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ABSTRACT

An efficient methodology for simulating paths of fraction
stable motion is presented. The proposed approach is b
on invariance principles for linear processes. A detai
analysis of the error terms involved is given and the p
formance of the method is assessed through an exten
simulation study.

1 INTRODUCTION

The extreme complexity of modern communication a
computer networks, coupled with their traffic character
tics -heavy tails, self-similarity and long range dependen
(Paxon and Floyd 1995); Willinger et al. 1995) mak
the characterization of their performance through analyt
models an extremely difficult task. Under such circum
stances, simulations become one of the most promising t
for understanding the behavior of such networks (Park
Willinger 1995; Yuksel et al. 2000). One then must
able to generate traffic that exhibits the necessary tem
ral behavior over large time scales (Norros 1995; Norr
Mannersalo and Wang 1999).

One of the simplest models exhibiting long-range d
pendence is fractional Brownian motion (fBM) introduce
by Kolmogorov (1940) and further developed by Mandelb
and Van Ness (1969). It is a Gaussian, non-stationary, s
similar process indexed by a parameterH . The self-similar
nature of fBM has made it particularly attractive for usin
it as an input process when simulating queueing netwo
(Paxon 1997). However, several traffic measurement stu
do not show an agreement with the Gaussian marginal
tribution assumption. There exists empirical evidence s
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porting a heavy tailed assumption (Paxson and Floyd 19
backed by theoretical work that explains how the form
assumption induces through an appropriate mechanism l
range dependence in the aggregate traffic (Konstantopou
and Lin 1998). Therefore, researchers have focused th
attention on a more general process exhibiting in a natu
way both scaling behavior and extreme local irregulari
Fractional stable motion (also known as fractional Lev
motion) is a process with such characteristics. Fraction
stable motion can be thought of as the generalization
fBM (Samorodnitsky and Taqqu 1994) and is characteriz
by two parameters: the Hurst parameterH that measures
the degree of the long-range dependence of the process
the Levy parameterα that measures the heaviness of th
tails of the marginal distributions. Whenα = 2 (i.e. the
marginal distributions are Gaussian) we recover fBM. Ov
the last few years there have appeared studies of qu
ing performance under a self-similar stable motion inp
(Gallardo, Makrakis and Orozco-Bardosa 2000; Giordan
Porcarelli and Procissi 2000; Harmantzis, Hatzinakos a
Katzela 2001; Karasaridis and Hatzinakos 2000).

The objective of the present study is to introduce a
efficient method for simulating fractional stable motion
which is also of extreme theoretical interest given the u
derlying intricacies of the process involved. The literatu
over the last decade has focused on methods for simu
ing sample paths for fBM (our special case forα = 2).
The main difficulty in simulating sample paths of fBM lies
in the non-stationary nature of the process, and the va
ous proposed methods approach the problem from differ
viewpoints. For example, there are methods that are ba
on the properties of fBM, such as through its stochas
representation (Mandelbrot and Van Ness 1969) or the fr
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tional integration of Gaussian white noise (Abry and Sella
1996), or through matching its covariance function; othe
methods attempt to first synthesize the increments proc
and then generate a realization of fBM by calculating th
cumulative sums process of fractional Gaussian noise, su
as those of Levinson (Coeurjolly 2000) and of Wood an
Chan (Dietrich and Newsam 1997; Wood and Chan 1994
These methods take advantage of the fact that the increm
process is a stationary one and its covariance matrix is
Toeplitz matrix. Finally, there are methods that rely on ap
proximations of fBM; for example, the method of Flandrin
(1992) involves computing the wavelet coefficients corre
sponding to wavelet transform of fBM and then synthesiz
fBM through the inverse wavelet transformation, while th
random midpoint displacement method (Leland et al. 199
progressively subdivides the interval over which a samp
path is generated and at each subinterval a Gaussian
placement is used to determine the value of the proce
at the midpoint. Other approximate methods use queue
models and renewal processes to generate fBM at the lim
(Willinger et al. 1995). Unlike fBM, there have been hardly
any proposals for efficiently generating sample paths fro
a fractional stable motion.

The main shortcomings of most of these methods a
either their time and memory complexity (e.g.O(n2), where
n is the number of points being generated, see Coeurjo
(2000), or the fact that due to the approximate nature
the method, the quality of the generated process can
be accurately assessed (e.g. Paxson 1997). However,
simulation study of Coeurjolly (2000) suggests that th
method of Wood and Chan (1994) with a time complexit
of O(n logn) and memory complexity ofO(n) performs
satisfactorily.

Our approach allows one to generate a fractional stab
process efficiently, since it has linear memory requiremen
and a competitive time complexity (for details see Sectio
2). The paper is organized as follows: in Section 2, the th
oretical development and the proposed algorithm are give
In Section 3, a simulation study assesses the performa
of the proposed methodology, while in Section 4 som
concluding remarks are drawn.

2 THE ALGORITHM AND A LIMIT THEOREM

Let {εi}i∈Z be a sequence of independent and identically di
tributed (iid) symmetricα-stable (SaS) (see Samorodnitsk
and Taqqu 1994) random variables, withα ∈ (0,2]. Define
the sequence{an}n∈Z+ with a1 = 1 andan = nβ−(n−1)β ,
for n ≥ 2 andβ < 1/2. Also, definesn = nβ for all β ≥ 1.

The one-sided linear process (or MA(∞) process, see
Avram and Taqqu 1986) is given by

Xn = a1εn−1+ a2εn−2+ a3εn−3+ . . . =
∑
i∈Z+

aiεn−i . (1)
ss
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Under the condition
∑∞
i=1 |ai |α <∞, namelyH := 1/α+

β < 1, the process exists almost surely (Avram and Taqqu
1986).

Let Sn(t) = ∑dnte
j=1Xj =

∑∞
i=0Xi(

∑dnte−i
j=1−i aj ), 0 <

t ≤ 1 denote the partial sum process ofXn. Under an
appropriate set of conditions on the coefficientsai , a properly
normalized version ofSn(t) converges in the sense of finite
dimensional distributions to a self-similar processξH,α(t)
that is calledfractional stable processor fractional Levy
motion (Samorodnitsky and Taqqu(1994)). The limiting
process has continuous paths and its self-similarity paramet
is given byH = 1/α + β. In the special case where the
innovations{εi} have finite variance, then a similar type of
result established in Davydov (1970) shows that the limiting
process corresponds tofractional Brownian motion. In the
following graphs, sample paths of fractional stable motion
for different values of the parametersα andH are shown.
In Figure 1, sample paths of fractional stable motion for
different values of the Hurst and Levy parameters (H andα)
are shown. It can be seen that forH = .1 the sample paths
for fBM are less regular than those of ordinary Brownian
motion, while forH = .9 the sample paths are more regular,
since in both cases they correspond to a fractal curve wit
dimensionD = 2−H (Flandrin 1992). A similar feature
can be observed for the paths of the fractional stable motion
as well. Moreover, the heaviness of the tails of the margina
distribution induces very large bursts, especially forα < 1.

In what follows we will make use of these two results and
the representation provided in (1) in order to give an efficien
algorithm for simulating the sample paths of a fractional
stable process. However, in principle the linear process ha
an infinite number of terms. Therefore, in practice we are
forced to use a finite number of terms, which leads to using
a truncated version of the linear process. Moreover, in orde
to speed up calculations we embed the coefficientsai in a
circulant matrix (an idea also used in Dietrich and Newsam
(1997) as shown below. The main issue then becomes t
decide on the number of terms to be used in order to achiev
a satisfactory approximation and to provide an estimate o
the error term.

Define for fixedn, m ∈ Z+
Ym,1
Ym,2
. . .

Ym,m

 = A

ε0
ε−1
. . .

ε1−m

 , (2)

where

A =


a1 a2 . . . am−1 am
a2 a3 . . . am a1
. . . . . . . . . . . . . . .

am a1 . . . am−2 am−1

 (3)
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Figure 1: Top Panel: Realizations of fBM. Middle and
Bottom Panels: Realizations of Fractional Stable Motions
for α = 1.2 andα = 0.6. In all cases, Left PanelH = .1,
Middle Panel:H = .5 and Right PanelH = .9

is am×m circulant matrix (Dietrich and Newsam 1997).
Let SYn (t), 0 ≤ t ≤ 1 be a stepwise constant function such
thatSYn (k/n) =

∑k
i=1 Ym,i , 0≤ k ≤ n. In the sequelSξn(t),

SXn (t) andSUn (t) etc are similarly defined. Let also

σ = [(αβ + 1)−1+
∫ ∞

0
|(u+ 1)β − uβ |αdu]1/α.

Theorem 1. Suppose thatn and m are chosen so that
n/m→ 0. Then,

SYn (t)

nHσ

f.d.d=⇒ ξH,α(t), 0 ≤ t ≤ 1 (4)
where
f.d.d=⇒ denotes convergence of the underlying finit

dimensional distributions.

Proof. Since{εi}i∈Z are iid symmetricα-stable,a1 = 1
and an = nβ − (n − 1)β , it follows easily from classical
results on functional limit theorems of moving averages o
stable random variables that

SXn (t)

nHσ

f.d.d=⇒ ξH,α(t), 0 ≤ t ≤ 1. (5)

(see, for example, Astrauskas 1983 and Avram and Taq
1986) where more general situations were discussed). In t
sequel we shall show thatSYn (·) asymptotically approximates
SXn (·) in distribution. This approximation will be done in
several steps. The details are included in Wu, Michailidi
and Zhang (2002) and omitted here. ♦

2.1 Approximation Errors

From the proof of Theorem 1, it can be that the convergen
(4) involves certain errors that converge to 0 in distribution
We can further establish that an upper bound for the erro
is

O[1
n
+ 1

nαH
+ ( n

m
)1−β ]. (6)

Details of the derivation are given in Wu, Michailidis and
Zhang (2002). This upper bound shows that, with all othe
parameters held constant, it is a decreasing function of t
embedding dimensionm, of the heaviness of the tails of
the marginal distributionα, and of the Hurst parameterH .

2.2 The Algorithm

Based on the above discussion the following algorithm wi
generate sample paths of a fractional stable motion. T
m×1 vectorY in (2) can be easily computed by fast Fourie
transforms (FFT). Let

a = (a1, . . . am) and e= (ε0, ε1−m, ε2−m, . . . , ε−1)

and letā = FFT(a) andē= FFT(e) be their corresponding
discrete Fourier transforms. Then due to the fact that th
m×m matrix A is circulant (Dietrich and Newsam 1997)
we have

Y = IFFT (v), wherev = (v1, . . . , vm) andvj = āj ēj .
(7)

The proposed algorithm can be summarized as follows:

Step 1: Compute FFTA; i.e. theFFT of the vector
[ai,1≤ i ≤ m]

Step 2: Compute FFTB, the FFT of the vector
[εi,1≤ i ≤ m]
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Step 3: Let FFTC = FFTA × FFTB
Step 4: Apply the InverseIFFT on FFTC to obtain

the coefficientsYm,j , j = 1, . . . , m.

Then, by calculating the cumulative sum of theYm,j , 1 ≤
j ≤ n and rescaling it bynβ+1/ασ we obtain the desired
sample paths. For generating the SaS variates one can
the algorithm of Chambers et al. in 1976. It is important t
note that this algorithm requiresO(m) memory space and
hasO(m logm) time complexity (as a result of the use o
the FFT).

Another distinguishing feature of this algorithm is tha
it allows one to simultaneously obtainL = bm/nc frac-
tional stable motions, thus significantly reducing the co
for producing input traces for network simulations. Ac
tually, theL vectors[Ym,j , 1 ≤ j ≤ n], [Ym,j , n + 1 ≤
j ≤ 2n], [Ym,j , 1+ (L − 1)n ≤ j ≤ Ln] are identically
distributed by appropriate permutations onεi . ThenL iden-
tically distributed fractional stable motions are obtained b
taking cumulative sums of eachYm,j vector.

3 PERFORMANCE ASSESSMENT

In this section we provide empirical evidence about th
performance of the proposed method. Some special atten
is paid to the case ofα = 2 (corresponding to fBM), since
comparisons can be made with other existing methods.
our simulation study 100 samples of sizen = 5,000, 50,000
and 100,000 were generated using two different values
m = 220 and 222 for the following values of the Hurst
parameterH = .1, .2, .3, .4, .5, .6, .7, .8 and .9 and for
α = .5,1,1.5 and 2. Overall 216 combinations of the fou
parameters involved in the method were examined. Not
that for the combinationα = 2 andH = .5 the resulting
process corresponds to ordinary Brownian motion, for whi
many other methods for generating sample paths exist. T
Hurst index of the generated traces was estimated based
the wavelet method Abry and Veitch (1998) that has be
shown to be unbiased and robust against deterministic tren
For the caseα = 2, the normality and stationarity of the
increments process was also examined and the estima
of the Hurst index was also confirmed using the discre
variations method (Istas and Lang 1997; Kent and Wo
1997; Coeurjolly 2000). For the caseα < 2, the heaviness
of the tails of the increments process was also asses
using various graphical methods, such as the Hill, QQ a
sum-plots (Sousa and Michailidis 2001).

Boxplots for some indicative cases are given in Figu
2. It is worth noting the following facts: (i) the variability is
considerably smaller for larger values of the Levy paramet
(ii) the variability is also smaller for values of the Hurs
parameter around.5, (iii) the resulting estimates forH < .4
are upwards biased, while they are downwards biased
H > .6 and for smaller values ofα and (iv) the effect of
use
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Figure 2: Boxplots for Different Values ofH for n = 5000,
Left Panel:m = 220, Right Panel:m = 222. Top Panel:
α = 2, Bottom Panel:α = 1.5

m is rather marginal on the results. It should be noted that
the embedding dimensionm considered in the simulations
is fairly large (i.e. m ≥ 220); this would not be the case
for values ofm close to number of generated pointsn, as
our error bound shows (see (6)). The first three findings
are consistent with our estimate of the error rate (see also
Remark in the previous section).

The mean squared error (MSE) of the estimates for
n = 5000 and form = 220 andm = 222 are given in Figure
3. It can be seen that the MSEs are ordered according to
the value ofα (higher MSEs for smaller values ofα) as
expected. Moreover, it can be seen that for smaller values of
H the higher MSEs are due to higher biases (see also Figure
2), while for values ofH in the neighborhood of .5 the
MSE is mainly due to the variance of the estimates, while
for higher values ofH both the bias and the variance make
a contribution. Analogous qualitative results are obtained
for n = 50,000 andn = 100,000.

4 CONCLUDING REMARKS

An efficient method both in terms of time and memory com-
plexity based on invariance principles for linear processes
for generating sample paths of fractional stable motion is
presented. Extensive simulation results confirm its good
performance, especially for values of the Hurst parameter
larger than.5, which corresponds to the case of interest
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Figure 3: MSE forn = 5000. Dashed lines correspond t
m = 222, while solid lines tom = 220

when it comes to network simulations. The numerical r
sults indicate that the embedding dimensionm should be
large enough, but after a certain point the gains from usi
larger values are fairly small. Finally, the proposed metho
allows one to generate multiple identically distributed trace
which leads to additional savings.

Several additional research threads are currently be
pursued, including the use of similar ideas in the generati
of higher dimensional processes which are of interest
hydrologists and environmental scientists and more extens
simulation studies and comparisons with competing metho
especially for the fBM case.
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