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ABSTRACT 

A range of minimization methods exist enabling planners 
to tackle tough scheduling problems.  We compare three 
scheduling techniques representative of “old” or standard 
technologies, evolving technologies, and advanced tech-
nologies.  The problem we address includes the complica-
tions of scheduling long-term upgrades and refurbishments 
essential to maintaining expensive capital assets.  We con-
centrate on the costs of being able to do maintenance work.  
Using a standard technology as the baseline technique, 
Constraint Programming (CP) produces a 50-yr mainte-
nance approach that is 31% less costly.  Genetic Program-
ming  produces an approach that is 60% less costly.   

1 INTRODUCTION 

Simulation “is an established method” for assessing per-
formance capabilities and operational domains for a wide 
range of industries (Splanemann 2001). Production and 
production-related operations planners often turn to simu-
lation technologies to assist operators in dealing with com-
plex production requirements particularly in highly con-
strained environments (Wang and Handschin 1999).  
Simulation technologies permit the planner/engineer to 
quickly assess numerous operational alternatives represent-
ing useful solution domains that otherwise cannot be 
“seen” (Contaxis et al 2000; Bretthauer et al 1998).   
 One of the most critical production-related decisions 
facing industrial planners is when to do what.  It is well 
recognized, for example, that production effectiveness is 
symbiotically dependent on timely maintenance as well as 
on-time product delivery (Kelleher 1997).  The ubiquitous 
enterprise schedule of events is an important and essential 
part of industrial activities because they tend to “drive” 
production systems.   Consequently, the usefulness of pro-
duction-related simulations is inseparably dependent on 
robust, meaningful production implementation schedules. 

 

 Many “optimizing” algorithms have been developed 
for scheduling essentially all production-related activities 
including maintenance (Rong-Ceng and Shih 2000; Filipic 
and Zupanic 1999).  There have been little, if any, com-
parative assessments of the effectiveness of the different 
classes of algorithms in terms of solution robustness.   This 
paper compares the robustness (as measured by hours) of 
three simulation optimization “engines” commonly used to 
assess complex scheduling options applicable to mainte-
nance scheduling. 

2 PROBLEM SCOPE AND BACKGROUND 

The problem examined in this paper is representative of the 
scheduling challenges associated with very expensive capi-
tal assets that must be periodically maintained over long 
design lives (e.g., 50 years).  One measure of the business 
robustness of the maintenance schedule is the maintenance 
costs required to meet all maintenance objectives.  Al-
though the total maintenance costs expended over the life-
time of the capital assets is often used as a measure of 
maintenance robustness, the problem investigated in this 
paper focuses on minimizing the cost of the capacity to 
perform maintenance work.   
 The extraordinarily long lifetimes of many expensive 
capital assets require that maintenance activities be effec-
tively managed over a relatively long time.  System main-
tenance requirements that oscillate widely from time-to-
time are not as desirable as those that remain reasonably 
consistent.  This is true because the capacity required to 
meet peak maintenance equipments can be an underused, 
costly burden during non-peak periods.   
 The peak or maximum maintenance requirements is a 
direct measure of the maintenance capacity that must be in 
place to perform the required work.  Consequently, the best 
and most efficient maintenance schedule over a many year 
period is one that minimizes the “peaks” in maintenance 
capacity requirements over the capital assets lifetimes. 

 



Helm, Painter, and Oakes 

 
 Maintenance capacity costs are directly related to the 
maximum number of maintenance hours expended in any 
given time period (annually in this case) assuming that 
maintenance hours properly reflect facility, material and 
labor requirements.  Hours were chosen as the common 
analysis variable for ease of comparison between the algo-
rithms of interest. 
 We analyze three representative classes of algorithmic 
methods.  Specifically, the methods classes are (1) quasi-
manual using standard spreadsheet technology, (2) a mod-
ern Constraint Programming-based software package, and, 
(3) a genetic program written specifically for this applica-
tion.  The first method represents a rules-of-thumb ap-
proach.  Method two represents a recent application of a 
standard mathematical technique.  Method three represents 
an advanced capability entering the workplace.  We assess 
how well each approach accomplishes the problem goals, 
i.e., minimizing the peak hours required for up-
grades/refurbishment in any year of the 50 year lifetimes of 
the capital assets.  The measure of “goodness” is deter-
mined by comparing the peak annual hours calculated by 
each of the three approaches to meet time-dependent pro-
duction goals.  The best maintenance schedule is one that 
produces  the lowest peak maintenance hours in any year 
and, thus, has the lowest installed capacity costs. 

3 BRIEF PROBLEM SUMMARY 

We assign representative characteristics to the maintenance 
scheduling problem to symbolize actual requirements for 
large capital assets investments.  Table 1 summarizes the 
capital assets maintainable component characteristics.   
The first column in Table 1 is the component identifica-
tion.  The second column defines the number of component 
units by type and the initial fabrication date of the compo-
nents (shown in parentheses.)  The third column lists the 
estimated range of design lifetimes in integer years.  The 
fourth column shows the number of maintenance work 
hours required for each individual component.  
 

Table 1: Component/Unit Maintenance Characteristics 

 

 The components shown in Table 1 are unique and 
separable from one another for maintenance purposes. 
However, component units are indistinguishable from one 
another, have the same fabrication date, and must be main-
tained at the same maintenance intervals.  The number of 
units by component is specified as part of the problem 
definition to show that the component workload is func-
tionally dependent on the number of units defining each 
component.  The total component work hours for any 
maintenance schedule is simply the product of the number 
of units and the per unit work hours. 
 The final column of Table 1 states the “packageabil-
ity” of each component.  Packageability means that at the 
time a component is selected for maintenance operations 
(including all of its units), it may be more efficient to com-
bine it with other component maintenance activities.  Effi-
ciency is reflected in reduced total work hours for the 
“packaged” components/units.  These maintenance effi-
ciencies are available to the planner.  However, other 
maintenance constraints such as responsibly managing 
component/unit lifetimes may preclude packaging oppor-
tunities. The acceptable component packaging options are 
shown in Table 2.  For example, the units of component 
P.4a may be combined with the units of components P.2 
and P.4 for maintenance purposes provided all other condi-
tions are met.  The fact that the number of component units 
for  P.4a (6 units) differs from P.2 (12 units) and P.4 (20 
units) permits scheduling schemes that take advantage of 
differing unit work hours since work may be performed on 
the units of the “package” in any order. 
 If the maintenance planner decides to jointly maintain 
two components (including all component units) during the 
same maintenance period, then the number of work hours 
(the sum of the total work hours for both components) re-
quired to perform the “packaged” maintenance operations 
is reduced by 33%.  If three components are maintained at 
the same time, the sum of the component work hours is re-
duced by 60%.   
   

Table 2: Permitted Component Packaging 
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 The maintenance assessment period is 50 years begin-
ning in the year 1988. 

4 CONSTRAINTS 

The constraints are summarized in Table 3.   It is clear 
from Table 3 that acceptable solutions must assure that (1) 
component design lifetimes are never exceeded and that (2) 
maintenance operations before design life is reached are 
unacceptable.  Since the goal is to minimize maintenance 
costs, it is advantageous to combine component mainte-
nance activities whenever possible as outlined in Table 2. 
 

Table 3: Constraints 

 

5 OPTIMIZATION APPROACHES  

5.1 Spreadsheet 

The spreadsheet approach uses the capabilities of modern 
spreadsheet technologies to capture and display the rules-
of-thumb approach.  Asset components are scheduled row 
by row.  Columns are used to represent each year of inter-
est.  Columns contain either a  “1” or a “0” where 
 
 Column N = 1, maintenance scheduled, 
 Column N = 0, no maintenance. 
 
 The spreadsheet compares the proposed maintenance 
schedule against the constraints (see Table 3) to identify 
constraint violations and to highlight possible work hour 
enhancements available through component concurrent 
maintenance packaging (see Table 2.)  A summary table 
calculates the total number of work hours and the maxi-
mum work hours in any year.   

5.2 Genetic Programming 

Both Genetic Algorithms (Goldberg 1989) and Genetic 
Programming (Koza 1999) fall under the broad category of 
evolutionary computation (Heitkotter and Beasley 2002). 
Genetic Algorithms (GA) and Genetic Programming (GP) 
are based on the ideas of natural selection and survival of 
the fittest. 
 The genetic algorithm (GA) approach is quite simple 
as follows: 

 
1. Randomly generate an initial solution population 
2. Evaluate these solutions for fitness 
3. If time or iteration constraints not yet satisfied, 

then 
4. Select parents (best solutions so far) 
5. Recombine parents using portions of original so-

lutions 
6. Add possible random solution “mutations” 
7. Evaluate new solutions for fitness 
8. Return to Step 3. 

 
 When using Genetic Programming for assessing 
manufacturing schedules, we are faced with three chal-
lenges.  They are (1) solution representation, (2) the proper 
fitness function, and (3) calculation run times. 
 

1. Solution Representation:  A simple example is f 
(x) = x2.  Since the goal is to maximize f(x), a so-
lution could be a bit string such as 00011001.  
This string represents a number with the right 
most bits being the most significant.   As the ge-
netic algorithm runs, solutions with the more 1’s 
in the right most positions yield a great value for 
f(x) and are selected as parents for the next gen-
eration.  Representing a manufacturing schedule is 
much more complex than a simple bit string as 
represented a significant challenge. 

2. Fitness Function:  The fitness function for the 
manufacturing analysis is a “good” schedule.  
Good means cheaper (less work intensive) and 
one that doesn’t violate any of the constraints. 

3. Calculation Run Times:  In some settings, the run 
times of an evolutionary algorithm can take ex-
traordinarily long times to generate potential solu-
tions.  At least for the results reported in this pa-
per, we did not experience run time limitations. 

 
 The goal is to generate a maintenance schedule that 
minimized the required annual work hours.  Particular em-
phasis is placed on minimizing the overall capacity re-
quired to refurbish the capital assets.  Each potential solu-
tion yields a schedule requiring a capacity.  The rules, or 
fitness functions, used are as follows: 
 

A sum-of-squares algorithm is used to evaluate 
each potential schedule. Those solutions resulting 
in higher annual peaks are weighted as “worse” 
solutions.  Relatively better solutions are chosen 
to become the parents of the next generation of 
solutions.  A combination of checks is used to pe-
nalize the breaking of constraints and data struc-
tures are used to enforce constraints. 
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5.3 Constraint Programming (CP) Approach 

We use the ILOG Solver (Lustig and Puget 2001) to con-
struct and optimize a model using the component mainte-
nance constraints of Table 1.  Expressing the component 
maintenance constraints as Solver constraints is straight-
forward--virtually a direct match--and the simulation al-
lows us a primitive understanding of this approach.  How-
ever, we do not understand how to express the permitted 
component packaging efficiencies of Table 2 using the 
subject approach so that remains a challenge. 

6 RESULTS 

Figure 1 shows the average age of the capital assets by 
year beginning in year 1988.  The average age is the 
weighted sum of the ages of all the asset’s components.  
Since a number of the components are fabricated before 
1988, the age of the assets is non-zero at the beginning of 
the problem. 

 

 
Figure 1: Comparison of Three Approaches 

 
 It is striking that the shape of the age-curve for the so-
lution identified by the genetic program (see Figure 1) is 
significantly different from the age-curves produced by 
both the spreadsheet and the Constraint Programming (CP) 
algorithm methods.  One would expect the component age 
profile to reflect the built-in strategy used to manage the 
maintenance requirements.   If this is so, it follows that ge-
netic programs may offer the more flexible option to opti-
mizing constrained scheduling problems. 
 Figure 2 shows the total number of maintenance hours 
(over the problem time frame) for each of the approaches 
evaluated in this paper.  We differentiate between total 
work hours and maximum annual work hours to reflect the 
difference  between  the cost of work and the cost of the 
capacity to do work.  Annual work hours are a measure of 
required maintenance capacity/costs, i.e., typically compo-
nent/units capacity per year. 

 

 
Figure 2: Work Hour Comparison 

 
 Our analysis reveals a potential tradeoff between work 
and work capacity in that minimizing installed capacity 
(including facilities, equipment and laborers) may result in 
more total work over a relative long period of time. The 
problem did not include controls or constraints on total 
work hours over the 50 years of interest.   
 The total number of hours expended for maintenance 
over the time period of interest (50 years) is lowest for the 
spreadsheet approach (see Figure 2.)  It appears that the 
advanced techniques achieve lower installed capacity 
numbers, but result in more overall work during the same 
time period.  We posit that the GP approach is unable to 
take full advantage of the “packaging” opportunities as a 
result of striving for minimal annual workload levels.   The 
CP approach does not acknowledge component packaging 
efficiencies as noted in section 5.3 above.  
 Figure 2 also shows the maximum annual work hours 
(analogous to installed capacity) for each of the three meth-
ods analyzed.  The figure shows that the genetic program 
found a solution producing maintenance workloads that 
were 60% less than those determined by the spreadsheet ap-
proach and 31% less than the CP-based approach.  The very 
significant difference between the genetic program results 
and those produced by the spreadsheet approach may be at-
tributable to the genetic program’s built-in philosophical ap-
proach.  However, more study is needed to determine the 
sensitivity of the results, if any, to the philosophical ap-
proaches used by three different methods of interest. 
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