
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

Wayne J. Davis

Department of General Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.

WHAT’S VIRTUALLY POSSIBLE?

ABSTRACT

This paper continues a sequence of papers discussing futur-
istic simulation needs and capabilities. These papers focus
upon complex systems that evolve by the concurrent execu-
tion of processing tasks under the guidance of sophisticated
control structures. This paper first provides a detailed state
description for such systems from both the perspective of
the entities that are being processed in the system and the
controllers that manage the task execution. The interrela-
tionship between these two perspectives is next explored.
The paper demonstrates the entity-based perspective
mainly focuses upon the events that have or should occur in
the physical world. The controllers manage when these
events will occur by characterizing the feasible alternatives
that exist for executing their assigned tasks within a virtual
world of future responses.

1 INTRODUCTION

This paper is the third in a recent series of papers addressing
futuristic simulation requirements and capabilities. The first
paper, Davis (2001) listed several possibilities that were well
beyond the capabilities of the present simulations technolo-
gies. The second paper, Davis (2002), presented a detailed
analytical representation for the state transition of a large-
scale discrete-event system that is coordinated by a distrib-
uted command and control structure. This paper initially
simplifies the state descriptions presented in Davis (2002)
and then focuses upon two distinct perspectives describing
the state of the system: the entity-based perspective and the
controller-based perspective. The original intent for this pa-
per was to employ these system representations to demon-
strate how the futuristic simulation capabilities listed in
Davis (2001) might be achieved. A principal goal for this
paper was to mathematically prove that the massively parallel
simulations for complex systems, operating under sophisti-
cated command and control structures, could be achieved
without any special synchronizing mechanisms. That is, such
simulations would be self-synchronizing.
 Achieving this capability represents a major goal for
recent development in distributed simulation, including the
definition of the High-Level Architecture (HLA). How-
ever, after mathematically describing a computational
scheme that provided a massively distributed simulation
capability, I realized that having this capability would be
counterproductive and retracted the existence discussions
from the paper. I then elected to contrast the two state rep-
resentations. Although the two state perspectives share
several events, they are not interchangeable. This paper
now demonstrates that the entity-based perspective records
behavior that has occurred in the real world and constrains
the future events that must occur in order for the system to
achieve its assigned tasks or goals. On the other hand, the
controller-based perspective describes the feasible alterna-
tives that exist for achieving the assigned goals in a virtual
world of future responses. Distributed planning among the
controllers continuously updates characterization of the fu-
ture responses while basic process controllers execute the
selected alternative in real-time. In this manner, the current
time becomes the portal through a differential element of
the system’s future state trajectory is realized as an actual
response. The shared variables between the two state per-
spectives pertain to the essential constituency relations that
enable this temporal portal to exist.
 The paper then further argues that the two state repre-
sentations are actually dual representations for the physical
behavior of the system. The entity-based representation is
the primal response describing what occurs in the real
world. The controller-based representation describes the
dual response within a virtual world of future trajectories or
possibilities. When one employs a single monolithic model
(which itself may be a composition of several submodels)
for simulating entire system, one can only address a single
response, usually the primal response. The other or dual
response is essentially ignored. Such an omission prevents
one from assessing the consequences that planning upon
the performance of the systems. This, in turn, implies that
command and control issues cannot be correlated to the
system response.

Davis
 Because my interest includes the distributed intelligent
control of complex systems, I cannot accept such draconian
limitations upon my future research. To that end, I have
eliminated the simulation (distributed or otherwise) of a
monolithic model for a complex system from my list of de-
sired futuristic simulation capabilities. If I remove this ca-
pability from the set of futuristic capabilities described in
Davis (2001), then I anticipate that the desirability of the
other listed capabilities must be reassessed. This will be
the focus of a future paper.

2 BASIC SYSTEM ELEMENTS

Define the set of items i ∈ I that a system can process and
the set of jobs j ∈ J , each requesting an item type

i j()∈ I . Each job of type i = i j()∈ I is processed with

a Task SequenceTSi specified as

TS
i = Tk

i
, X •〈Tk

i 〉()()| k = 1,...,K
i{ }

where

Tk
i
 is the k

th
 task in processing an item of type i ∈ I ,

X •〈Tk
i 〉()

is the required state of the item before Tk
i

can be initiated, and

X 〈Tk
i 〉 •()

is the desired state after Tk

i
 is completed.

Define the set of processes p ∈ P that can execute tasks

upon items and, in particular, let Pk
i ⊂ P represent the sub-

set of processes that can execute Tk
i
. Given these process

definitions, we can refine our definition for the Task Se-

quenceTS
i
 where

TSi = Tk

i, X •〈Tk
i 〉 p()()| p ∈ Pk

i & k = 1,...,K i{ }

where

Tk
i
 is the k

th
 task in processing of an item of type

 i ∈ I .

X •〈Tk
i 〉 | p() is the required state of an item of type

i ∈ I before Tk
i
 can be initiated at process p ∈ Pk

i

X 〈Tk
i 〉• | p() is the desired state after Tk

i
 is completed

at p ∈ Pk
i
.

This refined definition allows one to specialize the required
initial state, given that a particular process p has been se-

lected to execute Tk
i
.

 Davis (2002) further decomposes the set of defined
tasks into a serial set of instructions that are to be executed
at the selected process in order to implement a given task.
Usually these instructions would be defined in the dedi-
cated machine language for the employed process. Al-
though this paper will not address this extra level of detail,
the discussed conclusions still apply when this additional
detail is considered.
 Control is obviously critical to the system’s state evo-
lution. Assume that the dsitributed control structure for the
system consists of the controllers c ∈ C. For each control-

ler c ∈ C, define C
+

c()⊂ C to be its set of Assignors

(those controllers that can assign tasks to the given control-

ler) and C
−

c() ⊂ C to be its set of Acceptors (those con-

trollers that can accept tasks from the given controller).

Next, define C
0 ⊂ C to be the master controllers such that

 c ∈ C
0
 implies C

+
c()= ∅ (i.e. a master controller has no

assignors within the considered system). At the other ex-

treme, define the process controllers CP ⊂ C such that

c ∈ CP
 impliesC

−
c() = p ∈ P . Conversely, we denote

the controller for a process p ∈ P as c p()∈CP .
 We now introduce the processor domain for a control-
ler c ∈ C, denoted as D c(), as the set of processes that

can be reached from controller c through one of its accep-

tors contained within C
−

c() . We can characterize D c()

with the following assertions:

 D c p()() = p for p ∈ P

 D C
0()= D c()

c ∈ C0
∪ = P

D c()⊆ D ′ c ()

′ c ∈C− (c)

∪

An individual controller can employ the control domains in
order to determine where to send the job for the execution
of its next task.

3 BASIC STATE TRANSITION MECHANISMS

The system evolves using two mechanisms. The primary
mechanism is the execution of processing tasks upon items,
issued as jobs. A supporting transition mechanism arises as
the coordinated subsystems configure themselves into a re-
quired initial state for executing the next processing task.
Clearly, both mechanisms relate to a particular job. There-
fore, when no jobs reside within the system, the system typi-
cally returns to a rest state where no state transitions occur.
 The physical execution of any task necessarily involves
a physical process that operates in real time. Often the em-
ployed process’s real-time behavior during the execution of
task can be described with differential equations. By inte-

Davis
grating such differential equations, the composite state of the
process and job can be modeled as it transfers from a speci-
fied initial state toward a desired final state. The interval
over which the task execution occurs is further punctuated by
task initiation and completion events. Such discrete events
represent interface points between the continuous state re-
sponse associated with the real-time execution of a physical
task and discrete-event nature associated with the resource
allocation for and scheduling of each task.
 We will now precisely define the events associated
with a job’s state evolution. We previously defined that the
task sequence

TSi(j) = Tk

i(j), X •〈Tk
i(j)〉 | p()()| p ∈ Pk

i(j) & k = 1,...,K i(j){ }

for the given item type i (j) ∈ I associated with job j. As

the controller of the selected process pk
j
 that manages the

execution of Tk
i(j) , c pk

j() encounters the following events:

Ak
j c pk

j()() is the Accept event where controller c pk
j()

assumes the responsibility for executing Tk
i(j) ,

Sk
j c pk

j()() is the Start event for executing the k
th

 task

upon the j
th

 job at the process pk
j
, and

Fk
j c pk

j()() is the subsequent Finish event for complet-

ing the k
th

 task upon the j
th

 job at the process

pk
j
.

Rk
j c pk

j()() is the Return event where physical owner-

ship of the j
th

 job is transferred from controller

c pk
j() to its Assignor c + c pk

j()().

 The Accept event Ak
j c pk

j()() and the Return event

Rk
j c pk

j()() require a coordinated interaction between the

controller c pk
j() and its Assignor c + c pk

j()(). The Start

event Sk
j c pk

j()() and the Finish event Fk
j ck

j() require an

interaction between the controller c pk
j() and its Acceptor,

the process pk
j
. However, because the process pk

j
 is en-

tirely subordinate to its controller c pk
j(), controller c pk

j()

retains direct control over the processing actions that occur

at pk
j
.

After the controller c pk
j() assumes control of the j

th

job at the Accept event Ak
j

c pk
j()(), it directs its supporting

processes to reconfigure the combined state of itself with

the associated j
th

 job into the state X •〈Tk
i(j)〉 |c pk

j()(),

which represents its total ownership of the j
th

 job prior to

executing task Tk
i(j) . This event also initiates a wait state

that occurs during the interval between the Accept event

Ak
j c pk

j()() and the start event Sk
j c pk

j()(). At the start

event Sk
j c pk

j()(), controller c pk
j() further directs the

transformation of the composite state into required initial

state X •〈Tk
i(j)〉 | pk

j(). After that required initial state is re-

alized, the physical execution of the task Tk
i(j) may com-

mence. When task Tk
i(j) is completed, the finish state

X 〈Tk
i(j)〉 •| pk

j() is achieved. Controller c pk
j() then di-

rects its supporting tasks to regain immediate control of the

j
th

 job, designated by the state X 〈Tk
i(j)〉 •| c pk

j()(). When

this latter state is achieved, the Finish event Fk
j

c pk
j()() oc-

curs. Controller c pk
j() then notifies its Assignor

c + c pk
j()() that the assigned task Tk

i(j) has been completed.

The controller c pk
j() and its Assignor c + c pk

j()() must co-

ordinate their supporting processes in order to reconfigure

the combined state of controllers with the associated j
th

job into required state X 〈Tk
i(j)〉 •| c pk

j()→ c + c pk
j()()() so

that the job can be returned to the Assignor c + c pk
j()().

The physical transfer of the job occurs at the Return event

Rk
j c pk

j()().

4 THE STATE EVOLUTION OF A JOB

My intent is to describe the system’s behavior using recur-
sive relationships whenever it is possible to do so. The

controller c pk
j() assumes the physical control of the j

th

job at the Accept event Ak
j c pk

j()() and returns that both

job and control at the Return event Rk
j c pk

j()(). After that

Return event occurs, the Assignor c + c pk
j()() may take to-

tal ownership of the job causing the composite state of As-

signor and the j
th

 job to become X 〈Tk
i(j)〉 •| c+ c pk

j()()(),

and the Finish event Fk
j c + c pk

j()()() to occur. There is

clearly a similarity between the response at the controller

Davis

c pk
j() prior to the Finish event Fk

j
c pk

j()() and the re-

sponse at its Assignor c + c pk
j()() prior to the Finish Event

Fk
j c + c pk

j()()().

 A similar recursive behavior also occurs with respect

to the Start events. At the Start event Sk
j

c+ c pk
j()()(), con-

troller c pk
j() and its Assignor c + c pk

j()() must coordinate

their efforts to change the state of the j
th

job from

X 〈Tk
i(j)〉 •| c+ c pk

j()()() to

X • 〈Tk
i(j)〉 | c+ c pk

j()()→ c pk
j()() so the job can be trans-

ferred. The Assignor c + c pk
j()() then instructs the control-

ler c pk
j() to accept the job. This causes controller c pk

j()

to change the state of the job from

X • 〈Tk
i(j)〉 | c

+
c pk

j()()→ c pk
j()() to X •〈Tk

i(j)〉 |c pk
j()(),

and Accept event Ak
j c pk

j()() to occur. As discussed

above, this behavior is repeated at the Start event

Sk
j c pk

j()() when the controller c pk
j() installs the job upon

the process pk
j
.

Let us now consider how this recursive behavior might

be generalized. Assume that the Assignor c + c pk
j()() is as-

signed two subsequent tasks Tk
i(j) and Tk +1

i(j) that will be

executed at the distinct processes pk
j
 and pk+1

j . Further

assume that the associated process controllers c pk
j() and

c pk +1
j() have a common Assignor, which we denote as

c + c pk
j()()= c+ c pk+1

j()()= ck →k+1
+ .

In this case, the Assignor ck→k+1
+ encounters the Ac-

cept Event Ak→k +1
j ck→k+1

+(). Because task Tk
i(j) will be

executed at process pk
j , the subsequent Start event

Sk →k +1
j ck→k +1

+() will be followed by the Accept event

Ak
j c pk

j()(). The subsequent processing of the task Tk
i(j) at

pk
j
 will eventually generate the complete Event Sequence

ESk
j c pk

j()()= Ak
j c pk

j()(), Sk
j •(), Fk

j •(), Rk
j •(){ }

at the controller c pk
j(). Normally, the Assignor ck→k+1

+

would seek to regain complete control of the job after the
Return event Rk
j

c pk
j()(). However, the Assignor ck →k +1

+

is also responsible for executing Tk +1
i(j) . Therefore, the As-

signor interacts with controller c pk+1
j() to schedule the Ac-

cept event Ak+1
j c pk +1

j()() to occur, which in turn, produces

the Event Sequence

ESk +1
j c pk+1

j()()= Ak+1
j c pk+1

j()(), Sk+1
j •(), Fk+1

j •(), Rk +1
j •(){ }.

After the task Tk +1

i(j) is completed, the Finish and the Return

events, Fk →k+1
j ck→k+1

+() and Rk→k +1
j ck→k +1

+(), occur at the

Assignor. The composite sequence of events would be

ESk →k +1
j ck →k +1

+()= Ak →k +1
j ck →k +1

+(), Sk →k +1
j •() ESk

j c pk
j()(){ }{

ESk +1
j c pk +1

j()(){ }Fk →k +1
j •(), Rk →k +1

j •()}

 By induction assume that tasks Tk

i(j) through Tk'
i(j)

will be executed at processes pk
i(j) through pk'

i(j), whose

controllers share a common Assignor ck→k'
+ . In this case,

the composite event sequence

ESk →k'
j ck →k'

+()= Ak →k'
j ck →k +1

+(), Sk →k'
j •() ESk

j c pk
j()(){ }{

ESk'
j c pk'

j()(){ }Fk →k'
j •(), Rk →k'

j •()}

would be generated.
 Now let us generalize the evolution of these event se-
quences further. Assume that controller ck→k" has been

assigned tasks Tk
i(j) through Tk"

i(j) . Assume that the do-

main of one of its Acceptor ck→k'
− includes processes pk

i(j)

through pk'
i(j) while the domain of another Acceptor

ck'+1→k"
− contains processes pk'+1

i(j) through pk"
i(j). Then the

following event sequence will be generated

ESk→k"
j ck→k"()= Ak→k"

j ck →k"(), Sk →k "
j •() ESk →k'

j ck →k '
−(){ }{

ESk'+1→k"
j ck'+1→k"

−(){ }Fk →k "
j •(), Rk→k"

j •()}

 When the master controller c 0 is assigned the j
th

 job

requesting type i j(), the master event sequence

ES j c0()= A
1→K i j()
j c 0(), S

1→K i j()
j •(), F

1→K i j()
j •(), R

1→K i j()
j •(){ }

Davis

is immediately initiated. By recursively, applying the gen-
eralized event sequence generator, the master sequence can
be fully defined to contain every event that will occur dur-

ing the completion of the j
th

 job, which we term the job

history for j
th

 job or JH j . If we assume that task Tk
i(j) is

executed on a process pk
i(j)

 that is distinct from the process
used to execute the preceding or following tasks, we can
make the following assertions:

• Assertion 1: The beginning and ending events are

given by the master event sequence ES
j

c
0(), im-

plying

JH

j = A
1→K i j()
j

c
0(), S

1→K i j()
j •() #{ } F

1→K i j()
j •(), R

1→K i j()
j •(){ }

• Assertion 2: The initial sequence of events can
be described as

JH

j = A
1→K i j()
j

c
0(), S

1→K i j()
j •() # ES1

j
c p1

j

 { }#

• Assertion 3: The ending sequence of events can

be described as

JH

j = # ESK i (j)
j

c p
K i (j)
j

 { }# F

1→K i j()
j

c
0(), R

1→K i j()
j

c
0()

• Assertion 4: The job history should contain the
detailed event sequence at each process or

ESk
j c pk1

j()()| k = 1,#, K i(j)[]

• Assertion 5: The events appearing in the job his-

tory will be in chronological order.
• Assertion 6: Because each event reflects a

change of state and state changes can only be ac-
complished by performing primary or supporting
tasks with real-world processes, no two events can
occur at the same time. Therefore, the events in a
job history must have strictly monotonically in-
creasing event times.

5 STATE EVOLUTION OF A CONTROLLER

This section describes the state from the controller’s per-
spective. The controller’s perspective is obviously related
to a job’s perspective because the state of the controller
necessarily depends upon the state of the jobs that it cur-
rently manages. The question then arises as to how the
management of a particular job by a given controller de-
pends upon the state of that job.
In the subsequent development, we will often refer to a
set of jobs rather than a particular job j. From a historical
perspective, we first define following job sets:

• J k

i c | t1, t2(]() is the set of all jobs of type i that

visited controller c for the execution of task Tk
i

between t1 and t2 where t1 might approach −∞ .

•

J k

i C | t1, t 2(]() is the set of all jobs of type i that

visited controller c ∈ C for the execution of task
Tk

i
 during a specified time interval as described

above.

•

J C0 | t1, t2(]() is the set of all jobs of type i that

have visited any master controller, and hence the
system, during a specified time interval as de-
scribed above. Observe in this case, it does not
make sense to limit consideration to a single task

Tk
i because we can assume that every job that en-

ters the system will have all tasks T1
i ,# ,TK(i)

i{ }

executed upon it.

We now define the following job sets for a particular con-
troller c at a particular time, which is commonly the present
time:

• J
A c | t() is the set of all jobs that that are actively

managed by controller c at time t where

 j ∈ J A
c | t()⇒ Ak

j
c() ≤ t & Fk

j
c() > t

• This definition assumes that the controller c relin-

quishes active control when its Finish event occurs.
• J

S
c | t() is the subset of in-process jobs that upon

which controller c has started the next task Tk
j at

time t or

j ∈ J S c | t()⇒ Sk
j c()≤ t & Fk

j c()> t

and

 J
S

c | t()⊂ J A
c | t()

• J
Ak c k

−()
c | t() is the set of in-process jobs that have

been reassigned to an acceptor ck
− ∈ C− (c) for the

execution of task Tk
j

j ∈ J
Ak c k

−()
ck

−
| t()⇒ Ak

j
ck

−()≤ t & Rk
j

c()> t

Davis

B
o
s

• J
Fk c k

−()
c | t() is the set of in-process jobs upon

which the execution of task Tk
j
 has been com-

pleted at the acceptor ck
− ∈ C− (c)

j ∈ J
Fk c k

−()
ck

− | t()⇒ Fk
j ck

−()≤ t & Fk
j c k

−()> t

• J
F

c | t() is a subset of J
A

c | t() where the cur-
rently assigned task(s) has been completed. In
this case, controller c has returned control of a job

to its Assignor c
+

, but the job is not yet physically
returned to the Assignor’s immediate control do-
main.

ased upon these definitions, controller c has direct control
f a given job during one of these mutually exclusive sub-
ets:

• The set of waiting jobs at the controller c with
tasks Tk

j →Tk'
j assigned for execution (i.e.

Ak→k '
j c()≤ t) where 1≤ k ≤ k '≤ Ki j() (i.e. event

Sk →k'
j c() has not occurred). This set is repre-

sented as

 J
W

c | t() = J A
c | t()− J S

c | t()

• The set of jobs being transferred from controller c

to the acceptor ck
− ∈ C− (c) for executing the first

assigned Task Tk
j
 (i.e. Sk →k'

j c() ≤ t and

Ak
j ck

−()> t). This set is represented as

J c→ck

−
c | t()= J

Sk →k' c() c | t()− J
Ak c k

−()
ck

− | t()

• The set of jobs being transferred from acceptor

 ck
− ∈ C− (c) to acceptor ck+1

− ∈ C− (c) implying

that Task Tk
j
has been completed (i.e.

Fk
j ck

−()≤ t), but j th job has not been accepted by

the Acceptor ck +1
− ∈ C− c() for executing task

Tk +1
j

. This set is represented as

 J ck
− →c k+1

−
c | t() = J

Fk ck
−()

ck
− | t()− J

A k+1 ck +1
−()

ck +1
− | t()

• The set of jobs where the last assigned task Tk'
j has

been completed (i.e. Fk'
j

ck'
−()≤ t), but the job has
not yet returned to controller c (i.e. Fk →k'
j

c()≥ t).

This set is represented as

J ck

− →c c | t()= J Sk →k' c() c | t()− J
Fk ' ck '

−()
ck '

− | t().

 From these definitions, we can conclude that the con-
troller c only relinquishes direct control of the j th job to its

Acceptor ck
− ∈ C− (c) during the interval between Ak

j ck
−()

and Fk
j ck

−(). With respect to its Assignor, controller c has

direct control during the interval between A ′ k → ′ ′ k
j c() and

F ′ k → ′ ′ k
j c(). Clearly, a recursive relationship again exists

between the controller c and its Acceptor and between its
Assignor and controller c. Also observe that the transfer
of ownership that occurs between a controller and it accep-
tor is effectively hidden from its assignor. This feature al-
lows different controllers to view the world at different lev-
els of resolution.
 Earlier, we defined the set of jobs that visited the sys-

tem on the interval t1, t2(] as J C0 | t1, t2(](). Each of

these visiting jobs must belong to a particular class i ∈ I .

Let J i C0 | t1, t 2(]() be the set of visiting jobs of type i. For

each of these jobs, a complete processing history JH
j

would have been generated that records the time that each
event occurs. In order to simplify our development, let us
assume that the system is time invariant such that

ecdf t E | t• E()()= ecdf tE − t• E()().

This equation states that ecdf t E | t• E()(), (the empirical

cumulative distribution function for the time of event E or
tE given the time of a prior event • E() or t• E()), is equal to

the empirical cumulative distribution function for the dif-
ference between the two event times. This assumption is
probably not true for most complex systems. However, the
time-variant nature introduces additional complexity that
we prefer avoid whenever possible in this paper.
 If we employ the time invariant assumption, then we
do not need to be particular in specifying the interval

t1, t2(] to be considered. Rather, we can consider any job

of a particular type i that has ever visited the system or

J i C0 | −∞, t(]().

 Assume that the j th job arrives at controller c for the

execution of task Tk
j . Assume further that the j th job be-

longs to type i j()∈ J . Given these assumptions and using

completed processing histories contained in

Davis

J i(j) C0 | −∞, t(]() for which events Ak

j c(), Sk
j c() and

Fk
j

c() exist, one computes

ecdf Sk
j

c() | Ak
j

c()()= ecdf Sk
j

c()− Ak
j

c()()

ecdf Fk
j

c() | Ak
j

c()()= ecdf Fk
j

c()− Ak
j

c()()

and

ecdf Fk
j c() | Sk

j c()()= ecdf Fk
j c()− Sk

j c()().

The first ecdf represents the waiting time at controller c be-
fore processing will be initiated at the start event Sk

j
c().

The second ecdf represents the interval between when con-
troller c accepts the task Tk

j
 and when it notifies its As-

signor that the task has been executed. The third computa-
tion estimates the completion time after the processing of
task Tk

j has been initiated.
 Controller c employs the latter two ecdfs as the pri-
mary feedback to its Assignor, which we will denote as c + .
Given the estimated ecdf for the Finish event Fk

j c(), the

Assignor c + can develop an ecdf for its Finish event

Fk
j

c +(). As discussed above, the Assignor c + coordinates

the return of the j
th

 job from controller c using the sup-
porting processes that either controller manages. More-
over, the interval between these two finish events typically
does not depend upon the type of job i j(). Rather, the

time interval depends primarily upon the available support-
ing processes that allow the assignor c + to interact with
controller c. Thus, the assignor c

+ can typically compute

ecdf F c+()| F c()()= ecdf F c+()− F c()()

which is independent of job type. The ecdf for the Fk
j

c +()

can now be computed as the sum of two random variables
whose ecdf’s have been described.

Figures 1 through 3 depict several situations of in-
creasing complexity where statistical projections are to be
made. In Figure 1(a), controller c initially has accepted the
execution of task Tk

j , (implying j ∈ J W c | t()), and pro-

vides the statistical estimates, (indicated by the shaded ar-
rows), for when the assigned task will be completed by the

selected acceptor ck
− , ecdf Fk

j ck
−()| Ak

j c()(), and by itself,

ecdf Fk
j c() | Ak

j c()(). After controller c initiates task Tk
j

at event Sk
j

c(), (implying j ∈ J c →ck
−

c | t()), it estimates
ecdf Fk
j

ck
−()| Sk

j
c()() and ecdf Fk

j
c() | Sk

j
c()(). In Figure

1(b), the Acceptor ck
− has accepted the task Tk

j at Ak
j

ck
−()

(implying j ∈ J
Ak c k

−()
c | t()). The Acceptor ck

− then esti-

mates when it will complete Tk
j using

ecdf Fk
j

ck
−()| Ak

j
ck

−()(). Upon receiving this estimate from

its Acceptor ck
− , controller c generates statistical estimates

when it will subsequently notify its Assignor that it has

completed the task ecdf Fk
j c() | Fk

j ck
−()().

Figure 2 illustrates a slightly more complex situation.

In Figure 2(a), controller accepts the job with two sequen-
tial tasks, Tk

j
 and Tk +1

j
 at Accept event Ak→k +1

j c() and es-

timates when it will have completed both tasks using the

ecdf Fk→k +1
j

c() | Ak →k+1
j

c()() and when each acceptor will

complete it assigned task using ecdf Fk
j

ck
−()| Ak →k +1

j
c()()

and ecdf Fk+1
j

ck +1
−()| Ak→k+1

j
c()(), respectively. After the

Start event Sk →k+1
j c() occurs, controller c updates the cor-

responding ecdf’s conditioned upon the event Sk →k +1
j c().

In Figure 2(b), the Accept event Ak
j

ck
−() has occurred and

controller ck
− computes the ecdf Fk

j ck
−()| Ak

j ck
−()(). Con-

troller c then constructs ecdf’s for the future events

Ak+1
j ck+1

−(), Fk +1
j ck+1

−() and Fk →k+1
j

c(). The ecdf for

Fk →k+1
j

c() is provided to its Assignor as feedback informa-

tion on when it expects tasks Tk
j and Tk +1

j will be com-

pleted. The ecdf for Ak+1
j

ck+1
−() provides feed-forward in-

formation to the Acceptor ck+1
− pertaining to when it should

Ak
j c()

Sk
j c()

Fk
j ck

−()

Fk
j c()

Ak
j c()

Sk
j c()

Fk
j ck

−()

Fk
j c()

Ak
j ck

−()

(a)

(b)

Figure 1: Event Estimation for Single Task

Davis

expect the j th job to arrive. The ecdf for Fk +1
j

ck+1
−()

would likely be used for its internal planning. In Figure

2(c), event Ak+1
j

ck +1
−() has occurred and Acceptor ck+1

− pro-

jects the ecdf for Fk +1
j

ck+1
−(). Given this ecdf, controller c

then projects the ecdf for Fk →k+1
j

c().

Figure 3 generalizes the above recursive relationship.
In Figure 3(a), Accept event Ak→k '

j
c() has occurred and

controller c predicts ecdf’s for the Acceptors’ Finish events

Fk
j ck

−() through Fk'
j ck'

−() and its Finish event Fk →k'
j

c(). In

Figure 3(b), Accept event Ak
j ck

−() has occurred, and Ac-

ceptor ck
− predicts when its Finish event Fk

j ck
−() will oc-

cur. Using this prediction, controller c predicts ecdf’s for

the Acceptors’ Finish events Fk +1
j ck+1

−() through Fk'
j ck'

−()

and its Finish event Fk →k'
j c(). In Figure 3(c), Accept event

Ak '
j ck'

−() has occurred, and Acceptor ck'
− predicts when its

Finish event Fk'
j ck'

−() will occur. Using this prediction,

controller c computes the ecdf for its Finish event
Fk →k'

j c().

The ability to compute these ecdf’s at each controller
clearly supports planning for the future response of the sys-
tem. From the moment the job enters the system via a master
controller, predictions can be made on when each task will
be completed and when the entire job will be finished.

Ak →k +1
j c()

Sk →k +1
j c()

Fk →k +1
j c()

Fk +1
j c k +1

−()Ak
j ck

−()Fk
j ck

−() Ak +1
j c k +1

−()

Ak →k +1
j c()

Sk →k +1
j c()

Fk
j ck

−()

Fk →k +1
j c()

Fk +1
j c k +1

j()
(a)

Ak →k +1
j c()

Sk →k +1
j c()

Fk →k +1
j c()

Fk +1
j c k +1

−()Ak
j ck

−()Fk
j ck

−() Ak +1
j c k +1

−()
(c)

Figure 2: Event Estimation for Two Consecutive Tasks
Moreover, as tasks are initiated, these estimates can be up-
dated using feedback information from the chain of control-
lers that are responsible for executing their particular task as-
signments. This capability can be further enhanced using on-
line simulation procedures (see Davis 1998) that would allow
one to project future consequence for alternative task as-
signment strategies. However, before demonstrating how
such capabilities are possible, one should demonstrate how
one would coordinate the planning among the controllers.
This is again beyond the scope of this paper.

6 CONTRASTING TWO PERSPECTIVES

Section 4 defined the state evolution from the perspective
of the job upon which tasks are being executed. In Section
5, the perspective focused upon the controllers that man-
aged the task executions. Section 5 also discussed the in-
terconnection between planning for and the control of task
executions. It was demonstrated that a specific controller
manages when each event occurs during the task execution
process. It also estimates when future events associated
with the execution of its assigned tasks and then employs
these estimates in planning its future responses. In more
complex situations, a given controller might also employ
on-line simulation to project its future response as it inter-
acts with its own Assignor(s) and Acceptors. Because the
overall planning and execution functions are distributed
across an ensemble of interacting controllers, several con-

Fk → ′ k
j c()

F ′ k
j c ′ k

−()

Fk → ′ k
j c()

Ak
j ck

−() Fk
j ck

−() Fk' −1
j c k'− 1

−()

Ak
j ck

−() Fk
j ck

−()

•• •

A ′ k
j c ′ k

−() F ′ k
j c ′ k

−()
•• •

Ak →k'
j c()

Sk →k +1
j c()

Fk
j ck

−()

Fk →k'
j c()

Fk +1
j c k +1

j()
•• •

Fk'
j c k '

j()
(a)

(b)

(c)

Ak →k'
j c()

Sk →k '
j c()

Ak →k'
j c()

Sk →k '
j c()

Figure 3: Event Estimation for Series of Tasks

Davis
trollers could be concurrently performing their specialized
on-line simulations, each using its own dedicated model.
 Obviously, these dedicated models should integrate
into a model for the overall system, but it is uncertain what
use for the overall model might exist, particularly during
the operation of the system. During the last decade, new
standards and approaches for the distributed simulation of
complex systems have been sought (see Fujimoto 1999).
With respect to military simulations, the High-Level Archi-
tecture (HLA) now defines the interfacing requirements for
insuring that individual models for specialized military ac-
tivities can be integrated into a comprehensive model for
the combined military response. HLA further provides the
support for simulating this comprehensive model upon a set
of distributed computing processes. Underlying the HLA
perspective, there is an assumed need or goal for simulating
behavior of the entire system as a monolithic object using
distributed computational procedures. The utility for
achieving this goal appeared intuitive. However, intuition
can be deceiving.
 HLA provides minimal consideration of command and
control constraints (see Davis and Moeller 1999). More-
over, HLA’s procedures for synchronizing the distributed
simulation impose significant overhead upon the distrib-
uted computation and intrinsically limit the number of
computational threads that can be employed. Given such
inherent limitations that exist for the HLA, it is improbable
that massively distributed simulations with the detailed
consideration of both the employed tactics and command
and control structure can ever be achieved.
 The latter observation is derived from knowing how
one can achieve the overall goal. That is, using the state
descriptions included in this paper, I have mathematically
described how one can address the command and control
constraints within massively distributed simulations, which
are inherently self-synchronizing. Given that billions of
dollars have been spent seeking such a capability, some
might consider this accomplishment to be a major
achievement. Unfortunately, I believe the simulation of the
entire system in a monolithic fashion is useless, if not dele-
terious. In this regard, I am withholding these mathematical
existence proofs for this capability, which incidentally have
been checked by other researchers in simulation. My con-
science will not allow me to show others how to do some-
thing that I believe that they should not do.
 Let us return to the two distinct perspectives for view-
ing state as discussed in Sections 4 and 5. Beginning from
the job-based perspective, each job’s state delineates what
tasks have been performed (by whom and when) and what
tasks remain. If you look across the collection of finished
and current jobs, one can reconstruct the physical behavior
of the system as it reached the current state. That is, the
past (real-world) response has been recorded and can be
replayed. Now for the active jobs, the remaining tasks de-

lineate what tasks should be executed in the future. Let us
view the future as a virtual world of anticipated or planned
responses. Ironically, the jobs upon which the tasks will be
performed cannot plan that future response.
 The system’s future/virtual response is planned by the
controllers as they interact with each other to establish the
ideal assignments and schedule for executing the remaining
tasks. Because that planning must always consider the fu-
ture, the planning horizon for any controller never includes
the current time. In order to act in real time, a process must
know its action at each moment. The process’s real-time
response then becomes a part of the job’s history of what
happened in the real world. In this regard, the current time
represents the continuously advancing portal between the
real world of what has happened and the virtual world of
what might occur.
 In order to view the two state perspectives as being in-
terchangeable representations for the same system, the sys-
tem must be time invariant and the strategies that each con-
troller employs to determine every future action must be
predefined. The latter requirement eliminates the potential
for any planning or deliberation pertaining to the system’s
future response. (Incidentally, this is the traditional ap-
proach to conducting simulation analyses where the focus
is upon the processing of entities while employing prede-
fined strategies or prioritization schemes.) It also reflects
HLA’s intent to simulate the system as a single monolithic
entity. Since addressing the system as a single monolithic
entity inherently excludes planning, command and control
concerns can never be addressed.
 Even though the two state perspectives share events,
the two state representations are not interchangeable. Be-
cause they are distinct, we can conclude that the current
definition for each representation is probably incomplete.
With regard to the job, the detailed physical instruc-
tions/constraints for executing each remaining tasks are es-
sential. In most time-variant systems, current processing
tasks are updated, and entirely new tasks might be defined.
Moreover, only the process controller needs to know the
detailed instructions to be executed. The Assignors above
the process controllers need only know which processes
can execute a given task and what initial state should be
achieved before the task can be executed. An Assignor’s
planning usually involves selecting which process will exe-
cute a given task upon a given job, scheduling when the
task is to be performed and defining the essential support-
ing task for achieving the specified initial state.
 The required time to execute a task also changes in
most time-variant systems. In this manner, a present job is
intrinsically linked to the historical record for performing
similar tasks upon the previous jobs. In general, the statis-
tics for the most recent completions are more meaningful
for estimating the time required to complete a remaining
task. Thus, after each execution of a given task, the task’s

Davis
statistics should be updated based upon the most recent ob-
servations. The current statistical estimates for the time
needed to complete a given task and the probability that the
task can be successfully executed represent an essential
component for specifying each remaining task and, conse-
quently, the state of the job associated with the given re-
maining task.
 Now consider the controller’s perspective. Certainly,
its current state and future behavior depends upon the jobs
under its control and the tasks it has been assigned to exe-
cute. In fact, these components of the state represent the
collective outcome of the controller’s prior interactions
with its Assignor(s). Given this information, each control-
ler must then be able to project its response in coordination
with its managed subsystem’s under any feasible scheme
for executing the tasks. The projected future behavior of its
Acceptors is dependent upon statistical information imbed-
ded within each assigned job’s state, their assigned tasks,
and the feedback they receive from their Acceptors.
 Given these observations, the state of each controller
depends upon the state of the controllers with which it in-
teracts and its prior assessment of planned alternatives for
executing its remaining tasks. This implies that the control-
ler’s state with its associated planning process is entirely
dynamic as the state of controllers with which itinteracts
changes and the set of considered alternatives continues to
grow. Each controller’s state is dynamic. Therefore its
planning is dynamic and incessant.
 A controller’s projection of its future performance un-
der a given alternative will likely require the on-line simu-
lation with a specialized model of that controller as it inter-
acts with its Assignor(s) and Acceptors. Moreover, this
same situation occurs at each controller other than the most
basic process controllers. Therefore, it is essential that
each controller concurrently conducts its specialized simu-
lation with its specialized models. Clearly, the specialized
model that each controller employs should include the
submodel for the controller’s behavior that would be in-
cluded within a monolithic model for the entire system.
However, the models of an interaction between any two
controllers cannot be independent of each other. More-
over, there are alternative means through which such inter-
actions might occur. During the real-time operation of the
system, the consequences of a potential interaction between
two controllers might be determined by permitting one con-
troller to ask another controller to access the potential con-
sequences resulting from a particular assignment. It might
even be possible for an Acceptor to provide a model of
how it would behave to its Assignor(s) along with the feed-
back information pertaining to its current state. Given
these possibilities, it is uncertain how one would model in-
teractions among the controllers within a monolithic model.
What is clear, however, is the simulation of the monolithic
system operating with on-line planning will require on-line

simulations to be embedded within the primary simulation
for the entire system. Today, we do not know how to re-
cursively embed simulations within other simulations.
 Returning to the two different state representations,
both representations address the basic physical task execu-
tion process that is central to the systems response. How-
ever, both state representations must be further enhanced,
and these enhancements distinguish the representations
from each other. Consequently, the representations are not
alternatives for each other. Actually one can show that
they are dual representations, the job’s state describing the
world of realities and the controller’s state describing the
world of virtual possibilities. These dual worlds are linked
at the current time where a next state along the virtual tra-
jectory of a potential response becomes next state in the
observed (real) response. Therefore, it is essential that
these dual representations share common variables.
 The dynamism of the duality between real and virtual
worlds can never be described with a single simulation.
Because prior simulation development has focused primar-
ily upon the processing of entities and has devoted little or
no attention to planning, this duality has ignored. How-
ever, if planning is to be addressed within an adopted
command and control structure for managing the system
this dualism must be recognized.

7 CONCLUSION

After completing this paper in a sequence of papers
pertaining to the future needs in simulations, I am still
learning. I expect new needs to evolve and the
specifications of previously defined needs to be modified.
During recent years, I devoted several man months to
proving that massively distributed simulation of command
and control systems was possible. Indeed, the original
draft of this paper included that proof as the sixth section.
Given the effort required to develop this demonstrate, it
was difficult for me to accept that it was detrimental to
future simulation evolution and should be omitted.
 The issue then arises as to whether others should con-
tinue to seek such capabilities. That is a question that each
researcher must answer for herself. However, the experi-
ence that I gained from demonstrating how massively par-
allel simulations of a monolithic model can be achieved, I
have drawn the following conclusions:

• Mathematically, it is impossible to achieve this
capability under the HLA standards. HLA cannot
address the interactions required to consider
command and control constraints. Moreover, the
overhead that it incurs in synchronizing concur-
rent event processing limits the number of compu-
tational threads that can be employed.

Davis

• The goal of performing distributed simulations
upon monolithic models of large systems should
be abandoned. Such simulations can assess only
the primal behavior of the real world real-world
response while ignoring the dual behavior in the
virtual planning world.
– When planning is ignored, one implicitly as-

sumes that command and control structures
do not influence the behavior of the system.

– Moreover, if the consequences of planning
cannot be considered, then effective tools for
supporting planning cannot be created.

 Clearly, much effort and resources have been devoted
to the development of HLA and establishing it as the stan-
dard for distributed simulation. The original intent for de-
veloping HLA was genuine and plausible. Progress pro-
duces change and an opportunity to revisit prior decisions.
The simulation community has faces two mutually exclu-
sive options. If they continue to support the desire to per-
form monolithic simulations of large systems, then it will
be virtually impossible to support system management
functions. On the other hand, if one recognized the intrin-
sic primal-dual nature of the state evolution for these com-
plex systems, then we can explore what new capabilities
become virtually possible in the discovered world of future
responses.

REFERENCES

Davis, W. J. 1998. On-line Simulation: The Need and the

Evolving Research Requirements. In the Simulation
Handbook, ed. J. Banks, 465-516. New York: John
Wiley and Sons, Inc.

Davis, W. J. 2001. Distributed Simulation and Control:
The Foundations. Proceedings of the 2001 Winter
Simulation Conference, 187-198, San Diego: Society
for Modeling and Simulation International.

Davis, W. J. 2002. The State Evolution and Simulation of
Distributed Systems. Proceedings of the 2002 Ad-
vanced Simulation Technologies Conference, 34(3),
114-119, San Diego: Society for Modeling and Simu-
lation International.

Davis, W. J. and G. L. Moeller. 1999. The High-Level Ar-
chitecture: Is There a Better Way, Proceedings of the
1999 Winter Simulation Conference, 1595-1601, San
Diego: Society for Modeling and Simulation Interna-
tional.

Fujimoto, Richard. 1999. Parallel and Distributed Simula-
tion Systems. New York: Wiley Interscience.

AUTHOR BIOGRAPHY

Wayne J. Davis is a professor of general engineering at the
University of Illinois at Urbana-Champaign. His research
addresses the distributed intelligent control architectures
for complex systems. In this effort, he has developed
several new modeling paradigms and on-line simulation
approaches.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1641
	02: 1642
	03: 1643
	04: 1644
	05: 1645
	06: 1646
	07: 1647
	08: 1648
	09: 1649
	10: 1650
	11: 1651

