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ABSTRACT 

Simulation optimization is rapidly becoming a mainstream 
tool for simulation practitioners, as several simulation 
packages include add-on optimization tools. In this paper 
we are concentrating on an automated optimization ap-
proach that is based on adapting model parameters in order 
to handle uncertainty that arises from stochastic elements 
of the process under study. We particularly investigate the 
use of global search methods in this context, as these 
methods allow the optimization strategy to escape from 
sub-optimal (i.e., local) solutions and, in that sense, they 
improve the efficiency of the simulation optimization 
process. The paper compares several global search meth-
ods and demonstrates the successful application of the Par-
ticle Swarm Optimizer to simulation modeling optimiza-
tion and design of a steelworks plant, a representative 
example of the stochastic and unpredictable behavior of a 
complex discrete event simulation model.  

1 INTRODUCTION  

It has long been established that simulation is a powerful 
tool for aiding decision-making. This is due to a number of 
factors, such as the inherent ability to evaluate complex 
systems with large numbers of variables and interactions 
for which there is no analytical solution. Secondly, simula-
tion can model the dynamic and stochastic aspects of sys-
tems, generating more precise results when compared with 
static and deterministic spreadsheet calculations. It is also 
considered as a tool to answer “What if” questions. Simu-
lation itself is a solution evaluator technique, not a solution 
generator technique (Harrel and Tumay 1994). This sce-
nario could be changed with the aid of optimization proce-
dures. In this case, simulation could answer not only 
“What if” questions but also answers “How to” questions 
(Azadivar 1992), providing the best set of input variables 
that maximize or minimize some performance measure(s) 
(based on the modeling objectives). 

 

According to Stuckman et al. (1991), simulationists can 

be classified into 3 categories with regards to the optimiza-
tion of quantitative variables: the first category tend to use 
the “trial and error” method, varying the input variables in 
order to find which set gives the best performance. The sec-
ond category tends to systematically vary the input variables, 
to see their effects on the output variables. The third cate-
gory will apply an automated simulation optimization ap-
proach. In the paper we are concentrating on the last cate-
gory. General reviews and suggestions/approaches are ex-
tensively discussed in Andradóttir (1998), Bowden and Hall 
(1998) and Lee et al. (1999) but this paper particularly inves-
tigates the use of global search strategies in this context. 

Global search strategies include methods like simu-
lated annealing (Corana et al. 1987, Kirkpatrick 1983), ge-
netic and evolutionary algorithms (Michalewicz 1996), and 
swarm intelligence (Eberhart et al. 1996, Kennedy and 
Eberhart 1995). The paper is organized as follows. In the 
next section, three popular global search strategies are re-
viewed. We then proceed by describing a typical simula-
tion model that we use as a benchmark in our study. Fi-
nally, simulation optimization results are presented and 
discussed, and the paper ends with concluding remarks.  

2 GLOBAL SEARCH STRATEGIES 

2.1 Simulated Annealing  

Simulated Annealing (SA) is a method based on Monte 
Carlo simulation, which solves difficult combinatorial op-
timization problems. The name comes from the analogy to 
the behavior of physical systems by melting a substance 
and lowering its temperature slowly until it reaches freez-
ing point (physical annealing). Simulated annealing was 
first used for optimization by Kirkpatrick et al. (1983). In 
the numerical optimization framework, SA is a procedure 
that has the capability to move out of regions near local 
minima (Corana et al. 1987). SA is based on random 
evaluations of the objective function, in such a way that 
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transitions out of a local minimum are possible. It does not 
guarantee, of course, to find the global minimum, but if the 
function has many good near-optimal solutions, it should 
find one. In particular, SA is able to discriminate between 
“gross behavior” of the function and finer “wrinkles”. 
First, it reaches an area in the function domain space where 
a global minimizer should be present, following the gross 
behavior irrespectively of small local minima found on the 
way. It then develops finer details, finding a good, near-
optimal local minimizer, if not the global minimum itself.  

2.2 Genetic Algorithms  

Genetic Algorithms (GA) are simple and robust search al-
gorithms based on the mechanics of natural selection and 
natural genetics. The mathematical framework of GAs was 
developed in the 1960s and is presented in Holland’s pio-
neering book (Holland 1975). GAs have been used primar-
ily in optimization and machine learning problems. The 
fundamental principle of GAs is that at each generation of 
a GA, a new set of approximations is created by the proc-
ess of selecting individuals according to their level of fit-
ness in the problem domain and breeding them together us-
ing operators borrowed from natural genetics. This process 
leads to the evolution of populations of individuals that are 
better suited to their environment than their progenitors, 
just as in natural adaptation. A high level description of the 
simple GA is shown in the code below. 

 
STANDARD GENETIC ALGORITHM MODEL 
{ 
//initialize the time counter 
t := 0; 
//initialize the population of individuals 
InitPopulation(P(t)); 
//evaluate fitness of all individuals 
Evaluate(P(t)); 
//test for termination criterion (time, 
//fitness, etc.) 
while not done do 
t := t + 1; 
//select a sub-population for offspring 
//production 
Q(t) := SelectParents(P(t)); 
//recombine the “genes” of selected parents 
Recombine(Q(t)); 
//perturb the mated population stochastically 
Mutate(Q(t)); 
//evaluate the new fitness 
Evaluate(Q(t)); 
//select the survivors for the next 
//generation 
P(t + 1) := Survive(P(t), Q(t)); 
end 

} 

 
More specifically, a simple GA processes a finite 

population of fixed length binary strings called genes. GAs 
have two basic operators, namely: crossover of genes and 
mutation for random change of genes. The crossover op-
erator explores different structures by exchanging genes 
between two strings at a crossover position and the muta-
tion operator is primarily used to escape the local minima 
in the weight space by altering a bit position of the selected 
string; thus introducing diversity in the population. The 
combined action of crossover and mutation is responsible 
for much of the effectiveness of GA search. Another opera-
tor associated with each of these operators is the selection 
operator, which produces survival of the fittest in the GA. 
The parallel noise-tolerant nature of GA and their hill-
climbing capability make GA eminently suitable for simu-
lation optimization, as they seem to search the parameter 
space efficiently.  

2.3 The Particle Swarm Optimization Method 

In “Particle Swarm Optimization” (PSO) algorithm the 
population dynamics simulates a “bird flock’s” behavior 
where social sharing of information takes place and indi-
viduals can profit from the discoveries and previous ex-
perience of all other companions during the search for 
food. Thus, each companion, called particle, in the popula-
tion, which is now called swarm, is assumed to “fly” over 
the search space in order to find promising regions of the 
landscape. For example, in the minimization case, such re-
gions possess lower functional values than other regions 
visited previously. In this context, each particle is treated 
as a point in an n-dimensional space which adjusts its own 
“flying” according to its flying experience as well as the 
flying experience of other particles (companions). There 
are many variants of the PSO proposed so far, after Eber-
hart and Kennedy introduced this technique (Eberhart et al 
1996, Kennedy and Eberhart 1995). In our experiments we 
have used a version of this algorithm, which is derived by 
adding a new inertia weight to the original PSO dynamics 
(Eberhart and Shi 1998). This version is described in the 
following paragraphs. 

First let us define the notation used in this PSO: the i-
th particle of the swarm is represented by the n-
dimensional vector ( )iniii xxxx ,,, 21 K=  and the best parti-

cle in the swarm, i.e., the particle with the smallest func-
tion value, is denoted by the index g. The best previous po-
sition (the position giving the best function value) of the i-
th particle is recorded and represented as 

( )iniii pppp ,,, 21 K= , and the position change (velocity) 

of the i-th particle is ( )iniii vvvV ,,, 21 K= . 

The particles are manipulated according to the relations  
 

 ( ) ( )
ingninininin xprcxprcvwv −⋅+−⋅+⋅← 2211   

 

and  
 

ininin vxx +← , 

 
where n=1,2,…,N; i=1,2,…,NP and NP is the size of 
population; w is the inertia weight; c1 and c2 are two posi-
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tive constants; r1 and r2 are two random values in the 
range [0, 1]. 

The first relation is used to calculate i-th particle’s 
new velocity by taking into consideration three terms: the 
particle’s previous velocity, the distance between the parti-
cle’s best previous and current position, and, lastly, the dis-
tance between swarm’s best experience (the position of the 
best particle in the swarm) and i-th particle’s current posi-
tion. Then, following the second equation, the i-th particle 
flies toward a new position. In general, the performance of 
each particle is measured according to a predefined fitness 
function, which is problem-dependent. 

The role of the inertia weight, w, is considered very 
important in PSO convergence behavior. The inertia 
weight is employed to control the impact of the previous 
history of velocities on the current velocity. In this way, 
the parameter w regulates the trade-off between the global 
(wide-ranging) and local (nearby) exploration abilities of 
the swarm. A large inertia weight facilitates global 
exploration (searching new areas), while a small one tends 
to facilitate local exploration, i.e., fine-tuning the current 
search area. A suitable value for the inertia weight w 
usually provides balance between global and local 
exploration abilities and consequently a reduction on the 
number of iterations required to locate the optimum 
solution. A general rule of thumb suggests that it is better 
to initially set the inertia to a large value, in order to make 
better global exploration of the search space, and gradually 
decrease it to get more refined solutions, thus a time 
decreasing inertia weight value is used. 

From the above discussion it is obvious that PSO, to 
some extent, resembles GAs. However, in PSO, instead of 
using genetic operators, each individual (particle) updates 
its own position based on its own search experience and 
other individuals (companions) experience and discoveries. 
Adding the velocity term to the current position, in order to 
generate the next position, resembles the mutation opera-
tion in evolutionary programming. Note that in PSO, how-
ever, the “mutation” operator is guided by particle’s own 
“flying” experience and benefits by the swarm’s “flying” 
experience. In another words, PSO is considered as per-
forming mutation with a “conscience”, as pointed out by 
Eberhart and Shi (1998). 

3 THE STEELWORKS  
SIMULATION PROBLEM 

In this section, we use a typical simulation model as a 
benchmark for comparing optimization methods. We will 
first explain the system to be modeled and we will proceed 
by specifying the variables used for optimizing the output 
from the model. 

The steelworks simulation model is an example of a 
manufacturing simulation model fully described in Paul and 
Balmer (1993). A brief description is provided here. There 
are two blast furnaces in the plant, which melt iron at certain 
daily volumes, which blows and fills as many torpedoes as 
available and are used to transport molten iron. If no torpedo 
is available, the molten iron is dropped on the floor and 
waste is produced. Each torpedo can hold a fixed quantity of 
molten iron. All torpedoes with molten iron travel to a pit, 
where crane(s)-carrying ladles are filled from torpedoes, one 
at a time. The ladle holds 100 tons of molten iron, which is 
exactly the volume of a steel furnace that is fed from the 
crane. There are five steel furnaces, which produce the final 
product of the steelworks. Figure 1 shows the schematic lay-
out (not to scale) for the steelworks plant. 

 

 
Figure 1: Layout for the Steelworks Plant 

 
When a blast furnace has emptied its blast into the 

minimum number of torpedoes required (if available) all 
torpedoes with molten iron in go to the pit (by railway-the 
torpedoes run on a railway track). This includes partially 
full torpedoes. 

The crane travels along an overhead gantry and carries 
a ladle (large spoon shaped vessel). The crane is filled at 
the pit from one torpedo at a time. The pit is 2 sided to 
avoid any delay if the crane requires more than one torpedo 
to load it (yet one at a time). In the event that two torpe-
does are insufficient to load the crane, the time take to dis-
charge the second torpedo can be considered sufficient for 
a third torpedo (if there is one) to take the place of the first, 
ready for unloading. Note that the pit’s function is to catch 
any spillage of molten iron. It does not hold molten iron. 
The simulation model was built using Simul8 package run-
ning on Windows NT (see Figure 2).  

Simul8 is a simulator package, which in its simplest 
form allows the building of models by using graphics (e.g., 
dragging and dropping icons), by selecting items from 
menus and filling in dialog boxes. Due to its two-way in-
terface facilities with Microsoft Excel and also Visual Ba-
sic for Applications (VBA) it helps the user to build extra 
routines for the mode. This adds to the software’s flexibil-
ity and power. 
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Figure 2: Simulation of the Steelworks Model 
 
4 OPTIMISATION OF THE STEELWORKS 

MODEL AND RESULTS 

This section shows the use of SA, binary GAs and PSO in 
optimizing simulation outputs using the steelworks model 
described in the previous section.  

Figure 3 shows the interaction between Simul8 and 
Excel. The model has been built using Simul8 and the op-
timization algorithm has been implemented in Visual Ba-
sic. Excel acts as the ‘middle-man’ sending information 
back and forth between the two applications. However, at 
this point we must note that the end user will only be using 
Excel as his/her point of interaction. The other applications 
will run in the background. 

 

 
Figure 3: Interactions between the Software Components 

 
In Simul8 we used Visual Logic (a logic based com-

ponent within Simul8) to pass arguments to Excel and Ex-
cel’s macro language (VBA) was used to implement the 
optimization algorithms (see in Figure 4 the optimization 
worksheet of the PSO algorithm). The data exchange be-
tween Simul8 and the optimization algorithm was per-
formed via an Excel spreadsheet using DDE facilities. 
Simul8 provides an Excel/VB Library (a list of all the 
functions within SIMUL8 which Excel/VB logic can refer-
ence) and Excel/VB Signals (a list of the special signals 
which SIMUL8 sends to Excel/VB logic while the model 
runs), which will be employed.  

The simulation model has many parameters that could 
be used as input variables for optimization. We have cho-
sen to keep the number of blast furnaces constant (i.e., 
two) throughout the experimentation and vary the number 
of torpedoes, number of steel furnaces, volume that the 
torpedoes can hold and the number of cranes. This would 
keep in line with the input variables used in other publica-
tions of the same model (Paul and Chanev 1997, Paul and 
Chanev 1998, Barretto et al. 1999). The discrete parame-
ters, describing the number of torpedoes, cranes or steel 
furnaces are part of the simulation model and determine 
the volume of the queues in the model. The real valued pa-
rameter, the torpedo volume, is used in the process that 
models the blowing of the blast furnaces and in the loading 
of the torpedo with molten iron. The same parameter is 
used in the process modeling the cranes loading from the 
torpedoes.  

Every fitness evaluation requires a run of the simula-
tion model of the steelworks, so it is important to keep the 
running time as short as possible. On the other hand, the 
model has its stochastic behavior, and a long enough run 
time is needed so that the statistics measured are reliable. 
The quality of a solution depends on the cost of the pro-
posed design and consists of two factors.  

The first factor is the price of the molten iron wasted, 
which occurs when inappropriate parameter values are 
chosen, measured for a time horizon equal to 30 days, i.e., 
60 min×24 hours× 30 days. The second factor is the in-
vestment cost, which is calculated by the amortization of 
equipment (torpedoes, cranes and steel furnaces) on a 
monthly basis. The overall cost of the design is calculated 
by adding the two factors. 
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Figure 4: PSO Simulation Optimization Worksheet in Excel 
 
Figure 5 presents the behavior of the best particle in 

the swarm for various sizes (the results are from 20 inde-
pendent runs). A summary of the best results is shown in 
Table 1. Note that no special fine-tuning of PSO heuristics 
was done; default values suggested in the literature were 
used instead. 

We conducted additional experiments to compare PSO 
with SA (Barretto et al. 1999). PSO is a population-based 
method while SA works with a single point. That results of 
course in totally different convergence behavior. However, 
we decided to run several experiments with the SA and re-
cord the initial points and the solutions found. We then 
initialized the swarm and the population of the GA (a binary 
GA with variable parameter encoding, roulette -wheel selec-
tion, bit-wise mutation, and one-point crossover was used) in 
the same neighborhoods. According to our experiments PSO 
offers superiority over our versions of SA and GAs. The cri-
teria used to arrive at this conclusion are two fold. 
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Figure 5: Average Best Fitness for Various Swarm Sizes  
 

Table 1: Summary of the best PSO Results for each Swarm Size 
NP #Torpedo # Cranes # Furnaces Torpedo Volume Objective Function (£K) 

10 4 2 4 350 94 
15 5 2 4 350 92 
20 5 1 4 240 86 
25 4 1 4 236 84 
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Table 2: Comparative Results 
Method # Torpedoes  # Cranes # Furnaces Torpedo Volume Objective Function (£K) 
SA 6 2 5 260 112.70 
PSO 4 2 4 250 92 
GA 4 2 5 235 108.5 
 
Firstly the number of iteration required in reaching a 

“global” optimum is less, and secondly the value of the fit-
ness value reached is lower than that achieved by SA. This 
may be a fair comparison because the swarm was deliber-
ately initialized in a region analogous to that of the SA test. 
The SA found a feasible solution after 130 function evalua-
tions (average number) that correspond to searching the 
0.3% of the search space. In the PSO test, the swarm con-
sisted of 10 particles and a typical result is shown in Table 
2. An average of 6 generations was needed in these tests, 
which corresponds to searching the 0.14% of the search 
space. The best result obtained with PSO had a value of 79; 
a value that is significantly better than other results ob-
tained using SA and GAs. The GA needed 400 function 
evaluations using 20 individuals on average, a typical ex-
ample is shown in Figure 6. 
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Figure 6: Average Best Fitness for a 20 Member Population 

 
The reasons for the high quality of the PSO algorithm 

in our experiments may be the following: (i) the coverage 
of the search space is wide and random; hence an increase 
in population size has a greater probability of reaching an 
optimum at an early stage of the search (cf. with Figure 5); 
(ii) the global nature of the search offers insight into vari-
ous local neighborhoods of the search space; (iii) particles 
moving fast towards the best particle of the swarm allow 
PSO to perform detailed search of a good region at an early 
stage. Obviously this can in certain cases to result in locat-
ing local minima, as discussed in (Kennedy and Eberhart 
1999). To alleviate this problem a modified PSO can be 
used as suggested in Parsopoulos et al. (2001a). Experi-
ments in classic optimization problems have shown that 
this modified method exhibits improved performance (Par-
sopoulos et al 2001a, Parsopoulos et al. 2001b). 

5 CONCLUDING REMARKS 

Advances have been made in optimizing quantitative vari-
ables within a simulation model, and many methodologies 
now exist for this purpose. However, there are many optimi-
zation problems for which there exists no direct or efficient 
method of solution. Global search methods, such as genetic 
algorithms and swarm intelligence are eminently suitable for 
optimizing discrete-event simulation models. These methods 
do not require derivative-related information and are charac-
terized by good global convergence behavior.  

In this paper we presented an application of global 
search methods to the field of simulation optimization. PSO 
proved it could be successfully used to optimization and de-
sign problems, even if the model is of a stochastic nature. As 
the environment changes, information contained within the 
swarm allows efficient discovery of better-adapted solutions. 
In our case, a very small portion of the search space is inves-
tigated even in the discrete variant, which confirms the PSO 
ability to search effectively huge spaces. PSO is simple to 
implement and the code is short to any programming lan-
guage; thus it can be easily included in a simulation package 
as an add-on tool (Bowden and Hall 1998). 
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RAY J. PAUL is a Professor of Simulation Modelling, Di-
rector of the Centre of Applied Simulation Modelling, the 
creator of the Centre of Health Informatics and Computing, 
and the Dean of the Faculty of Technology and Informa-
tion Systems, all at Brunel University. Professor Paul has 
published widely, in books, journals and conferences, 
many in the area of the simulation modelling and informa-
tion systems development. He has acted as a consultant for 
a variety of United Kingdom government departments, 
software companies, and commercial companies in the oil 
industries. Professor Paul is the co-editor-in-chief of the 
European Journal of Information Systems and he is an edi-
tor of the Springer-Verlag Practitioners book series. His 
research interests are in methods of automating the process 
of modelling, and the general applicability of such methods 
and their extensions to the wider arena of information sys-
tems. He is currently working on aspects of simulation in 
the social sciences, in particular health management. Pro-
fessor Paul’s  email and web addresses are <ray.paul@ 
brunel.ac.uk> and <www.brunel.ac.uk/ 
~csstrjp>, respectively. 
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