODOLOGY 
 
Figure 1 outlines the framework of the proposed system. 
The overview of the system consists of an FOC which co-
ordinates different simulation models, distributed simula-
tions, controllers in units and the MRP/DB system. The 
control of the federation of simulations shown in Figure 1 
is accomplished by using active status for the slowest run-
ning simulation while others are in inactive status. In this 
research, the FOC uses the exact synchronous variable ∆∆∆∆t 
mechanism. In this case, an FOC designated as a so-called 
“master event calendar” allocates inter-process events 
from this calendar to all simulation models. The FOC also 
resynchronizes all simulations at the end of every activity.  
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Figure 1: Overview of the Proposed System 
 

With this mechanism, simulation models do not proc-
ess current events at the same time; one model is active 
while the other models are inactive or delayed. An active 
model is a synchronized model that advances to the time of 
its next future event and completes the events on its current 
event list. The synchronization is accomplished by main-
taining a “master event calendar” embedded in the FOC.  

The two principal time increment methods for simula-
tion federations are variable and fixed ∆t for time advance. 
The two mechanisms can be implemented in the system 
along with an FOC; however, all distributed simulation 
models update their state at the same time by variable ∆t 
since time increment in a simulation depends on time of the 
next event. On the contrary, if a fixed ∆t method is used in 
the system, all models update their states at fixed time in-
crement, and a small ∆t results in a large number of update 
points to synchronize the simulation time to the global simu-
lation time set by a simulation step size of an FOC. 
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Figure 2: Time Updates for Two Synchronization Methods 
Applicable to the System 
Figure 2 compares time increment steps and update 
points in the systems using these two methods. If large 
steps are taken, then constant step back occurs (moving 
backward in time).  

The main objectives for this research are: 
 
• An architecture for an FOC and software system 

to coordinate federates or simulations: Under the 
distributed simulation modeling environment, it is 
necessary to have an architecture of the system, 
which can govern and coordinate federates within 
the system. There are several alternatives to con-
struct this mechanism. This mechanism can be 
categorized by its developer, platform or architec-
ture, the synchronization technique or communi-
cation protocol. Possible alternatives are as fol-
lows: HLA/RTI, Common Object Request Broker 
Architecture (CORBA), Remote Method Invoca-
tion (RMI) and Distributed Manufacturing Simu-
lation (DMS) (Buss and Jackson 1998, McLean 
and Riddick 2000, Allen and Garlan 1997).  

• Management for distributed simulation models 
within the federation: The methodology for syn-
chronization discussed here includes information 
about the time of the next event and the time for 
the inter-process events from a “master event cal-
endar”. It is necessary to develop a mechanism to 
determine the time of the events in simulation 
models and exchange the information via an FOC. 
Consequently, both a time management mecha-
nism (to find out information regarding to time of 
the events using simulation’s variables and func-
tions relative to its calendar) and communication 
mechanism to exchange information via an FOC 
are required for a variable ∆t FOC. 

• An architecture and management for the DB/MRP 
system: Several possible software packages such 
as Microsoft Access, ERP packages (Oracle ERP 
systems or SAP R/3) or commercial large data-
base systems such as DB2 RDBMs can be used to 
generate input data such as master production 
schedule (MPS), Bill of Material (BOM) and so 
on. In this research, details for DB/MRP architec-
ture are not discussed. 

 
4 DISTRIBUTED SIMULATIONS 
 
In a distributed simulation-based control system, many 
simulation models can be introduced to analyze and control 
physical systems instead of a single simulation model.  
They act as decision makers for each control unit and per-
form inter-processing communication between them via an 
FOC. The interactions among the models, modeling archi-
tecture of distributed simulation models coordinated by an 
FOC have been discussed. For the implementation, models 
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in Arena 4.0™ is used  to obtain MRP/DB information and 
made to interact with a master control object to execute 
tasks though a messaging system.  

Distributed simulation models are first run in the fast 
mode to detect system failures or other performance prob-
lems as an analytical tool. Even though distributed simula-
tion is applied to model relatively small manufacturing sys-
tems, the benefits to model and analyze the systems using 
distributed simulation can be more prominent for large ap-
plications such as remote virtual factories or supply chain 
management. First, fast-mode distributed simulations are 
run to detect system problems and check fulfillment of 
tasks while communicating each other via an FOC. After 
debugging and modifying the overall models to satisfy all 
the requirements, simulated system events can be progres-
sively replaced by plugging in actual physical equipments 
to develop a fully integrated control system (Wu and Wysk 
1989, Son et al. 1999). 
 Each distributed simulation model obtains MRP/DB in-
formation using an SQL connection to an interactive Open 
Database Connectivity (ODBC) compliant database system. 
Two simulation models (for example) run while exchanging 
messages using an Ethernet communication link to two mas-
ter controllers in each control unit via two routers. In this 
case, two controllers perform the execution functions and 
keeps track of the status of each low level controller within 
each control unit. The master controllers and simulations ex-
change messages. Once the  master controllers confirm 
completion of tasks within a unit, then it sends a similar 
message to the simulation, and the simulation knows that the 
current task was completed. This procedure of com-
munication between each master controller and simulation 
model for controlling a unit is performed in parallel via a 
router while communication among simulation models is 
done separately via an FOC. The control architecture for a 
case of two distributed simulations appears in Figure 3. 
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Figure 3: Control Architecture for Two Distributed 
Simulations 

As soon as a simulation model starts, it firstly tries to 
make connections to a router to communicate with a mas-
ter controller, an FOC to send and receive synchronization 
information and MRP/DB through ODBC. When an entity 
is created in the model, the entity invoke DB/MRP to ob-
tain necessary information. Every entity created has attrib-
utes to store the information needed to process transactions 
and to store the information about time of the next event, 
time of the review event (physical halt for synchronization 
among distributed simulation models). The names and 
numbers for the attributes in the simulation are listed in 
Table 1. Arena simulation supports either Visual Basic 
Application (VBA) or DLL user-defined code for applica-
tion integration. User-written code for database interaction 
for process plans and master production schedule, auto-
matic control, communication with controllers, coordina-
tion with an and FOC can be linked using VBA or DLL 
files. Here, a DLL file generated using Microsoft Visual 
C++ files and header files provided by Systems Modeling 
Corporation is used. C++ file structure and functions of the 
DLL file are shown in Figure 4. 
 

Table 1: Attributes Used in the Simulation Models 
Attributes Attribute name Function 
100 – 199 Transaction  

Parameters 
Executing transactions  

in controller 
200 Next Time The time of next event  

in the current simulation 
201 Review Time The time of review event sent  

back from an FOC for  
synchronization purpose 

 

Simulation1 Simulation2RT.dll RT.dll

Database Get DB Info. CPP file
Generation Task CPP file
Next_task CPP file
Read_address CPP file
Read_attribute CPP file
Update DB Info. CPP file
ConfigDlg CPP file
StatusDlg Cpp file
UserC CPP file
HistoryEdit CPP file

Database

Generating tasks
Identifying time of the next event

Communicating with controllers and FOC
Database interactions

Connecting to FOC when the simulation starts 

Visual C++ Project

 
Figure 4: Architecture of the DLL File 

 
5 A FEDERATION OBJECT COORDINATOR 
 
5.1 Architecture of an FOC 
 
The FOC discussed in this paper has been implemented in 
the form of a TCP/IP socket program. The primary purpose 
of the FOC is to facilitate the communication among the  
simulation models. While a router is used to exchange 
messages related to physical tasks between a simulation 
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and a system controller, the FOC exchanges a message re-
lated to time of the next event from each simulation model. 
In addition, the FOC executes and sorts the messages from 
simulation models in order to construct a master event cal-
endar. A schematic representation is depicted in Figure 5. 
 

SIM1 SIM2

ROUTER

Time of the next events

Smallest time will be sent 
to both models

High and Low Level Controllers  
Figure 5: Communication between Simulation Models and 
an FOC and a Router for Two Simulations 
 

In most methods, synchronization of the simulations is 
usually achieved by messaging (Lin and Fishwick 1996). 
In this architecture, seven key functions have been defined 
for the FOC. The SocketListen( ) function is used to 
monitor any incoming signals which requires establishing a 
connection to a specific port. The connection of the simula-
tion model to the FOC using the OnConnect( ) function. 
The AcceptSimulation( ) function in an FOC applica-
tion verifies if an acceptable connection has been made 
with the relevant simulation models. The ReceiveMessage( 
) function waits for messages from simulation models 
connected to the FOC. Upon receiving messages (next 
event times) from all the connected models, the FOC sorts 
the event times to create a “master event calendar” (in in-
creasing order of time of the next event after consolidating 
events from all simulations). This sorted result are stored in 
a buffer. A SendMessage( ) function is invoked to send 
information regarding the next scheduled event (top ranked 
value in a buffer or master event calendar) to each simula-
tion model. Finally, the GetTnext( ) function handles 
message strings from each simulation model and deciphers 
them to help the FOC in selecting  the next event. 
 
5.2 Synchronization Scheme for an FOC 
 
Exact synchronous variable ∆∆∆∆t mechanism is used for this 
implementation since this approach is expected to faster than 
other approaches and is typically limited only by the com-
puting or communication resources. Figure 6 describes basic 
procedures of the synchronization mechanism. As shown in 
Figure 6, time increment and update in each simulation de-
pends on time of the next event. Therefore, it is necessary to 
develop a method to obtain information about time of the 
next event in each simulation for the proposed synchroniza-
tion mechanism. When it is time to execute the next event, 
the top record is removed from the calendar and the informa-
tion in this record is used to execute the appropriate logic. In 
addition, the current value of time in the simulation is simply 
held in a variable called the simulation clock and it is stored 
in Arena system variable “TNOW”. During initialization of 
the simulation, and then after executing each event, the event 
calendar’s top record is taken off the calendar. The simula-
tion clock advances to the time of the next event, and the in-
formation in the removed event record is used to execute the 
event at that instant of simulated time (Kelton et al. 1998, 
Pegden et al. 1995). 

 
 

Figure 6: Synchronous Distributed Simulation 
 
A simulation model should start in process mode envi-

ronment and control of the entity is passed to “cevent 
( )” user-coded C function when an entity arrives at the 
EVENT block. If a function to generate time of the next 
event should be developed in user coded C++ file, those 
EVENT blocks in process mode can be used to connect the 
process model to event scheduling mode. Figure 7 shows 
Arena block diagrams for sending time information to a 
FOC and delaying for a “dummy event”. 
 Once the FOC gets the messages about the time of the 
next event, it returns the smallest value (of time of next 
events) to each simulation model. When a simulation gets 
the response from an FOC in a same delay block, it reads 
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and processes this message. After receiving messages from 
the FOC, the simulation restores the returned value into 
another attribute, creates a review event and updates the 
attribute again. The entity will proceed to the next delay 
block and it is delayed for “the smallest time among the 
next events – TNOW”. 
 Event execution logic in event scheduling and process 
mode associated with time of the next event is depicted in 
Figure 8. Finally, a synchronization mechanism along with 
messages and creation of dummy events is proposed as an 
exact synchronous variable ∆∆∆∆t mechanism with message 
packets. 
 
 

return
Time

Delay

TASKID(delay_time, send_to_federation_done,,)

Delay

RTime==NextTime.AND.IDENT==NextEntIf
Else

Branch

5

Event

3

Event

RTime-TNOW

Delay

 
 

Figure 7: Arena Process Block Diagram 
 

 

 
Figure 8: Event Execution Logic in Event Scheduling and 
Process Mode 

 

Figure 9 describes a basic procedure of the proposed 
synchronization mechanism between an FOC and simula-
tion models. Since synchronization mechanism will use in-
ter-process communication for message parsing, message 
structure and executing messages can be critical issues for 
its performance.  
 

While (Simulation is not over)

Wait until message queue (master event calendar) contains
messages (= the number of simulation models) which include 
time of next event in each simulation

Remove and send smallest time (Ts) stamped message M 
from its calendar back to each simulation model.  

In each simulation model 
If 

its simulation clock (TNOW) = Time stamp of M 
Successfully process M and proceed to the next event

Else
Generate a review (Dummy) event and delay simulation 
time for Ts.     

Send another time stamped message to master event calendar 

 
Figure 9:  Exact Synchronous Variable ∆t Mechanism with 
Message Packets 
 
6 COMMUNICATION ARCHITECTURE 
 
6.1 Communicaion Scheme  
 
Based on schemes for inter-process communication, the 
test-bed system can be implemented by TCP/IP socket 
program embedded in each object member. There are three 
elements in the inter-process communication in the system. 
Figure 10 represents communication architecture of the 
system, message flows and physical communication chan-
nels. From the above figure, simulation models, controller 
via a router and the FOC have similar communication 
processes to interact each other (Figure 11).  
 
6.2 Messaging Scheme for Objects in the System 
 
In the view of a simulation model as a task generator, it 
needs to send all necessary communication to a master 
controller. On the other hand, in the view of a simulation 
model as a federate which will coordinate with other feder-
ates via the FOC, all of messages to send out information 
of time from a federate to other federates is handled by the 
FOC. Since synchronization mechanism uses inter- process 
communication for message parsing, message structure and 
methods used for executing messages is critical point for 
system performance. The messages generated by a simula-
tion model are defined in “Message” or “Task” elements in 
Arena 4.0 (Table 2). 
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Figure 10: Communication Architecture 

 

 

Figure 11: Communication Procedure 
 

Table 2: Message Schema in Simulation Models 
Messages Description Parameters 

Send_from_si
mulation_to_ 

controller 

Process the tasks or 
transactions in a speci-
fied class of objects in 

the system 

IDENT(Current 
active entity), 
Object name, 
Task Action 

 

Send_to_federa
tion 

Determine the smallest 
time of the next event 

among simulation mod-
els then send it back to 

models 

IDENT, 
NextTime, 

TNOW 

 

Communication Process in Simulations, FOC and Controllers 
 
1. The Communication Socket is created (Initialization) 

2. Listen and wait for a connection with the simulation models 

3. Read the incoming messages from simulations  
        in the socket’s Input buffer  

4. Parse the message into a format in order to be executed  

     in the program  

     (String find   store a section of string found  

             Execute functions using those intermediate strings)  

5. Parse the application’s response into a response message 

6. Write the response message to the output buffer 
 

 

7 FUNCTIONAL ARCHITECTURE  
FOR THE PROPOSED SYSTEM 

 
7.1 Information Flow among Object  

Members in the System  
 
Information and message flow can be modeled in a se-
quence diagram, one of interaction diagram in Unified 
Modeling Language (UML)  (Booch et al. 1999). Figure 12 
represents a sequence diagram which contains for the pro-
posed system. A related paper discusses the use of fast-
mode models and real time models  to control a system 
such a manufacturing shop floor or supply chain interac-
tions. (Ramakrishnan and Wysk 2002). In addition, since 
fast-mode and real time mode simulation models share the 
same attributes and operations (Figure 13), they can be 
generalized into one simulation class. The five different 
classes in this architecture - simulation, an FOC, a control-
ler, DB/MRP system, and a router is shown in Figure 13. 
 

 
Figure 12: A “Sequence Diagram” for the Proposed System 
 
8 IMPLEMENTATION ISSUES 
 
The Arena 4.0™ simulation software used in the implemen-
tation is designed for building computer models that accu-
rately represent real world applications. In order to exchange  
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Figure 13: A “Class Diagram” for the Proposed System 
 
messages among objects (simulation models, controllers via 
a router and an FOC in this case) in the system, it is required 
to have a real-time package which is capable of sending 
messages to third-party controller software. 

In this research, Arena RT (real-time) package is used 
to analyze and control the entire system which is divided 
into two control units along with two high-level controllers 
as shown in Figure 3. Basically, the simulation model reads 
the order entries and a corresponding master production 
schedule from the IBM’s DB2 database and sends the re-
quired messages to each high-level controller. After sending 
the message, the simulation model waits for the verification 
message from Big-E informing that the command has been 
executed properly and the system is ready for the next mes-
sage. Consequently, Arena simulation sends a sequence of 
messages throughout the processing of a shop order which 
direct the part inside the physical system. Upon the comple-
tion of an order, the simulation model updates the order en-
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try table in the database verifying that the order has been 
completed and ready for shipment. However, Arena does not 
support a command to halt the simulation. If such a com-
mand existed, it would be possible to implement synchroni-
zation of simulation time easily by simply halting one 
model. Moreover, two models cannot run simultaneously on 
a single computer. Therefore, in order to implement the sys-
tem including several distributed simulation models, it is 
necessary to run distributed simulation models on physically 
distributed computers. 

As mentioned earlier, the same number of high-level 
controllers as the number of distributed simulation models is 
required to control the system and execute tasks generated 
by each simulation model. In each distributed control unit, 
low-level controllers for physical equipments communicate 
with their supervisor. Consequently, the same number of 
routers with the number of high-level controllers is required 
in each computer to connect all objects such as a simulation, 
high-level controller and low-level controllers. 

The speed and traffic of a network and performance of 
computers considerably affect overall system’s perform-
ance since the proposed system depends on communication 
process and message parsing for synchronization among 
simulation models. Those factors should be also considered 
prior to implementation. Finally, it can be stated that the 
purpose of implementation using the proposed methodol-
ogy is to show the effectiveness of the proposed system 
and its ability to make the overall system work. 
 
9 CONCLUSIONS 
 
In this paper, a methodology to synchronize distributed 
simulations has been presented. An architecture for imple-
menting the methodology using Arena 4.0 as the example 
DES has also been discussed. The basic idea was to present 
the design and implementation of an FOC and a messaging 
scheme that synchronizes distributed simulations. This 
architecture can be flexibly applied to various systems such 
as shop floor control systems and supply chain management. 
The functional architecture depicted by object dependencies 
for the system and information flow among objects in the 
system using UML diagrams can aid the implementation in 
any DES software. The proposed architecture was also im-
plemented in some test-bed systems. From the results, it was 
experienced that simulations with an FOC performed more 
efficiently and flexibly than fixed ∆t method and implemen-
tation was done more easily than HLA/RTI or other 
architectures. The tests will be discussed in a later paper. 
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