
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

GLOBAL SEARCH STRATEGIES FOR SIMULATION OPTIMISATION

George D. Magoulas
Tillal Eldabi
Ray J. Paul

Centre for Applied Simulation Modelling (CASM)

Department of Information Systems and Computing
Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.

ABSTRACT

Simulation optimization is rapidly becoming a mainstream
tool for simulation practitioners, as several simulation
packages include add-on optimization tools. In this paper
we are concentrating on an automated optimization ap-
proach that is based on adapting model parameters in order
to handle uncertainty that arises from stochastic elements
of the process under study. We particularly investigate the
use of global search methods in this context, as these
methods allow the optimization strategy to escape from
sub-optimal (i.e., local) solutions and, in that sense, they
improve the efficiency of the simulation optimization
process. The paper compares several global search meth-
ods and demonstrates the successful application of the Par-
ticle Swarm Optimizer to simulation modeling optimiza-
tion and design of a steelworks plant, a representative
example of the stochastic and unpredictable behavior of a
complex discrete event simulation model.

1 INTRODUCTION

It has long been established that simulation is a powerful
tool for aiding decision-making. This is due to a number of
factors, such as the inherent ability to evaluate complex
systems with large numbers of variables and interactions
for which there is no analytical solution. Secondly, simula-
tion can model the dynamic and stochastic aspects of sys-
tems, generating more precise results when compared with
static and deterministic spreadsheet calculations. It is also
considered as a tool to answer “What if” questions. Simu-
lation itself is a solution evaluator technique, not a solution
generator technique (Harrel and Tumay 1994). This sce-
nario could be changed with the aid of optimization proce-
dures. In this case, simulation could answer not only
“What if” questions but also answers “How to” questions
(Azadivar 1992), providing the best set of input variables
that maximize or minimize some performance measure(s)
(based on the modeling objectives).

According to Stuckman et al. (1991), simulationists can

be classified into 3 categories with regards to the optimiza-
tion of quantitative variables: the first category tend to use
the “trial and error” method, varying the input variables in
order to find which set gives the best performance. The sec-
ond category tends to systematically vary the input variables,
to see their effects on the output variables. The third cate-
gory will apply an automated simulation optimization ap-
proach. In the paper we are concentrating on the last cate-
gory. General reviews and suggestions/approaches are ex-
tensively discussed in Andradóttir (1998), Bowden and Hall
(1998) and Lee et al. (1999) but this paper particularly inves-
tigates the use of global search strategies in this context.

Global search strategies include methods like simu-
lated annealing (Corana et al. 1987, Kirkpatrick 1983), ge-
netic and evolutionary algorithms (Michalewicz 1996), and
swarm intelligence (Eberhart et al. 1996, Kennedy and
Eberhart 1995). The paper is organized as follows. In the
next section, three popular global search strategies are re-
viewed. We then proceed by describing a typical simula-
tion model that we use as a benchmark in our study. Fi-
nally, simulation optimization results are presented and
discussed, and the paper ends with concluding remarks.

2 GLOBAL SEARCH STRATEGIES

2.1 Simulated Annealing

Simulated Annealing (SA) is a method based on Monte
Carlo simulation, which solves difficult combinatorial op-
timization problems. The name comes from the analogy to
the behavior of physical systems by melting a substance
and lowering its temperature slowly until it reaches freez-
ing point (physical annealing). Simulated annealing was
first used for optimization by Kirkpatrick et al. (1983). In
the numerical optimization framework, SA is a procedure
that has the capability to move out of regions near local
minima (Corana et al. 1987). SA is based on random
evaluations of the objective function, in such a way that

Magoulas, Eldabi, and Paul

transitions out of a local minimum are possible. It does not
guarantee, of course, to find the global minimum, but if the
function has many good near-optimal solutions, it should
find one. In particular, SA is able to discriminate between
“gross behavior” of the function and finer “wrinkles”.
First, it reaches an area in the function domain space where
a global minimizer should be present, following the gross
behavior irrespectively of small local minima found on the
way. It then develops finer details, finding a good, near-
optimal local minimizer, if not the global minimum itself.

2.2 Genetic Algorithms

Genetic Algorithms (GA) are simple and robust search al-
gorithms based on the mechanics of natural selection and
natural genetics. The mathematical framework of GAs was
developed in the 1960s and is presented in Holland’s pio-
neering book (Holland 1975). GAs have been used primar-
ily in optimization and machine learning problems. The
fundamental principle of GAs is that at each generation of
a GA, a new set of approximations is created by the proc-
ess of selecting individuals according to their level of fit-
ness in the problem domain and breeding them together us-
ing operators borrowed from natural genetics. This process
leads to the evolution of populations of individuals that are
better suited to their environment than their progenitors,
just as in natural adaptation. A high level description of the
simple GA is shown in the code below.

STANDARD GENETIC ALGORITHM MODEL
{
//initialize the time counter
t := 0;
//initialize the population of individuals
InitPopulation(P(t));
//evaluate fitness of all individuals
Evaluate(P(t));
//test for termination criterion (time,
//fitness, etc.)
while not done do
t := t + 1;
//select a sub-population for offspring
//production
Q(t) := SelectParents(P(t));
//recombine the “genes” of selected parents
Recombine(Q(t));
//perturb the mated population stochastically
Mutate(Q(t));
//evaluate the new fitness
Evaluate(Q(t));
//select the survivors for the next
//generation
P(t + 1) := Survive(P(t), Q(t));
end

}

More specifically, a simple GA processes a finite

population of fixed length binary strings called genes. GAs
have two basic operators, namely: crossover of genes and
mutation for random change of genes. The crossover op-
erator explores different structures by exchanging genes
between two strings at a crossover position and the muta-
tion operator is primarily used to escape the local minima
in the weight space by altering a bit position of the selected
string; thus introducing diversity in the population. The
combined action of crossover and mutation is responsible
for much of the effectiveness of GA search. Another opera-
tor associated with each of these operators is the selection
operator, which produces survival of the fittest in the GA.
The parallel noise-tolerant nature of GA and their hill-
climbing capability make GA eminently suitable for simu-
lation optimization, as they seem to search the parameter
space efficiently.

2.3 The Particle Swarm Optimization Method

In “Particle Swarm Optimization” (PSO) algorithm the
population dynamics simulates a “bird flock’s” behavior
where social sharing of information takes place and indi-
viduals can profit from the discoveries and previous ex-
perience of all other companions during the search for
food. Thus, each companion, called particle, in the popula-
tion, which is now called swarm, is assumed to “fly” over
the search space in order to find promising regions of the
landscape. For example, in the minimization case, such re-
gions possess lower functional values than other regions
visited previously. In this context, each particle is treated
as a point in an n-dimensional space which adjusts its own
“flying” according to its flying experience as well as the
flying experience of other particles (companions). There
are many variants of the PSO proposed so far, after Eber-
hart and Kennedy introduced this technique (Eberhart et al
1996, Kennedy and Eberhart 1995). In our experiments we
have used a version of this algorithm, which is derived by
adding a new inertia weight to the original PSO dynamics
(Eberhart and Shi 1998). This version is described in the
following paragraphs.

First let us define the notation used in this PSO: the i-
th particle of the swarm is represented by the n-
dimensional vector ()iniii xxxx ,,, 21 K= and the best parti-

cle in the swarm, i.e., the particle with the smallest func-
tion value, is denoted by the index g. The best previous po-
sition (the position giving the best function value) of the i-
th particle is recorded and represented as

()iniii pppp ,,, 21 K= , and the position change (velocity)

of the i-th particle is ()iniii vvvV ,,, 21 K= .

The particles are manipulated according to the relations

 () ()
ingninininin xprcxprcvwv −⋅+−⋅+⋅← 2211

and

ininin vxx +← ,

where n=1,2,…,N; i=1,2,…,NP and NP is the size of
population; w is the inertia weight; c1 and c2 are two posi-

Magoulas, Eldabi, and Paul

tive constants; r1 and r2 are two random values in the
range [0, 1].

The first relation is used to calculate i-th particle’s
new velocity by taking into consideration three terms: the
particle’s previous velocity, the distance between the parti-
cle’s best previous and current position, and, lastly, the dis-
tance between swarm’s best experience (the position of the
best particle in the swarm) and i-th particle’s current posi-
tion. Then, following the second equation, the i-th particle
flies toward a new position. In general, the performance of
each particle is measured according to a predefined fitness
function, which is problem-dependent.

The role of the inertia weight, w, is considered very
important in PSO convergence behavior. The inertia
weight is employed to control the impact of the previous
history of velocities on the current velocity. In this way,
the parameter w regulates the trade-off between the global
(wide-ranging) and local (nearby) exploration abilities of
the swarm. A large inertia weight facilitates global
exploration (searching new areas), while a small one tends
to facilitate local exploration, i.e., fine-tuning the current
search area. A suitable value for the inertia weight w
usually provides balance between global and local
exploration abilities and consequently a reduction on the
number of iterations required to locate the optimum
solution. A general rule of thumb suggests that it is better
to initially set the inertia to a large value, in order to make
better global exploration of the search space, and gradually
decrease it to get more refined solutions, thus a time
decreasing inertia weight value is used.

From the above discussion it is obvious that PSO, to
some extent, resembles GAs. However, in PSO, instead of
using genetic operators, each individual (particle) updates
its own position based on its own search experience and
other individuals (companions) experience and discoveries.
Adding the velocity term to the current position, in order to
generate the next position, resembles the mutation opera-
tion in evolutionary programming. Note that in PSO, how-
ever, the “mutation” operator is guided by particle’s own
“flying” experience and benefits by the swarm’s “flying”
experience. In another words, PSO is considered as per-
forming mutation with a “conscience”, as pointed out by
Eberhart and Shi (1998).

3 THE STEELWORKS
SIMULATION PROBLEM

In this section, we use a typical simulation model as a
benchmark for comparing optimization methods. We will
first explain the system to be modeled and we will proceed
by specifying the variables used for optimizing the output
from the model.

The steelworks simulation model is an example of a
manufacturing simulation model fully described in Paul and
Balmer (1993). A brief description is provided here. There
are two blast furnaces in the plant, which melt iron at certain
daily volumes, which blows and fills as many torpedoes as
available and are used to transport molten iron. If no torpedo
is available, the molten iron is dropped on the floor and
waste is produced. Each torpedo can hold a fixed quantity of
molten iron. All torpedoes with molten iron travel to a pit,
where crane(s)-carrying ladles are filled from torpedoes, one
at a time. The ladle holds 100 tons of molten iron, which is
exactly the volume of a steel furnace that is fed from the
crane. There are five steel furnaces, which produce the final
product of the steelworks. Figure 1 shows the schematic lay-
out (not to scale) for the steelworks plant.

Figure 1: Layout for the Steelworks Plant

When a blast furnace has emptied its blast into the

minimum number of torpedoes required (if available) all
torpedoes with molten iron in go to the pit (by railway-the
torpedoes run on a railway track). This includes partially
full torpedoes.

The crane travels along an overhead gantry and carries
a ladle (large spoon shaped vessel). The crane is filled at
the pit from one torpedo at a time. The pit is 2 sided to
avoid any delay if the crane requires more than one torpedo
to load it (yet one at a time). In the event that two torpe-
does are insufficient to load the crane, the time take to dis-
charge the second torpedo can be considered sufficient for
a third torpedo (if there is one) to take the place of the first,
ready for unloading. Note that the pit’s function is to catch
any spillage of molten iron. It does not hold molten iron.
The simulation model was built using Simul8 package run-
ning on Windows NT (see Figure 2).

Simul8 is a simulator package, which in its simplest
form allows the building of models by using graphics (e.g.,
dragging and dropping icons), by selecting items from
menus and filling in dialog boxes. Due to its two-way in-
terface facilities with Microsoft Excel and also Visual Ba-
sic for Applications (VBA) it helps the user to build extra
routines for the mode. This adds to the software’s flexibil-
ity and power.

Magoulas, Eldabi, and Paul

Figure 2: Simulation of the Steelworks Model

4 OPTIMISATION OF THE STEELWORKS

MODEL AND RESULTS

This section shows the use of SA, binary GAs and PSO in
optimizing simulation outputs using the steelworks model
described in the previous section.

Figure 3 shows the interaction between Simul8 and
Excel. The model has been built using Simul8 and the op-
timization algorithm has been implemented in Visual Ba-
sic. Excel acts as the ‘middle-man’ sending information
back and forth between the two applications. However, at
this point we must note that the end user will only be using
Excel as his/her point of interaction. The other applications
will run in the background.

Figure 3: Interactions between the Software Components

In Simul8 we used Visual Logic (a logic based com-

ponent within Simul8) to pass arguments to Excel and Ex-
cel’s macro language (VBA) was used to implement the
optimization algorithms (see in Figure 4 the optimization
worksheet of the PSO algorithm). The data exchange be-
tween Simul8 and the optimization algorithm was per-
formed via an Excel spreadsheet using DDE facilities.
Simul8 provides an Excel/VB Library (a list of all the
functions within SIMUL8 which Excel/VB logic can refer-
ence) and Excel/VB Signals (a list of the special signals
which SIMUL8 sends to Excel/VB logic while the model
runs), which will be employed.

The simulation model has many parameters that could
be used as input variables for optimization. We have cho-
sen to keep the number of blast furnaces constant (i.e.,
two) throughout the experimentation and vary the number
of torpedoes, number of steel furnaces, volume that the
torpedoes can hold and the number of cranes. This would
keep in line with the input variables used in other publica-
tions of the same model (Paul and Chanev 1997, Paul and
Chanev 1998, Barretto et al. 1999). The discrete parame-
ters, describing the number of torpedoes, cranes or steel
furnaces are part of the simulation model and determine
the volume of the queues in the model. The real valued pa-
rameter, the torpedo volume, is used in the process that
models the blowing of the blast furnaces and in the loading
of the torpedo with molten iron. The same parameter is
used in the process modeling the cranes loading from the
torpedoes.

Every fitness evaluation requires a run of the simula-
tion model of the steelworks, so it is important to keep the
running time as short as possible. On the other hand, the
model has its stochastic behavior, and a long enough run
time is needed so that the statistics measured are reliable.
The quality of a solution depends on the cost of the pro-
posed design and consists of two factors.

The first factor is the price of the molten iron wasted,
which occurs when inappropriate parameter values are
chosen, measured for a time horizon equal to 30 days, i.e.,
60 min×24 hours× 30 days. The second factor is the in-
vestment cost, which is calculated by the amortization of
equipment (torpedoes, cranes and steel furnaces) on a
monthly basis. The overall cost of the design is calculated
by adding the two factors.

Magoulas, Eldabi, and Paul
P S O P a r a m e t e r s
P o p s i z e
I n e r t i a w
m a x I t e r
P r o g r e s s R e p o r t
G e n e r a t i o n #
B e s t F i t n e s s
A v e F i t n e s s

T o r p # C r a n e s # S t e e l F . V o l . T o r p F i t n e s s
C u r r e n t S t a t e
B e s t M e m b e r

P o p u l a t i o n M e m b e r s
T o r p # C r a n e s # S t e e l F . V o l . T o r p F i t n e s s

S i m u l a t i o n O p t i m i s a t i o n W o r k s h e e t

C O N T R O L R O O M

r a n d o m P o p i n i t i a l R u n

S w a r m

Figure 4: PSO Simulation Optimization Worksheet in Excel

Figure 5 presents the behavior of the best particle in

the swarm for various sizes (the results are from 20 inde-
pendent runs). A summary of the best results is shown in
Table 1. Note that no special fine-tuning of PSO heuristics
was done; default values suggested in the literature were
used instead.

We conducted additional experiments to compare PSO
with SA (Barretto et al. 1999). PSO is a population-based
method while SA works with a single point. That results of
course in totally different convergence behavior. However,
we decided to run several experiments with the SA and re-
cord the initial points and the solutions found. We then
initialized the swarm and the population of the GA (a binary
GA with variable parameter encoding, roulette -wheel selec-
tion, bit-wise mutation, and one-point crossover was used) in
the same neighborhoods. According to our experiments PSO
offers superiority over our versions of SA and GAs. The cri-
teria used to arrive at this conclusion are two fold.

0

50

100

150

200

1 2 3 4 5 6 7 8

Generations

Average
Best

Fitness

NP =10
NP =15

NP =20
NP =25

Figure 5: Average Best Fitness for Various Swarm Sizes

Table 1: Summary of the best PSO Results for each Swarm Size
NP #Torpedo # Cranes # Furnaces Torpedo Volume Objective Function (£K)

10 4 2 4 350 94
15 5 2 4 350 92
20 5 1 4 240 86
25 4 1 4 236 84

Magoulas, Eldabi, and Paul

Table 2: Comparative Results
Method # Torpedoes # Cranes # Furnaces Torpedo Volume Objective Function (£K)
SA 6 2 5 260 112.70
PSO 4 2 4 250 92
GA 4 2 5 235 108.5

Firstly the number of iteration required in reaching a

“global” optimum is less, and secondly the value of the fit-
ness value reached is lower than that achieved by SA. This
may be a fair comparison because the swarm was deliber-
ately initialized in a region analogous to that of the SA test.
The SA found a feasible solution after 130 function evalua-
tions (average number) that correspond to searching the
0.3% of the search space. In the PSO test, the swarm con-
sisted of 10 particles and a typical result is shown in Table
2. An average of 6 generations was needed in these tests,
which corresponds to searching the 0.14% of the search
space. The best result obtained with PSO had a value of 79;
a value that is significantly better than other results ob-
tained using SA and GAs. The GA needed 400 function
evaluations using 20 individuals on average, a typical ex-
ample is shown in Figure 6.

100

200

300

400

1 3 5 7 9 11 13 15 17 19 21 23

Generations

Average
Best

Fitness

Figure 6: Average Best Fitness for a 20 Member Population

The reasons for the high quality of the PSO algorithm

in our experiments may be the following: (i) the coverage
of the search space is wide and random; hence an increase
in population size has a greater probability of reaching an
optimum at an early stage of the search (cf. with Figure 5);
(ii) the global nature of the search offers insight into vari-
ous local neighborhoods of the search space; (iii) particles
moving fast towards the best particle of the swarm allow
PSO to perform detailed search of a good region at an early
stage. Obviously this can in certain cases to result in locat-
ing local minima, as discussed in (Kennedy and Eberhart
1999). To alleviate this problem a modified PSO can be
used as suggested in Parsopoulos et al. (2001a). Experi-
ments in classic optimization problems have shown that
this modified method exhibits improved performance (Par-
sopoulos et al 2001a, Parsopoulos et al. 2001b).

5 CONCLUDING REMARKS

Advances have been made in optimizing quantitative vari-
ables within a simulation model, and many methodologies
now exist for this purpose. However, there are many optimi-
zation problems for which there exists no direct or efficient
method of solution. Global search methods, such as genetic
algorithms and swarm intelligence are eminently suitable for
optimizing discrete-event simulation models. These methods
do not require derivative-related information and are charac-
terized by good global convergence behavior.

In this paper we presented an application of global
search methods to the field of simulation optimization. PSO
proved it could be successfully used to optimization and de-
sign problems, even if the model is of a stochastic nature. As
the environment changes, information contained within the
swarm allows efficient discovery of better-adapted solutions.
In our case, a very small portion of the search space is inves-
tigated even in the discrete variant, which confirms the PSO
ability to search effectively huge spaces. PSO is simple to
implement and the code is short to any programming lan-
guage; thus it can be easily included in a simulation package
as an add-on tool (Bowden and Hall 1998).

REFERENCES

Andradóttir, S. (1998). A review of simulation optimiza-
tion techniques. In Proceedings of the 1998 Winter
Simulation Conference, D.J. Medeiros, E.F. Watson,
J.S. Carson and M.S. Manivannan, eds. New York: In-
stitute of Electrical and Electronics Engineers, 151-
158.

Azadivar, F. (1992) Tutorial on Simulation Optimization.
In Proceedings of the 1992 Winter Simulation Confer-
ence, Arlington, J. Swain, D. Glodsman, R. C. Crain,
and J. R. Wilson, eds. New York: Institute of Electri-
cal and Electronics Engineers, 198–204.

Barretto, M.R.P., L. Chwif, T. Eldabi, and R.J. Paul
(1999). Simulation optimization with the linear move
and exchange move optimization algorithm. In Pro-
ceedings of the 1999 Winter Simulation Conference,
P.A. farrington, H.B. Nembhard, D.T. Sturrock, and
G.W. Evans, eds. New York: Institute of Electrical and
Electronics Engineers, 806–811.

Bowden, R. O. and J. D. Hall (1998). Simulation optimiza-
tion research and development. In Proceedings of the

Magoulas, Eldabi, and Paul

1998 Winter Simulation Conference, D.J. Medeiros,
E.F. Watson, J.S. Carson and M.S. Manivannan, eds.
New York: Institute of Electrical and Electronics En-
gineers, 1693-1698.

Corana, A., M. Marchesi, C. Martini, and S. Ridella
(1987). Minimizing multimodal functions of continu-
ous variables with the Simulated Annealing algorithm.
ACM Transactions on Mathematical Software 13 (3):
262–280.

Eberhart, R. C., P. K. Simpson, and R. W. Dobbins (1996).
Computational Intelligence PC Tools. Boston, MA:
Academic Press Professional.

Eberhart, R. C. and Y. H. Shi (1998). Evolving Artificial
Neural Networks. In Proceedings International Con-
ference on Neural Networks and Brain, PL5–PL13.
Beijing, P.R. China: Publishing House of Electronics
Industry.

Harrel, C. and K. Tumay (1994) Simulation Made Easy: A
Manager’s Guide, Norcross, Georgia IE: Management
Press.

Holland, J. H. (1975). Adaptation in Neural and Artificial
Systems. Ann Arbor, MI: University of Michigan
Press.

Kennedy, J. and R. C. Eberhart (1995). Particle Swarm Op-
timization,. In Proceedings IEEE International Con-
ference on Neural Networks, 1942–1948. Piscataway,
New Jersey: IEEE Press. Available online via
<http://dsp.jpl.nasa.gov/members/pay
man/swarm/> [accessed February 16, 2001].

Kennedy, J. and R. C. Eberhart (1999). Particle Swarm: So-
cial Adaptation in Information-Processing Systems. In
New ideas in Optimization, eds.: D. Corne, M. Dorigo,
and F. Glover. London: McGrawHill, 379-387.

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983).
Optimization by simulated annealing, Science 220:
671–680.

Lee, Y.H., K. J. Park, and T. G. Kim (1999). An approach
for finding discrete variable design alternatives using a
simulation optimization method. In Proceedings of the
1999 Winter Simulation Conference, P. A. Farrington,
H. B. Nembhard, D. T. Sturrock, and G. W. Evans,
eds. New York: Institute of Electrical and Electronics
Engineers, 678-685.

Michalewicz, Z. (1996). Genetic algorithms + data struc-
tures = evolution programs, New York: Springer.

Parsopoulos, K., V. P. Plagianakos, G. D. Magoulas, and M.
N. Vrahatis (2001a). Improving the particle swarm
optimizer by function “stretching”, in N. Hadjisavvas
and P. Pardalos (eds.), Advances in Convex Analysis
and Global Optimization, vol. 54, Noncovex Optimiza-
tion and its Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, Chapter 28, pp.445–457.

Parsopoulos, K., V. P. Plagianakos, G. D. Magoulas, and
M. N. Vrahatis (2001b). Stretching technique for ob-
taining global minimizers through Particle Swarm Op-
timization. In Proceedings of Particle Swarm Optimi-
zation Workshop (PSOW), ed. Y. Shi, 22–29.
Indianapolis, Indiana: Purdue School of Engineering
and Technology, IUPUI Press.

Paul, R. J. and D. W. Balmer (1993). Simulation model-
ling. Lund: Chartwell-Bratt.

Paul, R. J. and T. S. Chanev (1997). Optimizing a com-
plex discrete event simulation model using a genetic
algorithm. Neural Computing and Applications 6:
229–237.

Paul, R. J. and T. S. Chanev (1998). Simulation Optimiza-
tion Using a Genetic Algorithm, Simulation Practice
and Theory 6 (6): 601–611.

Stuckman, B., G. Evans, G., and Mollaghasemi, M. (1991)
Comparison of Global Search Methods for Design Op-
timization using Simulation, In Proceedings of the
1991 Winter Simulation Conference, Phoenix, eds: B.
L. Nelson, W. D. Kelton, and G. M. Clark, Institute of
Electrical and Electronics Engineers, New York, 937–
943.

AUTHOR BIOGRAPHIES

GEORGE MAGOULAS is a Lecturer at the Department
of Information Systems and Computing, Brunel University.
He worked in the industry, participated in several projects,
and developed software tools for the design and simulation
of fuzzy logic controllers and neuro-fuzzy controllers for
real-time control of cement plants and for embedded auto-
motive applications. His research interests include methods
for learning and evolution, intelligent optimization in simu-
lation, and real-world problem solving. Dr. Magoulas is a
member of the Operational Research Society, IEEE, the
Technical Chamber of Greece and the Hellenic Artificial
Intelligence Society. Dr. Magoulas’ email and web ad-
dresses are <george.magoulas@brunel.ac.uk>
and <www.brunel.ac.uk/~csstgdm>, respectively.

TILLAL ELDABI is a Researcher and Secretary to the
Centre for Applied Simulation Modelling and a part-time
Lecturer at the Department of Information Systems and
Computing, all at Brunel University, UK. He received a
B.Sc. in Econometrics and Social Statistics from the Uni-
versity of Khartoum and a M.Sc. in Simulation Modelling
from Brunel University. His doctoral research is in aspects
of healthcare management and the intervention of simula-
tion. His main research concentrated on the economy of
healthcare delivery. He is looking to exploit the means of
simulation on the wider healthcare system management to
assist in problem understanding. Dr. Eldabi’s email and
web addresses are <tillal.eldabi@brunel.
ac.uk> and <www.brunel.ac.uk/~cssrtte>, re-
spectively.

http://dsp.jpl.nasa.gov/members/payman/swarm/
http://dsp.jpl.nasa.gov/members/payman/swarm/
mailto:george.magoulas@brunel.ac.uk
http://www.brunel.ac.uk/~csstgdm
http://www.brunel.ac.uk/~cssrtte

Magoulas, Eldabi, and Paul

RAY J. PAUL is a Professor of Simulation Modelling, Di-
rector of the Centre of Applied Simulation Modelling, the
creator of the Centre of Health Informatics and Computing,
and the Dean of the Faculty of Technology and Informa-
tion Systems, all at Brunel University. Professor Paul has
published widely, in books, journals and conferences,
many in the area of the simulation modelling and informa-
tion systems development. He has acted as a consultant for
a variety of United Kingdom government departments,
software companies, and commercial companies in the oil
industries. Professor Paul is the co-editor-in-chief of the
European Journal of Information Systems and he is an edi-
tor of the Springer-Verlag Practitioners book series. His
research interests are in methods of automating the process
of modelling, and the general applicability of such methods
and their extensions to the wider arena of information sys-
tems. He is currently working on aspects of simulation in
the social sciences, in particular health management. Pro-
fessor Paul’s email and web addresses are <ray.paul@
brunel.ac.uk> and <www.brunel.ac.uk/
~csstrjp>, respectively.

http://www.brunel.ac.uk/�~csstrjp
http://www.brunel.ac.uk/�~csstrjp

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1978
	02: 1979
	03: 1980
	04: 1981
	05: 1982
	06: 1983
	07: 1984
	08: 1985

