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ABSTRACT 

This paper presents an application of simulation optimiza-
tion in construction utilizing genetic algorithms. The paper 
focuses on the use of genetic algorithms (GAs) as a tool for 
optimizing the total cost of earthmoving operations ac-
counting for available equipment models to contractors and 
their corresponding quantities. The developed genetic algo-
rithm has a powerful computational utility that increases its 
efficiency. The fitness of generated chromosomes is calcu-
lated utilizing a simulation engine dedicated for earthmov-
ing operations which is dynamically linked to the devel-
oped genetic algorithm. The impact of the algorithm’s 
control parameters on its conversion is also examined. A 
numerical example is presented to illustrate the capabilities 
of the developed algorithm in selecting near-optimum fleet 
configurations. 

1 INTRODUCTION 

Optimizing the total cost of construction operations is con-
sidered a major challenge for construction contractors. This 
cost influences contractors’ decision to bid or not. Direct 
cost is typically estimated for the involved resources in-
cluding labor, material, and equipment. In earthmoving op-
erations, the direct cost is basically equipment cost. There-
fore, assigning the right equipment fleet configuration is a 
key factor for the project success. GAs have been applied 
in different domains including equipment selection (Mar-
zouk and Moselhi 2001-a); time-cost optimization (Li and 
Love 1997); water network rehabilitation (Halhal et al 
1997); and cost optimization of composite floors (Kim and 
Adeli 2001). 

This paper presents a methodology for optimizing total 
cost of earthmoving operations utilizing computer simula-
tion and genetic algorithms (GAs). The paper first presents 
an overview of the simulation engine that is utilized to es-
timate the fitness  of generated chromosomes. It then de-
scribes the different features and characteristics of the de-
veloped genetic algorithm. A numerical example is 

 

presented to illustrate the capabilities of the developed 
methodology and to study the convergence and perform-
ance of the developed genetic algorithm under different in-
put parameters. 

2 SIMULATION ENGINE 

The recently developed simulation engine (EMSP) (Mar-
zouk 2002, Marzouk and Moselhi 2000-a) is used for esti-
mating the fitness of generated chromosomes in the pro-
posed genetic algorithm. The engine has been developed 
utilizing discrete event simulation and object-oriented 
modeling and implemented in Microsoft C++ 6.0. It util-
izes different features of object orientation such as classes, 
inheritance, and dynamic data structure. 

The classes used in the design of EMSP are of two 
types: auxiliary and main (Marzouk and Moselhi 2000-b). 
Auxiliary classes are connected to the main classes through 
either association or aggregation relationships, whereas, 
the main classes are connected to each other through in-
heritance relationships. The main classes of EMSP capture 
different situations according to the activities involved. 
Therefore, they represent different combinations of earth-
moving activities. Table 1 lists all main classes along with 
their corresponding activities. 
 Different methods (functions) are defined within these 
main classes to perform different tasks whether by them-
selves or by sending a message(s) to an object of a class that 
has an association or aggregation relationship with main 
classes. For instance, Activity_Drive() method is 
defined in the OPY_Simulate main class and overridden 
by methods that have the same name and defined in its sub-
classes. The method defined in OPY_Simulate class is 
responsible for calling four methods in the OPY_Simu 
late class. These methods are: 1) Load_Drive(); 2) 
Haul_Drive(); 3) Dump_Drive(); and 4) Return 
_Drive(). They perform different tasks including: 1) add-
ing and removing activities from CAL (current activity list); 
2) checking termination condition for simulation replica-
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Table 1:  EMSP Main Classes and Corresponding Activities 
Class Corresponding Activities 

OPY_Simulate Load, dump, haul, and return  

OPE_Simulate Piling, load, dump, haul, and re-
turn  

OSD_Simulate Load, dump, haul, return, and 
spreading  

OCT_Simulate Load, dump, haul, return, and 
compacting 

PS_Simulate Piling, load, dump, haul, return, 
and spreading 

PC_Simulate Piling, load, dump, haul, return, 
and compacting 

SC_Simulate Load, dump, haul, return, spread-
ing, and compacting 

PSC_Simulate Piling, load, dump, haul, return, 
spreading, and compacting 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tion; and 3) adding and removing haulers and loaders into 
their queues. Figure 1 illustrates how these functions are 
called within Activity_Drive()method till the termi-
nation of simulation replication is reached. 

3 GENETIC ALGORITHM 

A genetic algorithm (EM_GA) has been developed to 
search for a near-optimum fleet configuration that reduces 
project total cost. It is dynamically linked to the EMSP to 
perform pilot simulation runs (see Figure 2). The algorithm 
considers a set of qualitative and quantitative variables that 
influence the production of earthmoving operations. Quali-
tative variables represent the models of equipment used in 
each fleet scenario, whereas, quantitative variables repre-
sent the number of these equipment models in each sce-
nario (Marzouk and Moselhi 2001-a). 

3.1 Population Structure 

According to the case at hand, a number of sub-
populations, chromosomes and genes are established 

 

Figure 1:  Calling OPY_Simulate Functions within Activity_Drive ( ) 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Interaction between EM_GA and EMSP 
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within their population. For example, for a case that con-
sists of two fleet scenarios a population composing two 
sub-populations is generated. Each chromosome defined 
within each sub-population represents a fleet configuration, 
whereas, the genes in that chromosome represent the num-
bers of each equipment type (model) used. As such, chro-
mosome’s length (i.e. number of genes) is dynamically ad-
justed to suit the construction task to be performed by the 
equipment fleet. Figure 3 illustrates the representation of 
configured fleets within EM_GA. 

 
 

OPY_Simulate  3  I L H1 H2    

           

OPE_Simulate  4  I P L H1 H2   

           

OSD_Simulate  4  I L H1 H2 S   

           

OCT_Simulate  4  I L H1 H2 C   

           

PS_Simulate  5  I P L H1 H2 S  

           

PC_Simulate  5  I P L H1 H2 C  

           

SC_Simulate  5  I L H1 H2 S C  

           

PSC_Simulate  6  I P L H1 H2 S C 

I  : Index gene 
P : No. of piling Equipment 
H1: No. of haulers (Model 1) 
H2: No. of haulers (Model 2) 
S : No. spreaders 
L : No. of loaders   
C : No. compactors 

Figure 3:  Representation of Fleets 

3.2 Input Parameters 

The input data to EM_GA includes: 1) sub-population size; 
2) number of generations; 3) non-improvement limit; 4) 
crossover and mutation probabilities; 5) activating elitism; 
6) including extreme fleet configurations; 7) user-defined 
fleet configurations; 8) indirect cost; and 9) ranges of 
equipment being considered. Figure 4 illustrates the dialog 
box used to define load equipment along with its auxiliary 
dialog boxes. It should be noted that in the case of user-
defined fleet, the dedicated dialog box is activated. In addi-
tion, upon activating any of the items marked by the num-
bers shown in the square boxes of the upper part of Figure 
4, EM_GA generates automatically the screens marked 

Chromosomes Main Class 
No. of 
Genes 
 

with the corresponding numbers shown in circles (see the 
lower part of Figure 4). 

Upon defining the input data for the algorithm, the 
first population is generated by creating a randomly se-
lected set of chromosomes. This population might contain 
the extreme fleet configurations (if applicable) and user-
defined fleet configurations (if applicable). Subsequently, 
the fitnesses of these chromosomes are estimated with the 
assistance of EMSP. These fitnesses are essentially the in-
verse of the estimated total cost of the equipment fleets 
represented by these chromosomes. Detailed description of 
the cost components of the fitness function can be found 
elsewhere (Marzouk 2002, Marzouk and Moselhi 2001-a). 

3.3 Chromosomes Selection 

In the process of generating new populations, chromo-
somes are selected in pairs and moved to the new genera-
tion. This process is carried out for each sub-population 
separately utilizing Roulette Wheel selection procedure 
(Coley 1999, Holland 1992, Goldberg 1989). In this proce-
dure, the chance of selecting an individual chromosome is 
proportional to its fitness (maximization problem). A 
modification was considered in that procedure to account 
for minimizing the total cost in two stages. First, chromo-
somes fitnesses are inverted [1/F(Ci)]. Second, theses in-
verted fitnesses are normalized in a way that their summa-
tion equals to 1.0. Subsequently, the typical Roulette Wheel 
selection procedure is carried out for the inverted normal-
ized fitnesses. Figure 5 illustrates the process of chromo-
somes selections. 

3.4 Genetic Operators 

After selecting chromosomes in pairs, each pair is either 
subject to crossover or moved directly to the new genera-
tion. Crossover process takes place when a generated ran-
dom number is less than the pre-specified threshold value 
for crossover (Pc). The crossover process is the fundamen-
tal mechanism of GAs that makes them imitate biological 
genes (Holland 1992). In the proposed algorithm, linear in-
terpolation crossover is utilized to ensure that genes con-
tents receive new values in the new generations (Kim and 
Adeli 2001). The process of linear interpolation is carried 
out according to the code shown in Figure 6.  

On the other hand, mutation process takes place, for 
all genes of generated chromosomes except the sub-
population index. Mutation is carried out if the generated 
random number is less than the pre-specified threshold 
value for mutation (Pm), otherwise the gene is skipped.  
 The value of the mutated gene is altered within its pre-
defined range. The mutation process is preformed to avoid 
local minima and to ensure that newly generated popula-
tions are not uniform and incapable of further evolution 
(Holland 1992). 
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Figure 4:  Qualitative and Quantitative Variables 

 

Figure 5:  Random Selection of Chromosomes 
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For i=1:Nsub 
Action 1  Pick two parents A and B according to 

the modified Roulette Wheel selection. 
Action 2  Randomly pick a number R1 between 0 and 

1. 
Condition 1  R1 ≤ Pc 
Action 2.1  Randomly pick a number R2 between 0 

and 1 to calculate the crossover position 
(Cpos). 

Action 2.2  Randomly pick a number R3 between 0 
and 1 to perform linear interpolation. 

Cpos = (int)((NGen-2)*R2+1); 
For j=1: Cpos 
 Gi,j = GA,j 
 Gi+1,j = GB,j 
For j= Cpos+1:NGen 
 Gi,j = Round_Number (GA,j*R3+ GB,j*(1-R3)) 
 Gi+1,j = Round_Number (GA,j*(1-R3)+GB,j*R3) 
Condition 2  R1 > Pc 
For j= 1:NGen 
 Gi,j = GA,j 
 Gi+1,j = GB,j 

Figure 6:  Linear Interpolation Code 
 

The developed genetic algorithm has a powerful com-
putational utility that increases its computational effi-
ciency. This is accomplish by employing its elitism func-
tion and by storing the fitness of its chromosomes in a 
built-up database to avoid duplication of fitness calcula-
tions, should these chromosomes appear in future genera-
tions. In elitism process, the chromosomes with the best 
fitness in each sub-population are retrieved and used to re-
place randomly selected chromosomes in new generations. 
This process overcomes the problem of losing the best 
chromosome, in each sub-population, due to the random 
nature of selection and the effect of crossover and muta-
tion. Figure 7 illustrates the implementation of these two 
features in the developed EM_GA. 

3.5 Algorithm Output 

EM_GA is coded using Microsoft C++ 6.0 and its user 
interfaces are implemented utilizing Microsoft Visual Ba-
sic 6.0 to facilitate data entry. The output of the devel-
oped algorithm is exported to Microsoft Excel file and 
then automatically generated using VBA. EM_GA pro-
vides its output in text and graphical formats. Figure 8 
depicts the dialog box for the main menu dedicated for 
reporting EM_GA results. The text reports simply list the 
fitnesses of chromosomes in the different generations, 
whereas, the graphical reports provide charts that are des-
ignated to show average and best fitness, crossover and 
mutation rates, and number of calculated and retrieved 
fitnesses in each generation. 
 

4 NUMERICAL EXAMPLE 

The case study presented by Marzouk and Moselhi (2001-
b) is considered here to illustrate the capabilities of the 
 

proposed algorithm. This example involves moving ap-
proximately 855,000 m3 of moraine (clay). The example 
considers two secondary activities (spreading and compact-
ing) in addition to the four main activities. The define-
dranges for the equipment used in Fleet 1 and Fleet 2 are 
listed in Table 2. The characteristic of the equipment util- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7:  Elitism and Fitness Retrieval 
 

 
Figure 8:  Dialog Box for EM_GA Output 
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ized (in the two fleets) for the secondary activities are 
listed in Table 3. After entering the input parameters (listed 
in Table 4), the algorithm was activated and a sensitivity 
analysis was carried out for different threshold values of 
crossover and mutation. The output of the sensitivity 
analysis is shown in Table 5. 

The near-optimum fleet is obtained in the 16th run for 
0.85 and 0.20 threshold values for crossover and muta-
tions, respectively. That fleet is configured from Fleet 2 
and consists of 3 loaders, 50 haulers, 4 spreaders and 8 
compactors. It should be noted that the number of popula-
tions generated in this example was 36. The best fitnesses, 
for Fleet 1 and Fleet 2 were obtained after 21 and 17 gen-
erations, respectively (see Figure 9). They were initially 
estimated to be $9,113,640 and $6,147,860 (CND), 
respectivly. These fitnesses were determined, based on the 
results obtained from the pilot simulation runs. It is inter-
esting to note that the run with highest threshold values of 
crossover and mutation (no. 16) yielded the least cost fleet 
configuration. These results suggest that further analysis 
should be performed using incrementally higher threshold 
values for both crossover and mutation. Subsequently, the 
simulation analysis was performed for the recommended 
fleet configuration using EMSP (see Figure 10). The analy-
sis results indicated the project total duration and total cost 
to be 332 hrs. and $5,731,400, respectively. 

 
Table 2:  Maximum and Minimum Number of Equipment 
Fleet No. Loaders Haulers Spreaders Compactors 

1 1-10 10-60 1-8 1-10 

2 1-8 10-50 1-8 1-10 
 

Table 3:  Characteristics of Spread and Compact Equip-
ment 

Spread Equipment (Dozers) 
Type : 
Cycle Production (m3) : 
Hourly O&O Cost ($/hr) : 
Duration : 

CAT D8R 
27 
150 
T(2.5, 2.6, 3) 

Soil Compactor 
Type : 
Cycle Production (m3) : 
Hourly O&O Cost ($/hr) : 
Duration : 

CAT CS-583C 
19.1 
90 
T(1.8, 1.9, 2.3) 

T(N1, N2, N3); T : Triangle Distribution, N1: Lower 
Limit, N2: Mode and N3: Upper Limit 

 
Table 4:  EM_GA Input Parameters 

Parameter Value 

Sub-population Size : 
No. of generations : 
Non-improvement limit : 
Elitism : 
Extreme fleet configurations : 
Scheduled daily hours : 
No. of working days per month : 
Time-related indirect cost ($/month) : 
Time-independent indirect cost($) : 

20 
100 
20 
Applicable 
Applicable 
8 
22 
250,000 
1,000,000 

 

 
Table 5:  Result of Sensitivity Analysis 

Run 
No. Crossover Mutation No. of Generations 

¥ Recommended 
Configuration  Cost ($CND) 

1 0.55 0.05 21 (2, 5, 42, 5, 10) 6,139,470 
2 0.65 0.05 74 (2, 3, 50, 4, 6) 5,798,790 
3 0.75 0.05 36 (2, 3, 46, 4, 8) 5,858,030 
4 0.85 0.05 89 (2, 3, 50, 4, 8) 5,797,060 
5 0.55 0.10 37 (2, 4, 45, 4, 9) 5,918,840 
6 0.65 0.10 33 (2, 4, 46, 4, 6) 5,918,080 
7 0.75 0.10 44 (2, 3, 49, 4, 8) 5,796,130 
8 0.85 0.10 50 (2, 4, 48, 4, 9) 5,851,920 
9 0.55 0.15 70 (2, 3, 49, 4, 8) 5,804,520 

10 0.65 0.15 68 (2, 3, 50, 4, 10) 5,783,380 
11 0.75 0.15 50 (2, 3, 49, 4, 9) 5,785,570 
12 0.85 0.15 44 (2, 3, 48, 4, 9) 5,822,950 
13 0.55 0.20 53 (2, 3, 47, 4, 8) 5,842,910 
14 0.65 0.20 33 (2, 3, 49, 4, 10) 5,803,520 
15 0.75 0.20 41 (2, 3, 49, 4, 9) 5,785,570 
16 0.85 0.20 36 (2, 3, 50, 4, 8) 5,780,680 

¥(N1, N2, N3, N4, N5); N1: fleet scenario, N2: number of haulers, N3: number of loaders, N4: number of spreaders and 
N5: number of compactors 
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Figure 9:  Best Fitnesses (Run No. 16) 

 

 
Figure 10:  Recommended Fleet Configuration Dialog Box 
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5 SUMMARY AND CONCLUSIONS 

A methodology for optimizing earthmoving operations 
utilizing computer simulation and genetic algorithms has 
been presented. The paper provided an overview of a re-
cently developed simulation engine (EMSP) that is dedi-
cated for earthmoving operations. EMSP is a discrete event 
simulation engine that has been designed utilizing object-
oriented simulation. The paper focused on the optimization 
aspects and the developments made in a genetic algorithm 
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(EM_GA) that is dynamically linked to EMSP. Different 
features of the developed EM_GA were presented includ-
ing population structure, input parameters, chromosomes 
selection and genetic operators. The impact of the algo-
rithm’s control parameters (crossover and mutation) was 
studied. The results indicated that the optimization process 
is sensitive to these parameters. A numerical example was 
presented to demonstrate the practical use of the developed 
algorithm. 
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