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ABSTRACT porting a heavy tailed assumption (Paxson and Floyd 1995)
backed by theoretical work that explains how the former
An efficient methodology for simulating paths of fractional assumption induces through an appropriate mechanism long
stable motion is presented. The proposed approach is basedrange dependence in the aggregate traffic (Konstantopoulos
on invariance principles for linear processes. A detailed and Lin 1998). Therefore, researchers have focused their
analysis of the error terms involved is given and the per- attention on a more general process exhibiting in a natural
formance of the method is assessed through an extensiveway both scaling behavior and extreme local irregularity.

simulation study. Fractional stable motion (also known as fractional Levy
motion) is a process with such characteristics. Fractional
1 INTRODUCTION stable motion can be thought of as the generalization of

fBM (Samorodnitsky and Tagqu 1994) and is characterized

The extreme complexity of modern communication and by two parameters: the Hurst parametérthat measures
computer networks, coupled with their traffic characteris- the degree of the long-range dependence of the process and
tics -heavy tails, self-similarity and long range dependence the Levy parametewx that measures the heaviness of the
(Paxon and Floyd 1995); Willinger et al. 1995) makes tails of the marginal distributions. Whem = 2 (i.e. the
the characterization of their performance through analytical marginal distributions are Gaussian) we recover fBM. Over
models an extremely difficult task. Under such circum- the last few years there have appeared studies of queu-
stances, simulations become one of the most promising tools ing performance under a self-similar stable motion input
for understanding the behavior of such networks (Park and (Gallardo, Makrakis and Orozco-Bardosa 2000; Giordano,
Willinger 1995; Yuksel et al. 2000). One then must be Porcarelli and Procissi 2000; Harmantzis, Hatzinakos and
able to generate traffic that exhibits the necessary tempo- Katzela 2001; Karasaridis and Hatzinakos 2000).
ral behavior over large time scales (Norros 1995; Norros, The objective of the present study is to introduce an
Mannersalo and Wang 1999). efficient method for simulating fractional stable motion,

One of the simplest models exhibiting long-range de- which is also of extreme theoretical interest given the un-
pendence is fractional Brownian motion (fBM) introduced derlying intricacies of the process involved. The literature
by Kolmogorov (1940) and further developed by Mandelbrot over the last decade has focused on methods for simulat-
and Van Ness (1969). It is a Gaussian, non-stationary, self- ing sample paths for fBM (our special case tor= 2).
similar process indexed by a parameter The self-similar The main difficulty in simulating sample paths of fBM lies
nature of fBM has made it particularly attractive for using in the non-stationary nature of the process, and the vari-
it as an input process when simulating queueing networks ous proposed methods approach the problem from different
(Paxon 1997). However, several traffic measurement studies viewpoints. For example, there are methods that are based
do not show an agreement with the Gaussian marginal dis- on the properties of fBM, such as through its stochastic
tribution assumption. There exists empirical evidence sup- representation (Mandelbrot and Van Ness 1969) or the frac-
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tional integration of Gaussian white noise (Abry and Sellan
1996), or through matching its covariance function; other

and Zhang

Under the conditior) 2 |a;|* < oo, namelyH := 1/« +
B < 1, the process exists almost surely (Avram and Taqqu

methods attempt to first synthesize the increments process1986).

and then generate a realization of fBM by calculating the

Let 5,(1) = Y"1 X = Y20 XXM ha)). 0 <

cumulative sums process of fractional Gaussian noise, sucht < 1 denote the partial sum process ¥f. Under an

as those of Levinson (Coeurjolly 2000) and of Wood and
Chan (Dietrich and Newsam 1997; Wood and Chan 1994).

appropriate set of conditions on the coefficianta properly
normalized version of, () converges in the sense of finite

These methods take advantage of the fact that the incrementdimensional distributions to a self-similar process, (1)
process is a stationary one and its covariance matrix is a that is calledfractional stable processr fractional Levy

Toeplitz matrix. Finally, there are methods that rely on ap-
proximations of fBM; for example, the method of Flandrin

(1992) involves computing the wavelet coefficients corre-
sponding to wavelet transform of fBM and then synthesize
fBM through the inverse wavelet transformation, while the
random midpoint displacement method (Leland et al. 1994)
progressively subdivides the interval over which a sample

motion (Samorodnitsky and Taqqu(1994)). The limiting
process has continuous paths and its self-similarity parameter
is given by H = 1/a + B. In the special case where the
innovations{e;} have finite variance, then a similar type of
result established in Davydov (1970) shows that the limiting
process corresponds fiactional Brownian motion In the
following graphs, sample paths of fractional stable motion

path is generated and at each subinterval a Gaussian dis-for different values of the parametarsand H are shown.
placement is used to determine the value of the process In Figure 1, sample paths of fractional stable motion for
at the midpoint. Other approximate methods use queueing different values of the Hurst and Levy parametdisghda)
models and renewal processes to generate fBM at the limit are shown. It can be seen that fir= .1 the sample paths

(Willinger et al. 1995). Unlike fBM, there have been hardly
any proposals for efficiently generating sample paths from
a fractional stable motion.

The main shortcomings of most of these methods are
either their time and memory complexity (e §.(n2), where
n is the number of points being generated, see Coeurjolly
(2000), or the fact that due to the approximate nature of

for fBM are less regular than those of ordinary Brownian
motion, while forH = .9 the sample paths are more regular,
since in both cases they correspond to a fractal curve with
dimensionD = 2 — H (Flandrin 1992). A similar feature
can be observed for the paths of the fractional stable motion,
as well. Moreover, the heaviness of the tails of the marginal
distribution induces very large bursts, especiallydox 1.

the method, the quality of the generated process can not In what follows we will make use of these two results and
be accurately assessed (e.g. Paxson 1997). However, thethe representation provided in (1) in order to give an efficient
simulation study of Coeurjolly (2000) suggests that the algorithm for simulating the sample paths of a fractional
method of Wood and Chan (1994) with a time complexity stable process. However, in principle the linear process has
of O(nlogn) and memory complexity oD(n) performs an infinite number of terms. Therefore, in practice we are
satisfactorily. forced to use a finite number of terms, which leads to using
Our approach allows one to generate a fractional stable a truncated version of the linear process. Moreover, in order
process efficiently, since it has linear memory requirements to speed up calculations we embed the coefficieptis a
and a competitive time complexity (for details see Section circulant matrix (an idea also used in Dietrich and Newsam
2). The paper is organized as follows: in Section 2, the the- (1997) as shown below. The main issue then becomes to
oretical development and the proposed algorithm are given. decide on the number of terms to be used in order to achieve
In Section 3, a simulation study assesses the performancea satisfactory approximation and to provide an estimate of

of the proposed methodology, while in Section 4 some
concluding remarks are drawn.

the error term.
Define for fixedn, m € Z

2 THE ALGORITHM AND A LIMIT THEOREM Y1 £0

. o Yma [ _ 4] &2 )
Let{e;};cz be a sequence of independent and identically dis- .. .
tributed (iid) symmetriax-stable (SaS) (see Samorodnitsky Yim E1-m
and Taqqu 1994) random variables, witke (0, 2]. Define
the sequencé, },ez, With a1 = 1 anda, = nf —(n—1)%, where
forn > 2 andg < 1/2. Also, defines, = n” forall g > 1.

The one-sided linear process (or M&j process, see a a Gm-1 Gm
Avram and Taqqu 1986) is given by A=|%2 @ m 41 ©)
Xn = a18p—1+azen—2+azey—3+... = Z aign—i. (1) fm A fm=2 fm-1
i€Zy
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Figure 1: Top Panel: Realizations of fBM. Middle and
Bottom Panels: Realizations of Fractional Stable Motions
fora = 1.2 anda = 0.6. In all cases, Left Pandgll = .1,
Middle Panel: H = .5 and Right PaneH = .9

is am x m circulant matrix (Dietrich and Newsam 1997).
Let S}[(I), 0 <t <1 be a stepwise constant function such

thatSY (k/n) = 3%, ¥4, 0 < k < n. In the seques (1),
SX(t) and SY (1) etc are similarly defined. Let also

a:[mﬂ+D_L+/ |+ 1P — uP|*du)e.
0

Theorem 1. Suppose thak and m are chosen so that
n/m — 0. Then,

‘%U)EQ

Ena(), 0<tr<1 4)

nfHo
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f.d.d . -
where = denotes convergence of the underlying finite
dimensional distributions.

Proof.  Since{e;};cz are iid symmetriax-stable,a; = 1
anda, = nf — (n — 1)#, it follows easily from classical
results on functional limit theorems of moving averages of
stable random variables that

S (1) tdg
nH
n-o

Ena(t), 0<t <1 ®)
(see, for example, Astrauskas 1983 and Avram and Taqqu
1986) where more general situations were discussed). In the
sequel we shall show th&f () asymptotically approximates
§X(-) in distribution. This approximation will be done in
several steps. The details are included in Wu, Michailidis
and Zhang (2002) and omitted here. <

2.1 Approximation Errors

From the proof of Theorem 1, it can be that the convergence
(4) involves certain errors that converge to 0 in distribution.
We can further establish that an upper bound for the errors
is

(6)

Details of the derivation are given in Wu, Michailidis and
Zhang (2002). This upper bound shows that, with all other
parameters held constant, it is a decreasing function of the
embedding dimensiom, of the heaviness of the tails of
the marginal distributiorr, and of the Hurst parametéf.

1 n
Ol= + — + (1.
n n m

2.2 The Algorithm

Based on the above discussion the following algorithm will
generate sample paths of a fractional stable motion. The
m x 1 vectorY in (2) can be easily computed by fast Fourier
transforms (FFT). Let

a= (a1, ...a,) and e= (€0, E1—m,» E2—m,s .., E_1)
and leta = FFT(a) andé = FFT(e) be their corresponding
discrete Fourier transforms. Then due to the fact that the
m x m matrix A is circulant (Dietrich and Newsam 1997)
we have

Y = IFFT (v), wherev = (vy, ..., v,) andv; = &;&;.

(7

The proposed algorithm can be summarized as follows:

Step 1: Compute FFR i.e. theFFT of the vector
lai, 1 <i <m]

Step 2: Compute FR, the FFT of the vector
lei, 1 <i <m]
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Step 3: Let FFE = FFTA x FFTg T
Step 4: Apply the Invers=FT on FFTc to obtain o oEg 85
the coefficientst, ;, j =1,...,m. o = st

Then, by calculating the cumulative sum of thg ;, 1 <
j < n and rescaling it byi#*1/%5 we obtain the desired ‘.
sample paths. For generating the SaS variates one can use .
the algorithm of Chambers et al. in 1976. Itis importantto
note that this algorithm require8(m) memory space and ot I, o iy
hasO(m logm) time complexity (as a result of the use of ot . . . . R * e
the FFT). —
Another distinguishing feature of this algorithm is that | T T S S et T 5
it allows one to simultaneously obtaih = |[m/n]| frac- w . 7 i 8 8 s o 8
tional stable motions, thus significantly reducing the cost T g = : |
for producing input traces for network simulations. Ac- * T 8 1 L w - 1
tually, the L vectors[Y,, ;, 1 < j <nl], [Ypj, n+ 1= ot Lo 8 Tl : P g
j <2nl, [Ymj, 1+ (L —1Dn < j < Ln] are identically R IR 8 | " M7 8 ;
distributed by appropriate permutations&n ThenL iden- T 8 g P ' g 8 8 —
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tically distributed fractional stable motions are obtained by
taking cumulative sums of eadh,,; vector.
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3 PERFORMANCE ASSESSMENT
Figure 2: Boxplots for Different Values df for n = 5000,

In this section we provide empirical evidence about the Left Panel: m = 220, Right Panel:m = 222, Top Panel:
performance of the proposed method. Some special attentiona = 2, Bottom Panela = 1.5
is paid to the case af = 2 (corresponding to fBM), since
comparisons can be made with other existing methods. In
our simulation study 100 samples of size- 5, 000, 50, 000 m is rather marginal on the results. It should be noted that
and 100,000 were generated using two different values of the embedding dimension considered in the simulations
m = 220 and 22 for the following values of the Hurst is fairly large (i.e. m > 220); this would not be the case
parameterd = .1,.2,.3,.4,.5,.6,.7,.8 and .9 and for for values ofm close to number of generated pointsas
o =.5,1,15 and 2. Overall 216 combinations of the four our error bound shows (see (6)). The first three findings
parameters involved in the method were examined. Notice are consistent with our estimate of the error rate (see also
that for the combinatiomr = 2 and H = .5 the resulting Remark in the previous section).
process corresponds to ordinary Brownian motion, for which The mean squared error (MSE) of the estimates for
many other methods for generating sample paths exist. The n = 5000 and forn = 229 andm = 222 are given in Figure
Hurst index of the generated traces was estimated based on3. It can be seen that the MSEs are ordered according to
the wavelet method Abry and Veitch (1998) that has been the value ofa (higher MSEs for smaller values of) as
shown to be unbiased and robust against deterministic trends.expected. Moreover, it can be seen that for smaller values of
For the caser = 2, the normality and stationarity of the  H the higher MSEs are due to higher biases (see also Figure
increments process was also examined and the estimation2), while for values ofH in the neighborhood of .5 the
of the Hurst index was also confirmed using the discrete MSE is mainly due to the variance of the estimates, while
variations method (Istas and Lang 1997; Kent and Wood for higher values off both the bias and the variance make
1997; Coeurjolly 2000). For the case< 2, the heaviness a contribution. Analogous qualitative results are obtained
of the tails of the increments process was also assessedfor n = 50,000 andn = 100, 000.
using various graphical methods, such as the Hill, QQ and
sum-plots (Sousa and Michailidis 2001). 4 CONCLUDING REMARKS

Boxplots for some indicative cases are given in Figure
2. Itis worth noting the following facts: (i) the variabilityis ~ An efficient method both in terms of time and memory com-
considerably smaller for larger values of the Levy parameter, plexity based on invariance principles for linear processes
(i) the variability is also smaller for values of the Hurst for generating sample paths of fractional stable motion is

parameter around, (iii) the resulting estimates fad < .4 presented. Extensive simulation results confirm its good
are upwards biased, while they are downwards biased for performance, especially for values of the Hurst parameter
H > .6 and for smaller values af and (iv) the effect of larger than.5, which corresponds to the case of interest
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Figure 3: MSE forn = 5000. Dashed lines correspond to
m = 222, while solid lines tom = 220

when it comes to network simulations. The numerical re-
sults indicate that the embedding dimensiarnshould be
large enough, but after a certain point the gains from using
larger values are fairly small. Finally, the proposed method
allows one to generate multiple identically distributed traces,
which leads to additional savings.

Several additional research threads are currently being
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especially for the fBM case.
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