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ABSTRACT 
 
This paper describes a methodology for solving Parameter 
Design (PD) problems in production and business systems 
of considerable complexity. The solution is aimed at deter-
mining optimum settings to system critical parameters so 
that each system response is at its optimum performance 
level with least amount of variability. When approaching 
such problem, analysts are often faced with four major chal-
lenges: representing the complex parameter design problem, 
utilizing an effective search method that is able to explore 
the problem’s complex and large domain, making optimiza-
tion decisions based on multiple and, often, conflicting ob-
jectives, and handling the stochastic variability of in system 
response as an integral part of the search method.  to tackle 
such challenges, this paper proposes a solution methodology 
that integrates four state-of-the-art modules of proven meth-
ods: Simulation Modeling (SM), Genetic Algorithm (GA), 
Entropy Method (EM), and Robustness Module (RM).  
 
1 INTRODUCTION 
 
The focus of this paper is on achieving a high-level parame-
ter design of production and business systems of consider-
able complexity. Such complexity often results in difficulties 
in representing as well as in seeking optimal performance for 
such systems. Further, the performance of the majority of 
production and business systems is often based on multiple 
and potentially conflicting objectives. This conflict makes 
the improvement in an objective only conceivable at the ex-
pense of degradation in one or more other objectives. The 
mentioned difficulties exist in a great number of applications 
in areas of Manufacturing, Business Operations, Product De-
velopment, and Enterprises Resource Planning (ERP). 

To tackle such problem, simulation-based optimization 
methods, in general, apply a search algorithm on an optimi-
zation problem that is represented using a Discrete Event 
Simulation (DES) model. In this representation, the com-
plex structure of the multi-criteria objective function and 
the problem constraints are evaluated by computer simula-

 

tion without the need to approximate a closed-form defini-
tion, if even possible, for the problem mathematical model. 

Different approaches have been used in the literature to 
optimize or draw inferences from the output of a simulation 
model. Taguchi’s Experimental Design using Orthogonal 
Arrays (OA) was applied to many simulation studies to 
seek a system-level parameter settings based on certain re-
sponse signal that is evaluated through simulation runs 
(Madu and Madu, 1999). In addition to Taguchi's approach, 
some methods have utilized more efficient search engines 
from the field of Artificial Intelligence (AI). Examples of 
that include Genetic Algorithm (GA), Simulated Annealing 
(SA), Neural Networks (NNs), and Tabu Search (TS). A 
complete discussion of different simulation-based optimiza-
tion methods is found in Carson and Maria (1997), Azadi-
var (1999), and Swisher et al. (2000). 

Still, several challenges persisted as obstacles to current 
simulation-based optimization methods. Evans et al. (1991) 
Summarized those obstacles in three important respects: 

 
1. The relationships between output variables and 

decision variables are not of a closed form. 
2. The outputs may be random variables (probabilis-

tic as opposed to deterministic nature). 
3. The response surface may contain many local op-

tima. 
 

Furthermore, the challenges specified by Evans et al. 
(1991) are often dealt with in a Multi-Criteria Optimization 
(MCO) context. Thus, this paper proposes a simulation-
based optimization methodology that is aimed at tackling 
these four challenges. 

First, a Discrete Event Simulation (DES) model of the 
underlying system is utilized to capture the complex re-
sponse of the relationships between output variables and 
design variables without the need for a closed form defini-
tion of these relationships. Second, Genetic Algorithm 
(GA) is utilized as a global randomized-search engine, 
which prevents the search from getting stuck at local op-
tima of response surface. GA is considered by Goldberg 
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(1989) to be noted for robustness in searching complex 
spaces in a variety of application arenas. 

Third, since simulation outputs are often random vari-
ables (stochastic as opposed to deterministic nature), incor-
porating robustness into the GA search is necessary to 
process the stochastic response and guide the search to-
wards arriving at an optimal robust solution. Several meth-
ods were utilized to handle the stochastic variability of 
simulation modeling as an integral part of the search proc-
ess. Examples of these methods include utilizing confi-
dence intervals of performance metrics (Al-Aomar, 2000) 
and utilizing Taguchi’s Loss Function (Sanchez, 2000) and 
Taguchi’s Signal-to-Noise (S/N) ratio (Madu and Madu, 
1999). Taguchi's robust design approach, which was ini-
tially originated in the field of quality engineering (Taguchi 
and Wu, 1980 and Taguchi, 1986), is based on combining 
the concepts of Signal-to-Noise (S/N) ratio and Quality 
Loss Function (QLF) with methods of Experimental Design 
using Orthogonal Arrays (OA). This approach was success-
fully applied to a wide range of product and process design 
applications (Ross, 1996). Hence, this paper proposes a Ta-
guchi-based method, namely Signal-to-Noise (S/N) ratio, to 
handle the stochastic variability as an integral part of the 
GA search of the stochastic outputs of DES models.  

Finally, to perform the GA search in a MCO context, an 
Entropy-based assessment of the decision-maker’s Multi-
Attribute Utility Function (MAUF) is utilized to establish an 
overarching criterion (utility) that guides the GA towards se-
lecting the closest to optimal solution alternative based on 
multiple performance metrics. The Entropy module is devel-
oped based on a method taken from the information theory 
(Shannon, 1948). The method was used successfully to as-
sess the set of weights associated with multiple performance 
metrics in several Multi-Criteria Decision-Making problems 
(Hwang and Yoon, 1981 and Zeleny, 1974). 

Section 2 describes the structure of the Parameter De-
sign (PD) problem. Section 3 discusses the four modules of 
the proposed solution methodology; GA search, Simulation 
Modeling (SM), Robustness Module (RM), and Entropy 
Method (EM). Finally, Section 4 concludes the paper, fol-
lowed by a References list.  
 
2 PARAMETER DESIGN PROBLEM 
 
Structuring the Parameter Design (PD) problem is primarily 
based on forming two relationships; the first is between the 
system performance measures and design parameters and 
the second is between individual performance measures and 
the overall system performance/utility. The first relation-
ship is expressed in a dynamic, stochastic, and nonlinear 
system response while the second one is expressed in terms 
of the decision-maker's utility function U. This structure is 
assumed to be amenable to parametric optimization and, 
therefore, formulated in terms of a set of system design pa-
rameters X and a set of system performance measures Y, as 
shown in Figure 1. 
Production/Business
System
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Parameters (X)

Performance
Measures (Y)

X1

X2

Xn

...

Y1

Y2

Ym

... U

 
 

Figure 1: Parameter Design Structure 
 
System design parameters X1, X2, …, Xn are those vari-

ables defined by designers as critical factors that impact the 
system performance and direct its actual behavior. Exam-
ples of such parameters in production systems include 
buffer sizes, number of production and maintenance re-
sources, speeds and capacities of conveyance systems, and 
product-mix. The set of system performance metrics Y, on 
the other hand, represents the criteria on which improve-
ment and efficiency of production systems are measured. 
Maximizing or minimizing levels of such metrics is, there-
fore, translated into design and improvement objectives. 
Examples of performance measures include profit, 
throughput, operating cost, lead-times, quality rates, and 
work-in-process (WIP) levels. 

To represent real-world systems of considerable com-
plexity, a DES model is often utilized to replace the mathe-
matical approximation of the first relationship (between Y 
and X). A decision-maker's utility function U, which consoli-
dates multiple decision attributes into an overall score or 
value, is often used to map the objective function of multiple 
design objectives. U is often approximated in a linear or a 
nonlinear form. The linear form represents a weighted aver-
age of multiple criteria based on each criterion’s relative im-
portance weight whereas the nonlinear approximation is of-
ten presented in different mathematical shapes depending on 
the decision-maker’s risk attitude.   

The objective of the proposed simulation-based optimi-
zation is to arrive at the closest to optimal solution alternative 
(in terms of a set of system design parameters X0 and a set of 
system performance metrics Y0) at which the overall system 
utility score U is maximized. U is maximized by seeking 
maximum conceivable improvement to all design attributes 
simultaneously. Therefore, if U represents the decision-
maker’s utility function that consists of m decision (design) 
attributes (Y1, Y2, …,Ym), where each attribute is a function 
Yi(Xj) of n design parameters (X1, Xx2, …,Xn) and xj is from 
the problem solution space S, then a general formulation of 
the system design problem can be defined as follows: 

 
Max {U(Y1, Y2, …, Ym)}                (1) 
s. t. Yi = fi(X1, X2, …,Xn), 1 ≤  i ≤  m 
Xj ∈ S, 1 ≤  j ≤  n 
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3 PROPOSED SOLUTION METHOD 
 
This paper proposes a solution methodology to the defined 
parameter design problem that is based on an integration of 
four modules; Genetic Algorithm (GA), Simulation Model-
ing (SM), Robustness Module (RM), and Entropy Method 
(EM), as shown in Figure 2.  
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Figure 2: The Proposed Methodology 

 
In the proposed method, GA is the core search engine 

that works on the parameter design problem and eventually 
converges to the optimal or near-optimal solution. Towards 
this end, the problem formulation shown in Formula 1 is 
coded into a solution space in the GA search process. GA 
standard operators and selection scheme are then applied on 
a population of feasible solution alternatives in each search 
iteration step until convergence.  

For the GA to apply its selection scheme to different 
solution generations, three functions are needed; an evalua-
tion of all generated solution alternatives based on multiple 
design attributes, a transformation of simulation evaluation 
of each attribute (in terms of response mean and variance) 
into a single fitness value, and an overall fitness score as-
signment to each solution alternative. The integration of 
GA with SM, RM, and EM modules provides the standard 
GA search with these three essential functions. In the SM 
module, a DES model whose built using the configuration, 
data, and logic of the underlying system is utilized by GA 
search to evaluate the set performance metrics (Y) associ-
ated with each solution alternative (X). The RM transforms 
simulation estimates of each performance measure (per-
formance mean and variance) into a S/N ratio as a single 
fitness representation to each criterion. Finally, in the EM 
module, criteria’ relative importance weights are assessed 
and a linear additive MAUF is used to assign each solution 
alternative an overall fitness score U. 

Using each solution’s overall utility score U, GA per-
forms a MCDM in which solutions of high overall fitness 
scores (U) are given higher chance for survival. Higher U 
values imply both higher performance and less encom-
passed variability. Using these scores, the preference made 
in the GA selection scheme will be based on a holistic con-
sideration of all performance metrics and their degree of 
robustness. The powerful GA search continues at each 
search iteration step until a certain termination condition, 
defined in the GA setup, is met. The final solution reached 
by GA is put in the form of a set X0 of optimal settings to 
system design parameters at which the best (high perform-
ance and less variability) set of system performance met-
rics Y0 is reached.  

Based on the functionality shown in Figure 2, applying 
the proposed solution methodology to a Parameter Design 
problem requires the analyst to follow a systematic proce-
dure of 5 steps, as summarized in Figure 3. 

  
 

Step 1: Structure the Parameter Design (PD) problem 
Step 2: Build, validate, and verify a system DES model. 
Step 3: Set up the parameters of the GA search 
Step 4: Structure the Robustness Module (RM) based on S/N ratio 
Step 5: Structure the MAUF based on the Entropy Method (EM)  
Step 6: Run GA-SM-RM-EM and obtain a robust optimal solution 

 
 

Figure 3: A Proposed Methodology Procedure 
 
3.1  Genetic Algorithm (GA) 
 
Genetic Algorithms (GAs) were developed by Holland in 
1975. Holland (1992) considered them as a tool for search-
ing out solutions to optimization problems of complex 
characteristics and large search spaces. GAs were essen-
tially developed to emulate the “survival for fittest” princi-
ple introduced by Charles Darwin in his theory of evolution 
in 1830s. From this perspective and since optimization is 
analogous to fitness or the ability to survive real-world 
conditions, it made good sense to apply the GA approach 
for system improvement and optimization. 

In GA optimization, the search for an optimal solution 
is achieved through the manipulation of randomly selected 
initial population size (N) of string structures known as 
chromosomes. Each chromosome is a simple binary coding 
of one potential solution to the system design problem. 
Other non-binary encoding methods such as real-number 
encoding, integer or literal permutation, and general data 
structure encoding can also be used (Gen and Cheng, 
2000). The fitness function in GA is often a single-
objective and in a fixed closed-form. In the proposed 
method, however, the DES model represents the fitness ob-
jective through which multiple performance measures, as-
sociated with each solution alternative proposed by the GA 
search are evaluated in terms of mean and variance of mul-
tiple simulation replications. GA selection scheme, which 
works on single fitness values, is performed by combining 
mean and variance using S/N ratio in the Robustness Mod-
ule. Finally, the Entropy method is used to combine multi-
ple performance measures of each solution point into an 
overall utility score. GA selection scheme uses such score 
to make preference among potential solution candidates.  
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In its search for optima, GA utilizes a mix of explora-
tion and exploitation strategies using reproduction (selec-
tion scheme) and recombination (crossover and mutation 
operators) mechanisms, respectively. Through the GA util-
ity-based selection scheme, good candidates are reproduced 
and quality solutions are, therefore, exploited to next gen-
erations. According to Goldberg (1989), a good GA is one 
that is able to strike a balance between exploitation and ex-
ploration. This is achieved by balancing the GA parameter 
settings, which is a problem-specific effort, using a set-and-
test approach at each GA application. A convergence test is 
conducted at the end of each search iteration step to check 
for termination condition. The test is based on reaching a 
defined maximum number of population generations or on 
converging to a certain rate of string bias, which measures 
the amount of similarity among solution chromosomes. A 
cycle of evaluation, reproduction, recombination, and con-
vergence testing is repeated within each search iteration 
step until the termination condition is met. The GA search 
method is illustrated in Figure 4. 
 

 

Figure 4: GA Search Operations 
 
3.2 Simulation Modeling (SM) 
 
By utilizing computer capabilities in logical programming, 
random generation, fast computations, and animation, Dis-
crete Event Simulation (DES) modeling is capable of cap-
turing the characteristics of the real-world process and es-
timating a system performance measures at different 
settings of its design parameters. To measure such perform-
ance, DES imitates the stochastic and complex operation of 
a real-world system as it evolves over time and seeks to de-
scribe and predict the system's actual behavior.  

DES has undergone a tremendous development in the 
last decade. This development can be pictured through the 

REPRESENTATION

INITIALIZATION

EVALUATION

REPRODUCTION (SELECTION)

RECOMBINATION (CROSSOVER &
MUTATION)

CONVERGENCE TESTING
growing capabilities of simulation software tools and the 
application of simulation solutions to a variety of real-
world problems. With the aid of DES, companies were able 
to design efficient production and business systems, vali-
date and tradeoff proposed design solution alternatives, 
troubleshoot potential problems, and, consequently, cut 
cost, meet targets, and boost sales and profits. Examples of 
DES applications are found in Al-Aomar and Cook (1998), 
Law and Kelton (1991), and Pedgen et al. (1995). 

The primary role of DES in the proposed methodology 
is to evaluate the performance measures of solution alterna-
tives proposed by the GA search. Towards this end, system 
data, logic, and specifications are used in building the sys-
tem simulation model. The simulation model is then util-
ized to estimate the set of system performance measures (Y) 
at different settings of the system design parameters (X). 
An abstraction of the DES process is illustrated in Figure 5. 
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Figure 5: The DES Process 
 

However, simulation outcomes, representing real-world 
systems, are often stochastic and leading inconsistent per-
formance levels. We can classify the factors that contribute 
to variation in simulation outputs into controllable and un-
controllable (random/noise) factors. Model design factors 
such as buffer sizes, number of production resources, fixed 
cycle times, and speeds of conveyance systems are usually 
considered controllable factor. Different settings of system 
controllable factors may results in a different set of model 
outputs. Therefore, simulation-based optimization methods 
often aim at providing optimum settings to controllable fac-
tors so that model outcomes are at their best levels. 

On the other hand, random factors whose individual 
values change by time based on system events and dynamics; 
are often presented in simulation models by a random gen-
eration from a certain probability distribution. Key distribu-
tion parameters are often estimated through statistical ap-
proximations by fitting a collected set of empirical data to 
one commonly used distribution. Because of variation in 
such factors, the behavior of DES models is, therefore, 
driven by the stochastic nature of real-world processes such 
as entities arrival process, in-system service process, and 
outputs departure process. Variability in those processes is 
caused by random factors such as arrival rate, ser-
vice/processing rate, equipment mean-time-between failure 
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(MTBF) and mean-time-to-repair (MTTR), and percentages 
of scrap and rework. For example, the throughput of a pro-
duction system that is subject to variability in material deliv-
ery, tools failure, and operators efficiency is represented by 
the DES model in a stochastic response. Based on the inher-
ent fluctuations, the throughput could be a low value in one 
shift and then higher in another. Thus, simulation runs yield 
estimates of such performance measures in terms of means 
and variances to reflect such variability. 

In addition to controllable and random factors, Sanchez 
(2000) suggested artificial factors to be a source of variation 
in simulation outputs. Artificial factors are those simulation-
specific factors such as system initialization state, warm-up 
period, run length, termination condition, and random num-
ber streams. Changing the settings of such factors, from one 
simulation run to another, often results in changes in model 
outcomes. Hence, testing such factors in the model and pro-
viding proper settings to different model run controls to ob-
tain a steady-state response is basically a prerequisite for ap-
plying simulation-based optimization methods. 

 
3.3  Robustness Module (RM) 
 
Incorporating Taguchi’s robustness method as a module 
into the proposed simulation-based optimization method 
serves three goals. First, and most important, the stochastic 
variability of real-world simulation models is handled as an 
integral part of the GA search process. This is expected to 
lead GA towards arriving at an optimal solution design that 
is less sensitive to variations in model random and noise 
factors. Second, by using the response representation in 
terms of S/N ratio, GA selection scheme will be able to dis-
tinguish among solutions whose response results in over-
lapping confidence intervals. Finally, combining both re-
sponse mean and variance into the single representation of 
S/N ratio provides the GA selection scheme with a single 
fitness value for each solution alternative, which permits 
the application of GA roulette wheel reproduction process. 

Taguchi's Parameter Design (PD) approach aims at 
improving the uniformity of a product or a process without 
attempting to control or eliminate causes of variation. 
Products can be made robust to variation in materials, 
manufacturing process, and usage conditions. Manufactur-
ing processes also can be made robust to variation in mate-
rials, environment, and machine parameters. Following a 
similar pattern, the proposed methodology aims at making 
high-level production/business processes, represented in 
DES models, robust to variation by setting system-level 
factors such as parts arrival rates, processing/service times, 
machine failures, and model-mixes to their optimum levels. 

Taguchi classifies quality characteristics of product and 
processes into three types: Smaller-the-Better (SB), Nomi-
nal-is-Best (NB), and Larger-the-Better (LB).  SB represents 
measurable quality characteristic with a target zero (the re-
sponse is as small as possible) such as tool wear and process 
downtime. NB represents measurable quality characteristic 
with a specific target value such as product dimensions and 
process yield. Finally, LB represents measurable quality 
characteristics with a target of infinity (the response is as 
large as possible) such as product life and process efficiency. 
The proposed methodology applies this classification to per-
formance measures of simulated macro-level production sys-
tems (such as plants, assembly lines, and material handling 
systems) and business systems (such as banks, restaurants, 
logistics, and supply chains). In such context, a SB character-
istic could be the lead-time in a production system or the op-
erating cost in a business system. A NB characteristic could 
be the throughput of a production system or the Rate on In-
vestment (ROI) of a business system. Finally, and a LB char-
acteristic could be the efficiency of a production system or 
the profit of a business system. 
 
3.3.1 S/N Ratio in GA-SM 
 
The original use of the term Signal-to-Noise ratio (S/N) 
was in the field of electronic communications to represent 
signals in terms of desired values and the noise around 
these values. The same analogy is used in Taguchi's Pa-
rameter Design (PD) since there is usually an undesirable 
aspect (noise) of any performance output combining the de-
sired output level (signal) from the underlying system. Ta-
guchi used the S/N ratio to measure the quality of system 
signals by consolidating the impact of the measured value 
of the signal and the noise around it. Thus, PD involves ex-
perimental design techniques using both Orthogonal Arrays 
(OA) and the S/N ratio. In these methods, factor levels cor-
responding to the highest S/N ratio would be selected to 
minimize variation and build robustness in the design of 
products and processes. 

Taguchi (1986) defined S/N ratio, measured in decibels 
(db), as the reciprocal of the variance of the measurement 
error, so it is maximal for the combination of parameter 
levels that has the minimum error variance. In its simplest 
form, the S/N ratio is, therefore, the ratio of the mean (sig-
nal) to the standard deviation (the noise). Based on the type 
of system response, three standard forms of S/N ratio are 
often used in engineering applications: Smaller-the-Better 
(LB), Nominal-is-Best (NB), and Larger-the-Better (LB). 
Table 1 presents formulas for calculating the three standard 
forms of S/N ratio.  

As seen in Table 1, S/N ratio formula offers a built-in 
tradeoff between the mean response (higher, lower, or 
nominal is best) and the variation in the response (least 
variation is always best). Therefore, for the SB characteris-
tic, S/N objective is to reduce both the mean value and 
variation. For LB characteristic, on the other hand, the ob-
jective is to increase both the mean value and reduce varia-
tion. Finally, for the NB characteristic, the objective is to 
meet the target value and reduce variation. This is often ap-
proached in two ways; based on the variance only and 
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based on both mean and variance. The former aims at re-
ducing excessive variability in response signal and the later 
aims at reducing variability in response and then bringing 
the mean response as close as possible to the target or 
nominal value. However, regardless of all situations, S/N 
ratio is always interpreted the same way: the larger the S/N 
ratio, the better. 

 
Table 1: The Three Standard Forms of S/N Ratio 

Performance  
Characteristic 

S/N ratio formula  
(db) 

Smaller-the-Better 
(SB) 

S/N = -10 log 

[ i

n

i

y
n

∑
=1

1 2] 

Nominal-is-Best 
(NB) 

Mean and Variance 

S/N = 10 log (
s

y
−

) 2  

  
Variance Only 

S/N = -10 log ( s 2 ) 

Larger-the-Better 
(LB) 

S/N = -10 log 

[ ∑
=

n

i iyn
1

2

11
] 

 
3.4  MCDM with Entropy Method 
 
Decision-making is an important part of any design proc-
ess. The expertise of a decision-maker or a team of special-
ists is usually utilized to assess design alternatives, rank po-
tential outcomes, and select best design strategies. Making 
decisions in the context of multiple and often competing 
objectives of a complex design problem is a typical chal-
lenge to decision-makers. Multi-Criteria Decision-Making 
(MCDM) requires determining the shape and structure of 
the decision-maker's Multi-Attribute utility Function 
(MAUF), with the absence of tradeoff information. Hence, 
the proposed methodology tackles these MCDM difficulties 
by forming a contextually adaptive linear additive MAUF 
and using this function as a multi-objective function in the 
GA selection scheme. Assessing the relative importance 
weights associated with individual attributes utilities is usu-
ally a key challenge when forming the linear additive 
MAUF. Therefore, entropy method is used to assess crite-
ria' relative importance weights. At each iteration step, GA 
provides the EM module with a Decision Matrix (DM) that 
consists a population size of solution alternatives along 
with values of their performance metrics (valuated by SM 
module and and passed through the RM module). The EM 
module performs the entropy method on the DM to assess 
the set of attributes’ relative importance weights W and 
form the MAUF. The MAUF is then used to transform per-
formance multiple measures into a single overall utility 
score U, on which GA selection scheme decide the survival 
chance of potential design solution alternatives.   

3.4.1  Forming the Utility Function 
 
Steuer (1986) considers the utility function as the basis on 
which different settings (solution alternatives) to a MCO 
problem are judged. In this judgment, the greater the value 
of the utility score, the more preferred the solution alterna-
tive and its associated criterion vector. In the context of 
multiple objectives, a MAUF is often formed to judge solu-
tion alternatives. A tradeoff between these objectives is 
usually made to evaluate the utility value associated with 
any solution alternative. This tradeoff incorporates the con-
tribution of each optimization objective into an overall sys-
tem performance evaluation.  

In the proposed methodology, a linear additive repre-
sentation of the MAUF is used for assigning utility (GA 
fitness) scores to solution alternatives. A linear additive 
MAUF consists of two elements, individual utility values of 
decision attributes and relative importance weights associ-
ated with these attributes. The MAUF adds individual util-
ity functions (U1(y1), U2(y2), …, Um(ym)) for m different at-
tributes (y1, y2, …, ym) to form an overarching system 
performance measure at any set of system design parame-
ters X. Therefore, MAUF is simply a weighted average of 
these different utility functions. That is: 
 

U(y1, y2, …, ym) = w1 U1(y1) + w2 U2(y2) + … wm Um(ym)   

=  
1

i∑
=

m

i

  w Ui(yi)         (2) 

 

 Where w1, w2, …, wm are the weights of relative  
importance assigned to attributes (i = 1, 2, …, m) and 

   
1

i∑
=

m

i

w  = 1 for convenience.  

However, the following notes and assumptions are es-
sential to address when forming the linear additive MAUF 
in the proposed methodology: 

First: Although, a linear form of the MAUF is used in 
the proposed methodology as an overarching utility of all 
attributes, this linear form does not preclude attributes’ in-
dividual utility functions (U1(y1), U2(y2), …, Um(ym)) being 
nonlinear. 

Second: For the MAUF to be additive, decision attrib-
utes should be mutually preferentially independent (Winston 
(1994)). That is, our preference to a certain attribute is not 
affected by the values of other attributes. Practically we often 
deal with interaction among decision attributes. Hence, 
Hwang and Yoon (1981) observed that when there are com-
plementarities among the various decision attributes, the ap-
proach of weighted-sum in the linear additive MAUF might 
produce misleading results. To deal with this issue, the pro-
posed methodology adopted a dynamic and contextually de-
pendent MAUF to replace the traditionally used fixed form 
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of the MAUF. The structure of the MAUF is dynamically 
changed at each GA search iteration step by changing the 
values of attributes' weights. These weights are assessed us-
ing an entropy method at each search iteration step and under 
different decision contexts (as reflected by changes in the 
values of performance metrics obtained from simulation-
evaluation). Therefore, The interaction among decision at-
tributes is addressed by changing the values of criteria 
weights as one or more attribute value changes in the deci-
sion-matrix. This implies a practical consideration of de-
pendencies among decision attributes while sustaining the 
linear additive form of the MAUF. 

Finally, given that the linear additive MAUF may be 
useful for resolving tradeoffs, there exists the issue that, of-
tentimes, the units for expressing criteria or performance 
metrics will be different. These must be brought to a com-
mon aspiration orientation through normalization in order 
for solution alternatives to be comparable. Hence, 
determining utility scores starts by normalizing criteria 
values first and then deriving a common unit for all those 
criteria. This normalization aims at obtaining comparable 
scales in the evaluation of solution alternatives before 
applying the GA selection scheme.  

3.4.2  Assessing Criteria' Weights 
 
Forming the linear additive MAUF requires the assessment 
of the set of relative importance weights W associated with 
decision attributes. Typically, the method used for assess-
ing criteria weights is primarily based on the nature of the 
problem and the available information. If the data of the 
Decision Matrix (DM), in terms of a set of solution alterna-
tives and values of decision attributes associated with them, 
is unknown, approaches such as the Analytical Hierarchy 
process (AHP) (Saaty 1977) and Weighted Least Square 
Method (WLSM) (Chu et al. 1979) are usually adopted. In 
AHP, a pairwise comparison is established between pairs of 
decision attributes and solution alternatives using a prefer-
ence scale and in WLSM a set of simultaneous linear alge-
braic equations are formed and solved using Saaty’s matrix 
of pairwise comparison.  

When the DM information is available, however, ap-
proaches such as Simple Multi-Attribute Rating Technique 
(SMART) (Edward 1986), LINear programming techniques 
for Multidimensional Analysis of Preference (LINMAP) 
((Srinivasan and Shocker 1973), and Entropy method (Ni-
jkamp 1977 and Zeleny 1974) can be used to assess criteria’ 
weights. In SMART, sometimes referred to as “swing 
weighting”, the decision-maker ranks swings in the levels of 
decision attributes (Clemen 1996). An application of 
SMART in a Genetic Algorithm-Simulation Modeling (GA-
SM) software tool was presented by Al-Aomar (2000). 
LINMAP proposes a Linear Programming (LP) model for 
estimation of the coordinates of an ideal point that denotes 
the decision-maker’s most preferred stimulus and the weights 
involved in the Euclidean distance measure in the multidi-
mensional space. 

The proposed methodology utilizes the EM for assess-
ing criteria weights. The EM works on a Decision Matrix 
(DM). Solution alternatives of the DM are provided by GA 
search to the SM module for multiple performance evalua-
tion. RM module assigns S/N ratios to the outcomes of SM 
module to provide values of their associate decision attrib-
utes. The availability of the DM information excludes the 
need for using AHP or WLSM. Further, the Entropy 
method does not require forming a LP model as the case in 
LINMAP and does not require information for ranking de-
cision attributes or ranges of their values as the case in 
SMART. The method is, therefore, suitable for practical 
applications in parameter design problems, where little in-
formation is usually available to decisions-makers. 

3.4.3  Entropy Method 
 
Entropy is a subject that has played a central role in a num-
ber of areas such as Statistical Mechanics and Information 
Theory. The term Entropy is used in thermodynamics to 
describe a quantity accompanying a change from thermal to 
mechanical energy (Van Wylen and Sonntag, 1976). In in-
formation theory, entropy measures the uncertainty associ-
ated with random phenomena of the expected information 
content of a certain message (Shannon and Weaver, 1967). 
This uncertainty is represented by a discrete probability dis-
tribution pj. The measure of uncertainty S in a probability 
distribution (p1, p2, …, pn), associated with n possible out-
comes of a certain criterion, is given by Shannon (1948) as: 
 

S (p1, p2, …, pn) =  -K ∑
=

n

j

i

1

i pln  p        (3) 

 
where K is a positive constant.   

Since the term “entropy” and “uncertainty” are consid-
ered synonymous in information theory, S is called the en-
tropy of the probability distribution pi. S (p1, p2, …, pn) 
takes it maximum value when the uncertainty in distribu-
tion outcomes is maximized, that is when all outcomes 
have the same probability pi = 1/n. This establishes a useful 
rationale for utilizing the definition of entropy in criteria 
weights assessment. Hwang and Yoon (1981) mentioned 
that a criterion does not function much when all the alterna-
tives have the similar outcomes for that criterion and if all 
values of a criterion are the same, we can eliminate the cri-
terion. Therefore, the entropy idea, according to Hwang and 
Yoon (1981), is particularly useful to investigate contrasts 
between sets of data. These sets of data can be pictured as a 
set of solution alternatives in the Decision Matrix (DM) 
where each solution alternative is evaluated in terms of a 
set of outcomes of values of decision attributes.  

The entries of the Decision Matrix (DM) with l solu-
tion alternatives and m decision attributes can be repre-
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sented in a probability distribution pkj, where (k = 1, 2, …, 
l) and (j = 1, 2, …, m). Each entry pkj includes a certain in-
formation content, which can be measured by means of the 
entropy value. Therefore, if the DM of l solution alterna-
tives and m decision attributes is: 

 

DM = 



















lml2l1

2m2221

1m12 11

y...yy

............

y...yy
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              (4) 

 
A probability value (pkj) for each entry in the DM can 

be simply determined by normalizing attribute values at 
each solution alternative. That is: 
 

 pkj = ykj / ∑
=

l

k

ky
1

 , ∀ k, j               (5) 

 
Based on this, the pkj matrix is formed as follows: 
 

pij = 
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              (6) 

 
The entropy Sj for a set of outcomes of a decision at-

tribute j for l solution alternatives is determined as: 
 

Sj = -K ∑
=

l

k 1

kjkj pln  p , ∀ j               (7) 

 
where K represents a constant with a value of [1 / (ln l)] at 
Smax, which guarantees that 0 ≤  Sj ≤  1. 

Zeleny (1974) mentioned that the a weight assigned to 
an attribute is directly related to the average intrinsic in-
formation generated by a given set of alternatives at that 
attribute as well as to its subjective assessment. Based on 
this, the degree of diversification dj of the information pro-
vided by an attribute j is defined as:  

 
dj = 1- Sj,∀ j               (8) 

 
According to Hwang and Yoon (1981), if the decision-

maker has no reason to prefer one attribute to another, the 
principle of insufficient reason (Starr and Greenwood 1977) 
suggests that each attribute should be equally preferred. 
Then the best weight set W associated with m decision at- 

 

tributes the decision-maker can expect, instead of the equal 
weight, is as follows: 
 

 wj =  dj / ∑
=

m

j

jd
1

,∀  j               (9) 

 
If the decision-maker has a prior subjective weights 

(λ1, λ2, …, λm), then subjective weights can be adapted us-
ing the set of calculated weights (w1, w2, …, wm) as follows: 

 

   wj
0 = wj λj / ∑

=

m

j

jjw
1

 λ ,∀ j             (10) 

 
4 CONCLUSION 
 
This paper has presented a robust simulation-based multi-
criteria optimization methodology to solve Parametric De-
sign (PD) problems in production and business systems of 
considerable complexity. The proposed methodology is 
based on an integration of four modules of proven methods: 
Genetic Algorithm (GA) search, Simulation Modeling (SM), 
Taguchi-based Robustness Module (RM), and Entropy-
Method (EM). This synergic integration is aimed at tackling 
four common challenges in designing and optimizing com-
plex, dynamic, and stochastic real-world production and 
business systems. This includes problem formula-
tion/representation in terms of objective function and con-
straints (using SM), searching the often complex and large 
problem domain (using GA), handling the stochastic vari-
ability in system response (using RM), and performing op-
timization decisions based on multiple and often conflicting 
objectives in the absence of tradeoff information (using 
EM). GA search utilizes the SM to evaluate system multiple 
responses at different settings of design parameters. The RM 
module integrates robustness, Taguchi style, into the GA 
search engine by assigning a Signal-to-Noise (S/N) ratio to 
each SM simulation outcome. The EM module utilizes an 
Entropy method to assess the relative importance weights 
associated with the multiple decision attributes in a linear 
Multi-Attribute Utility Function (MAUF) and provide GA 
selection scheme with a unifying criterion to discriminate 
among feasible design alternatives. Until convergence, the 
form of the MAUF is updated at each GA search iteration 
step resulting in a dynamic and contextually dependent ad-
aptation of the decision-maker's utility function. 
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