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ABSTRACT 

The Virtual Factory is a job shop scheduling tool that was 
developed at NC State.  It has been shown to provide near-
optimal solutions to industrial-sized problems in seconds 
through comparison to a computed lower bound.  It is an 
iterative simulation-based procedure, whose objective is 
minimizing maximum lateness.  Like many other job shop 
scheduling tools, the Virtual Factory has been evaluated 
primarily in a transient setting, even though a rolling hori-
zon setting is more indicative of the situation in which 
scheduling algorithms are used in industry.  Consequently, 
a rolling horizon procedure has been developed with which 
the Virtual Factory was tested.   Experimental results indi-
cate that the Virtual Factory also performs well under these 
circumstances. 

1 INTRODUCTION 

There are many tools available for scheduling job shop 
problems.  The Virtual Factory, developed at NC State, is 
one such tool that has been found to provide near-optimal 
solutions to industrial-sized problems in seconds.  The Vir-
tual Factory is an iterative simulation-based procedure, that 
solves deterministic problems.  Its objective is minimizing 
maximum lateness, Lmax.  

The Virtual Factory, as many of the job shop scheduling 
algorithms found in the literature, has been tested primarily 
under transient circumstances (similar to simulating a termi-
nating system).  In industry, though, running a plant until it 
is empty is rare.  Instead, plants usually contain many differ-
ent orders, with new orders arriving as older ones are com-
pleted.  Scheduling is often performed on some regular ba-
sis, i.e. everyday.  The best schedule is implemented until 
the plant is rescheduled.  Thus, scheduling occurs on a roll-
ing horizon basis.  Rolling horizon scheduling has been dis-
cussed in the literature, but experimentation has concen-
trated primarily on lot sizing problems. To evaluate how 

 

well the Virtual Factory might perform in industry, it there-
fore will be tested in a rolling horizon setting. 

In Section 2, an overview of the Virtual Factory is pre-
sented.  Section 3 explains the rolling horizon version of the 
Virtual Factory that was implemented, as well as how rolling 
horizon problems were generated.  Experimental results are 
found in Section 4.  Section 5 provides the conclusions. 

2 VIRTUAL FACTORY 

The idea for this simulation-based job shop scheduling al-
gorithm was first proposed by Lawrence and Morton 
(1986) and Vepsalainen and Morton (1988).  Hodgson et 
al. (1998, 2000) further developed it and named it the Vir-
tual Factory.  The Virtual Factory consists both of a sched-
uling algorithm and a lower bound.  

2.1 Scheduling Procedure 

Let di be the due date of job i and pij be the processing time 
of job i on machine j.  Then the slack of job i on machine 
m is calculated as 

 
 ∑
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mj
ijimi pdSlack ,

 (1) 

 
where m+ is the set of all operations subsequent to ma-
chine m on job i’s routing.   Slack represents the latest pos-
sible time that a job can finish on a machine and still sat-
isfy its final due date. As this does not include queuing 
time, slack did not perform well as a dispatching rule in 
early experiments found in the scheduling literature.  

To remedy this situation, a revised slack value that in-
corporates queuing times is used as the sequencing rule in 
the Virtual Factory. Queuing times are recorded for each 
job at each machine it visits in one iteration of the simula-
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tion and used in the next iteration.  The revised slack for 
job i on machine m is computed as 
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where m++ is the set of all subsequent operations to ma-
chine m on the routing sheet for job i, except the immediate 
subsequent operation. The simulation is run until the lower 
bound is achieved or a specified number of iterations is 
reached, and the best solution is saved. 

2.2 Lower Bound 

Hodgson et al. chose to evaluate the quality of the sched-
ules produced by the Virtual Factory through comparison 
to a lower bound. The lower bound is calculated by de-
composing the job shop problem into individual one ma-
chine problems.  To do this, an earliest start time and a lat-
est finish time are calculated for each machine on each 
job’s route.  Let ri  be the release time of job i. Then the  
earliest possible start time for a job i on machine m is, 
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where m- is the set of all operations preceding machine m 
on job i’s routing sheet.  The latest finish time for each job 
i on machine m is 

 
 ∑
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where m+ is the set of all operations following machine m 
on the routing sheet of job i.  

The lower bound for the job shop problem (N/M/Lmax ) 
is obtained by solving the N/1/ Lmax | ri problem on each 
machine m by considering LFi,m as the effective due date 
for job i on machine m and ESi,m  as the release time (ri) for 
job i on machine m. Since N/1/ Lmax | ri is NP-hard, a 
relaxation suggested by Baker and Su (1974) is used. The 
relaxation is to allow preemption of a job in process when-
ever one with a more imminent due date becomes 
available.   

The overall lower bound, LB (Lmax), is computed as 
 

 )}({max)( max,1max LLBLLB mMm==  (5) 

 
where LBm (Lmax) is the lower bound for machine m.  The 
power of this lower bound is that there are M chances to 
get a tight bound. 

 

3 ROLLING HORIZON SCHEDULING 

The following definitions are required for this section: 
 

t - Current time in days 
cj - Completion time of job j 
N - Total number of jobs 
Ns - Total number of jobs starting in factory on first 

day 
M - Total number of machines 
UL - Upper limit of uniform distribution for number 

of operations 
JR  - Number of jobs released each day 
RO - Number of operations for jobs released 
DL - Length of a day 
T - Total horizon length in days 
w - Number of days in warm-up period 
WIP - Work in process (number of days) 
i - Number of iterations 

3.1 Scheduling Procedure 

The algorithm for the rolling horizon scheduling procedure 
is given as follows: 
 

1. Initialize t = 0 
 1.1 If t = w + 1, compute LB 
 1.2 Release jobs whose rj = t 
 1.3 Run the Virtual Factory i iterations  

1.4 Implement the first day of the best   
schedule  

 1.5 t = t + 1 
 1.6 Continue from 1.1 until t = T 
2. Run the remainder of the best schedule un-
til all jobs are finished 
3. Initialize j =1 

3.1 If cj > w, determine if job j is the 
Lmax job 

 3.2 j = j + 1 
 3.3 Continue from 3.1 until j = N 

 
Step 1 initializes the beginning of the first day as time 

0.  If in step 1.1 the time is one day past the warm-up pe-
riod, the lower bound is computed.  In step 1.2, the jobs 
with release time equal to the current time enter the fac-
tory.  No jobs are released on the beginning of the first day 
since these jobs are assumed to be already in the factory.  
Step 1.3 runs the original VF procedure for a fixed number 
of iterations. In step 1.4, the first day of the best schedule 
is implemented.  The rest of the schedule is discarded, ex-
cept on the last day.  At the end of the day, there may be 
jobs that are still in process. Each of these jobs is put back 
in the machine’s queue, and the job’s processing time is set 
equal to the remaining processing time.  Steps 1.5 and 1.6 
ensure that steps 1.1 through 1.4 are run for each day until 
the total number of days is reached.  In step 2, the best 
schedule is run until all jobs are finished.  This ensures that 
the scheduling procedure does not sacrifice the remaining 
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jobs in the factory to yield a good schedule for the jobs that 
complete processing since all jobs finish.  Step 3 initializes 
the counter, j, equal to the first job.  In Step 3.1, only jobs 
that are completed after the warm-up period are included in 
the Lmax calculation to eliminate transient effects dependent 
on initial factory conditions.   Steps 3.2 and 3.3 ensure that 
the lateness for each job completed after the warm-up pe-
riod is compared to the current maximum lateness. 

3.2  Lower Bound 

The lower bound for the rolling horizon schedule is com-
puted after the warm-up period.  The LB calculation in-
cludes both jobs that are currently in the factory after the 
warm-up period, with their remaining operations and proc-
essing times, and also those jobs that will be released later, 
during the complete horizon of the simulation.  The LB is 
computed in the same manner as for the original VF.  
Therefore, even though there are multiple runs of the VF 
engine for the rolling horizon scheduling procedure, there 
is only one LB calculation. 

3.3 Problem Generation 

For testing the Virtual Factory on a rolling horizon basis, 
several problems were generated.  In each problem, 
DL=1600, T=100, and i=100.  Initially, a M and UL value 
were specified.  Then, RO and WIP were set equal to UL. 
For the 5 operation problem depicted in this paper, M=50 
and UL=RO=WIP=5.  Finally, the values of JR, Ns, and w 
were determined based on the other parameters of the 
problem.   

To compute JR, the number of jobs that balances the 
input into the factory with the output from the factory 
needed to be found.  This was approximated by dividing 
the average number of operations that can be processed 
daily by the number of machines on which the jobs re-
leased after the first day are processed.  To find the average 
number of operations that can be processed each day in the 
factory, the number of machines, M, was multiplied by the 
average number of operations that a single machine can 
process in a day, Mops .  Mops  can be computed by divid-

ing the day length, DL, by the average processing time, 

P . Consequently, 
 

 
P

DL
Mops =  (6) 

 
and  

 

 
RO

MopsM
JR

))((≈ . (7) 

 

Since the processing times for the problems are uni-

formly distributed between 1 and 200, ≈P 100 and thus 

Mops ≈  1600/100=16. (Assuming an 8 hour work day, the 

average processing time is 0.5 hours.)  Therefore, for the 5 
operation problem, JR ≈  (50)(16)/5=160.  This value tends 
to overestimate JR since it assumes that there is never any 
idle time on the machines.  Therefore, experimentation was 
performed to determine the actual value of JR, starting 
with the computed value.  JR was found to be 151 for the 5 
operation problem. 

Ns was computed to achieve the desired amount of 
WIP.  Since the problems have been designed so the fac-
tory input is approximately equal to the factory output, the 
number of operations that will be completed each day is 
approximately (JR)(RO).  If WIP days of work in process 
is desired, then the total number of operations that should 
start in the factory is (JR)(RO)(WIP).  Each job that starts 

in the factory has an average of Ops  operations, where 

Ops  = (UL+1)/2.  Consequently, 

 

 
Ops

WIPROJR
N s

))()((≈   (8) 

 
jobs should start in the factory.  For the 5 operation prob-
lem, Ns ≈ [(151)(5)(5)]/3 ≈ 1258. 

The length of the warm-up period was chosen to 
eliminate potential transient effects caused by the initial 
jobs in the factory.  The warm-up period in days, w, was 
set equal to 10 since this is significantly larger than the 
WIP in the 5 operation problem. 

4 EXPERIMENTATION 

Due date range has been shown by Demirkol et al. (1998) 
to be a factor influencing solution performance in evaluat-
ing algorithms scheduling transient job shops. Due date 
range may also be a factor in scheduling jobs shops in roll-
ing horizon scenarios.  Therefore, experiments were run for 
due date ranges between 0 and 25 days.  A due date range, 
DDR, is defined so that each job, j, is randomly generated a 
discrete uniform due date between rj and rj + DDR, where 
rj=0 for jobs initially in the factory.  Note that all jobs are 
released at the beginning of a day, whereas the due date for 
a job could occur at any time during the day.  For each due 
date range, 20 replications were run and the average differ-
ence between Lmax and LB was calculated. This difference 
is the maximum by which the simulation solution could 
exceed the optimal solution.  A positive difference between 
Lmax and LB could be the result of a non-optimal schedule, 
a weak LB, or a combination of the both. 



Thoney, Joines, Manninagarajan, and Hodgson 
4.1 Base Case 

Results of the 5 operation problem can be seen in Figure 1.  
The average LB-Lmax is approximately in the range of 0.9 to 
0.18 days.  For the first 14 due date ranges, the average dif-
ference does not exceed 0.15 days.  There is a slight in-
crease in the differences for due date ranges beyond 13 
days.  These differences are quite small considering that 90 
days of factory performance was included in these statis-
tics, with the latenesses of over (90)(151)=13,590 jobs 
taken into account.  This indicates that the scheduling pro-
cedure is performing well. 

 

5 Operation Problem
Base Case
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Figure 1: Base Case 

4.2  Varying the Total Horizon Length 

To determine the effect of the total number of days that are 
scheduled on the quality of the scheduling solutions, each 
problem was run for 55 days and 190 days with the same 
10 day warm-up.  This allows the scheduling solutions to 
be observed when the total number of days after the warm-
up period are half as many and twice as many as in the 
base case. 

The results of the 5 operation problem with 55 days is 
shown in Figure 2. The average Lmax- LB value is low for 
due date ranges up to 13 days.  Then it jumps up and the 
results are similar to that of the base case.  This indicates 
that for large due date ranges, the differences between Lmax 
and LB do not change much, on average, between 55 and 
100 days, but they do increase significantly for small due 
date ranges. 

The results for running the 5 operation problem for 
190 days can be seen in Figure 3.  The performance has 
gotten somewhat worse as the total horizon length has been 
increased.  The maximum average difference between Lmax 
and LB, though, is still only about 0.26 days. 

4.3 Increasing the Warm-Up Period 

The problems were run with an increased warm-up period 
to test if the transient effects were, indeed, eliminated.  
Figure 4 shows the comparison of increasing the warm-up 
 
 

5 Operation Problem 
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Figure 2: Decreasing the Total Horizon Length 

 

5 Operation Problem 
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Figure 3: Increasing the Total Horizon Length 

 
5 Operation Problem

Comparison of 20 Day Warm-up and Base Case
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Figure 4: Increasing the Warm-up Period 

 
period with the base case.  Increasing the warm-up period 
yielded slightly better results for due date ranges up to 17 
days.  It is difficult to determine if this difference indicates 
that there are some transient effects remaining when a 
warm-up period of 10 days is used or if this is a result of 
the slight decrease in performance as the horizon length is 
increased, evidenced in Section 4.2. 

4.4 Varying the Number of Jobs Released 

In industry, it would be uncommon for a factory to release 
exactly the same amount of jobs each day.  Thus, to see the 
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impact that varying the number of jobs released each day 
has on the ability of the VF to provide good schedules, ex-
periments were carried out in which the average number of 
jobs released was approximately equal to the number re-
leased in the base cases.  For the 5 operation problem, the 
number of jobs released each day was uniformly distrib-
uted between 145 and 155. Figure 5 shows that there is lit-
tle difference between the base case and the corresponding 
case where the operations were varied.   
 

5 Operation Problem
Jobs Released Uniform [145,155]
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Figure 5: Varying Number of Jobs Released Each Day 

4.5  Varying the Number of Operations 

Releasing jobs with varying number of operations is also a 
typical occurrence in industry that has the potential to ef-
fect the performance of a scheduling algorithm.  Therefore, 
this parameter has been varied, setting the average number 
of operations equal to the number of operations used in the 
base cases.  For the 5 operation problem, the number of 
operations remaining for the jobs released each day was 
varied uniformly between 3 and 7. Figure 6 shows the 
comparison of changing the number of operations with the 
base case. When compared with the base case, varying the 
number of operations yields slightly worse results for high 
due date ranges. 
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Figure 6: Varying Number of Operations for Jobs Released 
 

4.6 Varying the Number of Jobs Released and the 
Number of Operations 

Since both releasing different numbers of jobs per period 
and releasing jobs with varying numbers of operations is 
common in industry, these variations should be also tested 
simultaneously. 
 Figure 7 shows the comparison of changing both the 
number of jobs released and the number of operations re-
maining with the base case for the 5 operation problem. 
The results shows that changing both the number of jobs 
released and also the number of operations remaining 
sometimes yielded better results up to a due date range of 
15 days and yielded slightly worse results after that. 
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Figure 7: Varying Number of Jobs Released and the 
Number of Operations 

5 CONCLUSIONS 

The Virtual Factory has been shown to perform well in a 
rolling horizon setting under a variety of different condi-
tions.  The slight increase in the difference between Lmax 

and LB as the total horizon length is increased could be the 
result of a deterioration in the quality of the scheduling so-
lutions or the lower bound.  In any case, the differences are 
quite small with respect to the total horizon length and the 
number of jobs completed. 

Future experimentation will concentrate on using the 
rolling horizon methodology to further evaluate the multi-
factory scenarios described in Thoney et al. (2002).  Evalu-
ating these scenarios in a rolling horizon setting is espe-
cially important to eliminate the many transient effects 
found in initial experimentation.  In addition, studying al-
ternative routing and when to release jobs into the shop in 
a rolling horizon setting will be carried out using the 
knowledge gained for transient settings in Weintraub et al. 
(1999) and Zozom et al. (2002), respectively. 
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