
Proceedings of the 2002 Winter Simulation Conference 
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. 

 
Wayne J. Davis 

 
Department of General Engineering 

University of Illinois at Urbana-Champaign 
Urbana, IL 61801, U.S.A. 

 
 

 
 
 

WHAT’S VIRTUALLY POSSIBLE? 
 

 
ABSTRACT 
 
This paper continues a sequence of papers discussing futur-
istic simulation needs and capabilities.  These papers focus 
upon complex systems that evolve by the concurrent execu-
tion of processing tasks under the guidance of sophisticated 
control structures.  This paper first provides a detailed state 
description for such systems from both the perspective of 
the entities that are being processed in the system and the 
controllers that manage the task execution. The interrela-
tionship between these two perspectives is next explored. 
The paper demonstrates the entity-based perspective 
mainly focuses upon the events that have or should occur in 
the physical world.  The controllers manage when these 
events will occur by characterizing the feasible alternatives 
that exist for executing their assigned tasks within a virtual 
world of future responses. 
 
1   INTRODUCTION 
 
This paper is the third in a recent series of papers addressing 
futuristic simulation requirements and capabilities. The first 
paper, Davis (2001) listed several possibilities that were well 
beyond the capabilities of the present simulations technolo-
gies.  The second paper, Davis (2002), presented a detailed 
analytical representation for the state transition of a large-
scale discrete-event system that is coordinated by a distrib-
uted command and control structure.  This paper initially 
simplifies the state descriptions presented in Davis (2002) 
and then focuses upon two distinct perspectives describing 
the state of the system:  the entity-based perspective and the 
controller-based perspective.  The original intent for this pa-
per was to employ these system representations to demon-
strate how the futuristic simulation capabilities listed in 
Davis (2001) might be achieved.  A principal goal for this 
paper was to mathematically prove that the massively parallel 
simulations for complex systems, operating under sophisti-
cated command and control structures, could be achieved 
without any special synchronizing mechanisms.  That is, such 
simulations would be self-synchronizing. 
 Achieving this capability represents a major goal for 
recent development in distributed simulation, including the 
definition of the High-Level Architecture (HLA).  How-
ever, after mathematically describing a computational 
scheme that provided a massively distributed simulation 
capability, I realized that having this capability would be 
counterproductive and retracted the existence discussions 
from the paper. I then elected to contrast the two state rep-
resentations.  Although the two state perspectives share 
several events, they are not interchangeable.  This paper 
now demonstrates that the entity-based perspective records 
behavior that has occurred in the real world and constrains 
the future events that must occur in order for the system to 
achieve its assigned tasks or goals.  On the other hand, the 
controller-based perspective describes the feasible alterna-
tives that exist for achieving the assigned goals in a virtual 
world of future responses.  Distributed planning among the 
controllers continuously updates characterization of the fu-
ture responses while basic process controllers execute the 
selected alternative in real-time.  In this manner, the current 
time becomes the portal through a differential element of 
the system’s future state trajectory is realized as an actual 
response.  The shared variables between the two state per-
spectives pertain to the essential constituency relations that 
enable this temporal portal to exist.   
 The paper then further argues that the two state repre-
sentations are actually dual representations for the physical 
behavior of the system.  The entity-based representation is 
the primal response describing what occurs in the real 
world.  The controller-based representation describes the 
dual response within a virtual world of future trajectories or 
possibilities.  When one employs a single monolithic model 
(which itself may be a composition of several submodels) 
for simulating entire system, one can only address a single 
response, usually the primal response.  The other or dual 
response is essentially ignored.  Such an omission prevents 
one from assessing the consequences that planning upon 
the performance of the systems. This, in turn, implies that 
command and control issues cannot be correlated to the 
system response. 
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 Because my interest includes the distributed intelligent 
control of complex systems, I cannot accept such draconian 
limitations upon my future research.  To that end, I have 
eliminated the simulation (distributed or otherwise) of a 
monolithic model for a complex system from my list of de-
sired futuristic simulation capabilities.  If I remove this ca-
pability from the set of futuristic capabilities described in 
Davis (2001), then I anticipate that the desirability of the 
other listed capabilities must be reassessed.  This will be 
the focus of a future paper. 

 
2  BASIC SYSTEM ELEMENTS 
 
Define the set of items   i ∈ I  that a system can process and 
the set of jobs   j ∈ J , each requesting an item type 

i j( )∈ I .  Each job of type   i = i j( )∈ I  is processed with 

a Task SequenceTSi  specified as 
 

TS
i = Tk

i
, X •〈Tk

i 〉( )( )| k = 1,...,K
i{ } 

 

where 
 

Tk
i
 is the k

th
 task in processing an item of type i ∈ I , 

X •〈Tk
i 〉( ) 

is the required state of the item before Tk
i
 

can be initiated, and 

X 〈Tk
i 〉 •( )

 
is the desired state after Tk

i
 is completed. 

 
Define the set of processes p ∈ P  that can execute tasks 

upon items and, in particular, let   Pk
i ⊂ P  represent the sub-

set of processes that can execute Tk
i
.  Given these process 

definitions, we can refine our definition for the Task Se-

quenceTS
i
 where 

 

  
TSi = Tk

i, X •〈Tk
i 〉 p( )( )| p ∈ Pk

i & k = 1,...,K i{ } 
 

where 
 

Tk
i
 is the k

th
 task in processing of an item of type 

  i ∈ I . 

X •〈Tk
i 〉 | p( ) is the required state of an item of type 

i ∈ I  before Tk
i
 can be initiated at process   p ∈ Pk

i
 

X 〈Tk
i 〉• | p( ) is the desired state after Tk

i
 is completed 

at   p ∈ Pk
i
. 

 
This refined definition allows one to specialize the required 
initial state, given that a particular process p has been se-

lected to execute Tk
i
. 
 
 Davis (2002) further decomposes the set of defined 
tasks into a serial set of instructions that are to be executed 
at the selected process in order to implement a given task.  
Usually these instructions would be defined in the dedi-
cated machine language for the employed process.  Al-
though this paper will not address this extra level of detail, 
the discussed conclusions still apply when this additional 
detail is considered. 
 Control is obviously critical to the system’s state evo-
lution.  Assume that the dsitributed control structure for the 
system consists of the controllers c ∈ C.  For each control-

ler   c ∈ C, define C
+

c( )⊂ C  to be its set of Assignors 

(those controllers that can assign tasks to the given control-

ler) and C
−

c( ) ⊂ C  to be its set of Acceptors (those con-

trollers that can accept tasks from the given controller).  

Next, define C
0 ⊂ C  to be the master controllers such that 

  c ∈ C
0
 implies C

+
c( )= ∅  (i.e. a master controller has no 

assignors within the considered system).  At the other ex-

treme, define the process controllers   CP ⊂ C  such that 

c ∈ CP
 impliesC

−
c( ) = p ∈ P .  Conversely, we denote 

the controller for a process p ∈ P  as c p( )∈CP . 
 We now introduce the processor domain for a control-
ler   c ∈ C, denoted as   D c( ), as the set of processes that 

can be reached from controller c  through one of its accep-

tors contained within   C
−

c( ) .  We can characterize   D c( ) 

with the following assertions: 
 
 D c p( )( ) = p  for   p ∈ P  

 D C
0( )= D c( )

c ∈ C0
∪ = P  

 
  
D c( )⊆ D ′ c ( )

′ c ∈C− (c )

∪  

 

An individual controller can employ the control domains in 
order to determine where to send the job for the execution 
of its next task. 
 
3 BASIC STATE TRANSITION MECHANISMS 
 

The system evolves using two mechanisms.  The primary 
mechanism is the execution of processing tasks upon items, 
issued as jobs.  A supporting transition mechanism arises as 
the coordinated subsystems configure themselves into a re-
quired initial state for executing the next processing task.  
Clearly, both mechanisms relate to a particular job.  There-
fore, when no jobs reside within the system, the system typi-
cally returns to a rest state where no state transitions occur. 
 The physical execution of any task necessarily involves 
a physical process that operates in real time.  Often the em-
ployed process’s real-time behavior during the execution of 
task can be described with differential equations.  By inte-
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grating such differential equations, the composite state of the 
process and job can be modeled as it transfers from a speci-
fied initial state toward a desired final state.  The interval 
over which the task execution occurs is further punctuated by 
task initiation and completion events.  Such discrete events 
represent interface points between the continuous state re-
sponse associated with the real-time execution of a physical 
task and discrete-event nature associated with the resource 
allocation for and scheduling of each task. 
 We will now precisely define the events associated 
with a job’s state evolution.  We previously defined that the 
task sequence 
 

  
TSi( j ) = Tk

i( j), X •〈Tk
i( j )〉 | p( )( )| p ∈ Pk

i( j) & k = 1,...,K i( j ){ } 
 
for the given item type   i ( j) ∈ I  associated with job j. As 

the controller of the selected process pk
j
 that manages the 

execution of Tk
i( j) , c pk

j( ) encounters the following events: 

 

Ak
j c pk

j( )( ) is the Accept event where controller c pk
j( ) 

assumes the responsibility for executing  Tk
i( j) ,  

Sk
j c pk

j( )( ) is the Start event for executing the k
th

 task 

upon the j
th

 job at the process pk
j
, and  

Fk
j c pk

j( )( ) is the subsequent Finish event for complet-

ing the k
th

 task upon the j
th

 job at the process 

pk
j
. 

Rk
j c pk

j( )( ) is the Return event where physical owner-

ship of the j
th

 job is transferred from controller 

c pk
j( ) to its Assignor c + c pk

j( )( ). 

 

 The Accept event Ak
j c pk

j( )( ) and the Return event 

Rk
j c pk

j( )( ) require a coordinated interaction between the 

controller c pk
j( ) and its Assignor c + c pk

j( )( ).  The Start 

event Sk
j c pk

j( )( ) and the Finish event Fk
j ck

j( ) require an 

interaction between the controller c pk
j( ) and its Acceptor, 

the process pk
j
.  However, because the process pk

j
 is en-

tirely subordinate to its controller c pk
j( ), controller c pk

j( ) 

retains direct control over the processing actions that occur 

at pk
j
.   

After the controller c pk
j( ) assumes control of the j

th
 

job at the Accept event Ak
j

c pk
j( )( ), it directs its supporting 
 
processes to reconfigure the combined state of itself with 

the associated j
th

 job into the state X •〈Tk
i( j )〉 |c pk

j( )( ), 

which represents its total ownership of the j
th

 job prior to 

executing task Tk
i( j) .  This event also initiates a wait state 

that occurs during the interval between the Accept event 

Ak
j c pk

j( )( ) and the start event Sk
j c pk

j( )( ).  At the start 

event Sk
j c pk

j( )( ), controller c pk
j( ) further directs the 

transformation of the composite state into required initial 

state X •〈Tk
i( j )〉 | pk

j( ). After that required initial state is re-

alized, the physical execution of the task Tk
i( j)  may com-

mence. When task Tk
i( j)  is completed, the finish state 

X 〈Tk
i( j )〉 •| pk

j( ) is achieved.  Controller c pk
j( ) then di-

rects its supporting tasks to regain immediate control of the 

j
th

 job, designated by the state X 〈Tk
i( j )〉 •| c pk

j( )( ).  When 

this latter state is achieved, the Finish event Fk
j

c pk
j( )( ) oc-

curs. Controller c pk
j( ) then notifies its Assignor 

c + c pk
j( )( ) that the assigned task Tk

i( j) has been completed. 

The controller c pk
j( ) and its Assignor c + c pk

j( )( ) must co-

ordinate their supporting processes in order to reconfigure 

the combined state of controllers with the associated j
th

 

job into required state X 〈Tk
i( j )〉 •| c pk

j( )→ c + c pk
j( )( )( ) so 

that the job can be returned to the Assignor c + c pk
j( )( ).  

The physical transfer of the job occurs at the Return event 

Rk
j c pk

j( )( ).   

 
4  THE STATE EVOLUTION OF A JOB 

 
My intent is to describe the system’s behavior using recur-
sive relationships whenever it is possible to do so.  The 

controller c pk
j( ) assumes the physical control of the j

th
 

job at the Accept event Ak
j c pk

j( )( ) and returns that both 

job and control at the Return event Rk
j c pk

j( )( ).  After that 

Return event occurs, the Assignor c + c pk
j( )( ) may take to-

tal ownership of the job causing the composite state of As-

signor and the j
th

 job to become X 〈Tk
i( j )〉 •| c+ c pk

j( )( )( ), 

and the Finish event Fk
j c + c pk

j( )( )( ) to occur. There is 

clearly a similarity between the response at the controller 
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c pk
j( ) prior to the Finish event Fk

j
c pk

j( )( ) and the re-

sponse at its Assignor c + c pk
j( )( ) prior to the Finish Event 

Fk
j c + c pk

j( )( )( ). 

 A similar recursive behavior also occurs with respect 

to the Start events.  At the Start event Sk
j

c+ c pk
j( )( )( ), con-

troller c pk
j( ) and its Assignor c + c pk

j( )( ) must coordinate 

their efforts to change the state of the j
th

job from 

X 〈Tk
i( j )〉 •| c+ c pk

j( )( )( ) to 

X • 〈Tk
i( j )〉 | c+ c pk

j( )( )→ c pk
j( )( ) so the job can be trans-

ferred.  The Assignor c + c pk
j( )( ) then instructs the control-

ler c pk
j( ) to accept the job.  This causes controller c pk

j( ) 

to change the state of the job from 

X • 〈Tk
i( j )〉 | c

+
c pk

j( )( )→ c pk
j( )( ) to X •〈Tk

i( j )〉 |c pk
j( )( ), 

and Accept event Ak
j c pk

j( )( ) to occur.  As discussed 

above, this behavior is repeated at the Start event 

Sk
j c pk

j( )( ) when the controller c pk
j( ) installs the job upon 

the process pk
j
. 

Let us now consider how this recursive behavior might 

be generalized.  Assume that the Assignor c + c pk
j( )( ) is as-

signed two subsequent tasks Tk
i( j)  and Tk +1

i( j)  that will be 

executed at the distinct processes pk
j
 and pk+1

j .  Further 

assume that the associated process controllers c pk
j( ) and 

c pk +1
j( ) have a common Assignor, which we denote as  
 

c + c pk
j( )( )= c+ c pk+1

j( )( )= ck →k+1
+ . 

 

In this case, the Assignor ck→k+1
+  encounters the Ac-

cept Event Ak→k +1
j ck→k+1

+( ).  Because task Tk
i( j)  will be 

executed at process pk
j , the subsequent Start event 

Sk →k +1
j ck→k +1

+( ) will be followed by the Accept event 

Ak
j c pk

j( )( ). The subsequent processing of the task Tk
i( j)  at 

pk
j
 will eventually generate the complete Event Sequence 

 

ESk
j c pk

j( )( )= Ak
j c pk

j( )( ), Sk
j •( ), Fk

j •( ), Rk
j •( ){ } 

 

at the controller c pk
j( ).  Normally, the Assignor ck→k+1

+  

would seek to regain complete control of the job after the 
Return event Rk
j

c pk
j( )( ).  However, the Assignor ck →k +1

+  

is also responsible for executing Tk +1
i( j) .  Therefore, the As-

signor interacts with controller c pk+1
j( ) to schedule the Ac-

cept event Ak+1
j c pk +1

j( )( ) to occur, which in turn, produces 

the Event Sequence 
 

ESk +1
j c pk+1

j( )( )= Ak+1
j c pk+1

j( )( ), Sk+1
j •( ), Fk+1

j •( ), Rk +1
j •( ){ }.   

 
After the task Tk +1

i( j)  is completed, the Finish and the Return 

events, Fk →k+1
j ck→k+1

+( ) and Rk→k +1
j ck→k +1

+( ), occur at the 

Assignor.  The composite sequence of events would be  
 

ESk →k +1
j ck →k +1

+( )= Ak →k +1
j ck →k +1

+( ), Sk →k +1
j •( ) ESk

j c pk
j( )( ){ }{

ESk +1
j c pk +1

j( )( ){ }Fk →k +1
j •( ), Rk →k +1

j •( )}
 
 By induction assume that tasks Tk

i( j)  through Tk'
i( j)  

will be executed at processes pk
i( j ) through pk'

i( j ), whose 

controllers share a common Assignor ck→k'
+ .  In this case, 

the composite event sequence  
 

  

ESk →k'
j ck →k'

+( )= Ak →k'
j ck →k +1

+( ), Sk →k'
j •( ) ESk

j c pk
j( )( ){ }{

# ESk'
j c pk'

j( )( ){ }Fk →k'
j •( ), Rk →k'

j •( )}
 

 
would be generated. 
 Now let us generalize the evolution of these event se-
quences further.  Assume that controller ck→k"  has been 

assigned tasks Tk
i( j)  through Tk"

i( j) .  Assume that the do-

main of one of its Acceptor ck→k'
−  includes processes pk

i( j ) 

through pk'
i( j ) while the domain of another Acceptor 

ck'+1→k"
−  contains processes pk'+1

i( j )  through pk"
i( j ).  Then the 

following event sequence will be generated 
 

ESk→k"
j ck→k"( )= Ak→k"

j ck →k"( ), Sk →k "
j •( ) ESk →k'

j ck →k '
−( ){ }{

# ESk'+1→k"
j ck'+1→k"

−( ){ }Fk →k "
j •( ), Rk→k"

j •( )}
 

 

 When the master controller c 0 is assigned the j
th

 job 

requesting type i j( ), the master event sequence  

 

ES j c0( )= A
1→K i j( )
j c 0( ), S

1→K i j( )
j •( ), F

1→K i j( )
j •( ), R

1→K i j( )
j •( ){ } 
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is immediately initiated.  By recursively, applying the gen-
eralized event sequence generator, the master sequence can 
be fully defined to contain every event that will occur dur-

ing the completion of the j
th

 job, which we term the job 

history for j
th

 job or JH j .  If we assume that task Tk
i( j)  is 

executed on a process pk
i( j )

 that is distinct from the process 
used to execute the preceding or following tasks, we can 
make the following assertions: 
 

• Assertion 1: The beginning and ending events are 

given by the master event sequence ES
j

c
0( ), im-

plying 
 

  
JH

j = A
1→K i j( )
j

c
0( ), S

1→K i j( )
j •( ) #{ } F

1→K i j( )
j •( ), R

1→K i j( )
j •( ){ } 

 

• Assertion 2:  The initial sequence of events can 
be described as  

 

  
JH

j = A
1→K i j( )
j

c
0( ), S

1→K i j( )
j •( ) # ES1

j
c p1

j 

 
 

 

 
 

 

 
  

 

 
  { }#   

    

 
• Assertion 3:  The ending sequence of events can 

be described as  
 

  
JH

j = # ESK i ( j )
j

c p
K i ( j )
j 

 
  

 

 
  

 

 
  

 

 
  { }# F

1→K i j( )
j

c
0( ), R

1→K i j( )
j

c
0( )   

   
 

• Assertion 4:  The job history should contain the 
detailed event sequence at each  process or  

 

ESk
j c pk1

j( )( )| k = 1,#, K i( j )[ ] 

 
• Assertion 5: The events appearing in the job his-

tory will be in chronological order. 
• Assertion 6:  Because each event reflects a 

change of state and state changes can only be ac-
complished by performing primary or supporting 
tasks with real-world processes, no two events can 
occur at the same time.  Therefore, the events in a 
job history must have strictly monotonically in-
creasing event times. 

 
5 STATE EVOLUTION OF A CONTROLLER 
 
This section describes the state from the controller’s per-
spective.  The controller’s perspective is obviously related 
to a job’s perspective because the state of the controller 
necessarily depends upon the state of the jobs that it cur-
rently manages.   The question then arises as to how the 
management of a particular job by a given controller de-
pends upon the state of that job. 
In the subsequent development, we will often refer to a 
set of jobs rather than a particular job j. From a historical 
perspective, we first define following job sets: 

 
• J k

i c | t1, t2( ]( ) is the set of all jobs of type i that 

visited controller c for the execution of task Tk
i
 

between t1 and t2 where t1 might approach −∞ . 

• 
  
J k

i C | t1, t 2( ]( ) is the set of all jobs of type i that 

visited controller c ∈ C for the execution of task 
Tk

i
 during a specified time interval as described 

above. 

• 
  
J C0 | t1, t2( ]( ) is the set of all jobs of type i that 

have visited any master controller, and hence the 
system, during a specified time interval as de-
scribed above.  Observe in this case, it does not 
make sense to limit consideration to a single task 

Tk
i  because we can assume that every job that en-

ters the system will have all tasks T1
i ,# ,TK( i)

i{ } 

executed upon it. 
 
We now define the following job sets for a particular con-
troller c at a particular time, which is commonly the present 
time: 
 

•   J
A c | t( ) is the set of all jobs that that are actively 

managed by controller c at time t where  
 

  j ∈ J A
c | t( )⇒ Ak

j
c( ) ≤ t & Fk

j
c( ) > t  

 
• This definition assumes that the controller c relin-

quishes active control when its Finish event occurs. 
•   J

S
c | t( ) is the subset of in-process jobs that upon 

which controller c has started the next task Tk
j  at 

time t or 
 

j ∈ J S c | t( )⇒ Sk
j c( )≤ t & Fk

j c( )> t  

 
and  
 

  J
S

c | t( )⊂ J A
c | t( ) 

 

•   J
Ak c k

−( )
c | t( ) is the set of in-process jobs that have 

been reassigned to an acceptor   ck
− ∈ C− (c)  for the 

execution of task Tk
j  

 

j ∈ J
Ak c k

−( )
ck

−
| t( )⇒ Ak

j
ck

−( )≤ t & Rk
j

c( )> t  
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B
o
s
 

 

 

•   J
Fk c k

−( )
c | t( ) is the set of in-process jobs upon 

which the execution of task Tk
j
 has been com-

pleted at the acceptor ck
− ∈ C− (c)   

 

j ∈ J
Fk c k

−( )
ck

− | t( )⇒ Fk
j ck

−( )≤ t & Fk
j c k

−( )> t  

 

•   J
F

c | t( ) is a subset of   J
A

c | t( ) where the cur-
rently assigned task(s) has been completed.  In 
this case, controller c has returned control of a job 

to its Assignor c
+

, but the job is not yet physically 
returned to the Assignor’s immediate control do-
main.  

ased upon these definitions, controller c has direct control 
f a given job during one of these mutually exclusive sub-
ets: 

• The set of waiting jobs at the controller c with 
tasks Tk

j →Tk'
j  assigned for execution (i.e. 

Ak→k '
j c( )≤ t ) where 1≤ k ≤ k '≤ Ki j( )  (i.e. event 

Sk →k'
j c( ) has not occurred).   This set is repre-

sented as  
 

  J
W

c | t( ) = J A
c | t( )− J S

c | t( ) 

 
• The set of jobs being transferred from controller c 

to the acceptor   ck
− ∈ C− (c)  for executing the first 

assigned Task Tk
j
 (i.e. Sk →k'

j c( ) ≤ t  and 

Ak
j ck

−( )> t ).  This set is represented as  

 

  
J c→ck

−
c | t( )= J

Sk →k' c( ) c | t( )− J
Ak c k

−( )
ck

− | t( ) 

 
• The set of jobs being transferred from acceptor 

  ck
− ∈ C− (c)  to acceptor   ck+1

− ∈ C− (c)  implying 

that Task Tk
j
has been completed (i.e. 

Fk
j ck

−( )≤ t ), but j th  job has not been accepted by 

the Acceptor   ck +1
− ∈ C− c( ) for executing task 

Tk +1
j

.  This set is represented as  
 

 J ck
− →c k+1

−
c | t( ) = J

Fk ck
−( )

ck
− | t( )− J

A k+1 ck +1
−( )

ck +1
− | t( ) 

• The set of jobs where the last assigned task Tk'
j has 

been completed (i.e. Fk'
j

ck'
−( )≤ t ), but the job has 
not yet returned to controller c  (i.e. Fk →k'
j

c( )≥ t ). 

This set is represented as  
 

  
  
J ck

− →c c | t( )= J Sk →k' c( ) c | t( )− J
Fk ' ck '

−( )
ck '

− | t( ). 
 
 From these definitions, we can conclude that the con-
troller c only relinquishes direct control of the j th  job to its 

Acceptor   ck
− ∈ C− (c)  during the interval between Ak

j ck
−( ) 

and Fk
j ck

−( ).  With respect to its Assignor, controller c has 

direct control during the interval between A ′ k → ′ ′ k 
j c( ) and 

F ′ k → ′ ′ k 
j c( ).   Clearly, a recursive relationship again exists 

between the controller c and its Acceptor and between its 
Assignor and controller c.   Also observe that the transfer 
of ownership that occurs between a controller and it accep-
tor is effectively hidden from its assignor.  This feature al-
lows different controllers to view the world at different lev-
els of resolution. 
 Earlier, we defined the set of jobs that visited the sys-

tem on the interval t1, t2( ] as J C0 | t1, t2( ]( ).   Each of 

these visiting jobs must belong to a particular class   i ∈ I .  

Let J i C0 | t1, t 2( ]( ) be the set of visiting jobs of type i.  For 

each of these jobs, a complete processing history JH
j  

would have been generated that records the time that each 
event occurs.  In order to simplify our development, let us 
assume that the system is time invariant such that 
 

ecdf t E | t• E( )( )= ecdf tE − t• E( )( ). 

 

This equation states that ecdf t E | t• E( )( ), (the empirical 

cumulative distribution function for the time of event E or 
tE  given the time of a prior event • E( ) or t• E( )), is equal to 

the empirical cumulative distribution function for the dif-
ference between the two event times.  This assumption is 
probably not true for most complex systems. However, the 
time-variant nature  introduces additional complexity that 
we prefer avoid whenever possible in this paper.   
 If we employ the time invariant assumption, then we 
do not need to be particular in specifying the interval 

t1, t2( ] to be considered.  Rather, we can consider any job 

of a particular type i that has ever visited the system or 

J i C0 | −∞, t( ]( ). 

 Assume that the j th  job arrives at controller c for the 

execution of task Tk
j .  Assume further that the j th  job be-

longs to type   i j( )∈ J .  Given these assumptions and using 

completed processing histories contained in 
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J i( j) C0 | −∞, t( ]( ) for which events Ak

j c( ), Sk
j c( ) and 

Fk
j

c( ) exist, one computes 

 

ecdf Sk
j

c( ) | Ak
j

c( )( )= ecdf Sk
j

c( )− Ak
j

c( )( ) 

ecdf Fk
j

c( ) | Ak
j

c( )( )= ecdf Fk
j

c( )− Ak
j

c( )( ) 

 
and 
 

ecdf Fk
j c( ) | Sk

j c( )( )= ecdf Fk
j c( )− Sk

j c( )( ). 

 
The first ecdf represents the waiting time at controller c be-
fore processing will be initiated at the start event Sk

j
c( ). 

The second ecdf represents the interval between when con-
troller c accepts the task Tk

j
 and when it notifies its As-

signor that the task has been executed.  The third computa-
tion estimates the completion time after the processing of 
task Tk

j  has been initiated. 
 Controller c employs the latter two ecdfs as the pri-
mary feedback to its Assignor, which we will denote as c + .  
Given the estimated ecdf for the Finish event Fk

j c( ), the 

Assignor c +  can develop an ecdf for its Finish event 

Fk
j

c +( ).  As discussed above, the Assignor c +  coordinates 

the return of the j
th

 job from controller c using the sup-
porting processes that either controller manages.  More-
over, the interval between these two finish events typically 
does not depend upon the type of job i j( ).  Rather, the 

time interval depends primarily upon the available support-
ing processes that allow the assignor c +  to interact with 
controller c.  Thus, the assignor c

+  can typically compute 
 

ecdf F c+( )| F c( )( )= ecdf F c+( )− F c( )( ) 

 

which is independent of job type.  The ecdf for the Fk
j

c +( ) 

can now be computed as the sum of two random variables 
whose ecdf’s have been described.   

Figures 1 through 3 depict several situations of in-
creasing complexity where statistical projections are to be 
made.  In Figure 1(a), controller c initially has accepted the 
execution of task Tk

j , (implying   j ∈ J W c | t( )), and pro-

vides the statistical estimates, (indicated by the shaded ar-
rows), for when the assigned task will be completed by the 

selected acceptor ck
− , ecdf Fk

j ck
−( )| Ak

j c( )( ), and by itself, 

ecdf Fk
j c( ) | Ak

j c( )( ).   After controller c initiates task Tk
j
 

at event Sk
j

c( ), (implying   j ∈ J c →ck
−

c | t( )), it estimates 
ecdf Fk
j

ck
−( )| Sk

j
c( )( ) and ecdf Fk

j
c( ) | Sk

j
c( )( ).  In Figure 

1(b), the Acceptor ck
−  has accepted the task Tk

j  at Ak
j

ck
−( ) 

(implying j ∈ J
Ak c k

−( )
c | t( )). The Acceptor ck

−  then esti-

mates when it will complete Tk
j  using 

ecdf Fk
j

ck
−( )| Ak

j
ck

−( )( ).  Upon receiving this estimate from 

its Acceptor ck
− , controller c generates statistical estimates 

when it will subsequently notify its Assignor that it has 

completed the task ecdf Fk
j c( ) | Fk

j ck
−( )( ). 

 

 
Figure 2 illustrates a slightly more complex situation.  

In Figure 2(a), controller accepts the job with two sequen-
tial tasks, Tk

j
 and Tk +1

j
 at Accept event Ak→k +1

j c( ) and es-

timates when it will have completed both tasks using the 

ecdf Fk→k +1
j

c( ) | Ak →k+1
j

c( )( ) and when each acceptor will 

complete it assigned task using ecdf Fk
j

ck
−( )| Ak →k +1

j
c( )( ) 

and ecdf Fk+1
j

ck +1
−( )| Ak→k+1

j
c( )( ), respectively.  After the 

Start event Sk →k+1
j c( ) occurs, controller c updates the cor-

responding ecdf’s conditioned upon the event Sk →k +1
j c( ).  

In Figure 2(b), the Accept event Ak
j

ck
−( ) has occurred and 

controller ck
−  computes the ecdf Fk

j ck
−( )| Ak

j ck
−( )( ).  Con-

troller c then constructs ecdf’s for the future events 

Ak+1
j ck+1

−( ), Fk +1
j ck+1

−( ) and Fk →k+1
j

c( ).  The ecdf for 

Fk →k+1
j

c( ) is provided to its Assignor as feedback informa-

tion on when it expects tasks Tk
j  and Tk +1

j  will be com-

pleted.   The ecdf for Ak+1
j

ck+1
−( ) provides feed-forward in-

formation to the Acceptor ck+1
−  pertaining to when it should 

Ak
j c( )

Sk
j c( )

Fk
j ck

−( )

Fk
j c( )

Ak
j c( )

Sk
j c( )

Fk
j ck

−( )

Fk
j c( )

Ak
j ck

−( )

(a)

(b)
 

Figure 1:  Event Estimation for Single Task 
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expect the j th  job to arrive.  The ecdf for Fk +1
j

ck+1
−( ) 

would likely be used for its internal planning.  In Figure 

2(c), event Ak+1
j

ck +1
−( ) has occurred and Acceptor ck+1

−  pro-

jects the ecdf for Fk +1
j

ck+1
−( ).  Given this ecdf, controller c 

then projects the ecdf for Fk →k+1
j

c( ). 
 

 

Figure 3 generalizes the above recursive relationship.  
In Figure 3(a), Accept event Ak→k '

j
c( ) has occurred and 

controller c predicts ecdf’s for the Acceptors’ Finish events 

Fk
j ck

−( ) through Fk'
j ck'

−( ) and its Finish event Fk →k'
j

c( ).  In 

Figure 3(b), Accept event Ak
j ck

−( ) has occurred, and Ac-

ceptor ck
−  predicts when its Finish event Fk

j ck
−( ) will oc-

cur.   Using this prediction, controller c predicts ecdf’s for 

the Acceptors’ Finish events Fk +1
j ck+1

−( ) through Fk'
j ck'

−( ) 

and its Finish event Fk →k'
j c( ). In Figure 3(c), Accept event 

Ak '
j ck'

−( ) has occurred, and Acceptor ck'
−  predicts when its 

Finish event Fk'
j ck'

−( ) will occur.   Using this prediction, 

controller c computes the ecdf for its Finish event 
Fk →k'

j c( ). 

The ability to compute these ecdf’s at each controller 
clearly supports planning for the future response of the sys-
tem.  From the moment the job enters the system via a master 
controller, predictions can be made on when each task will 
be completed and when the entire job will be finished.  

Ak →k +1
j c( )

Sk →k +1
j c( )

Fk →k +1
j c( )

Fk +1
j c k +1

−( )Ak
j ck

−( )Fk
j ck

−( ) Ak +1
j c k +1

−( )

Ak →k +1
j c( )

Sk →k +1
j c( )

Fk
j ck

−( )

Fk →k +1
j c( )

Fk +1
j c k +1

j( )
(a)

Ak →k +1
j c( )

Sk →k +1
j c( )

Fk →k +1
j c( )

Fk +1
j c k +1

−( )Ak
j ck

−( )Fk
j ck

−( ) Ak +1
j c k +1

−( )
(c)

 
Figure 2:  Event Estimation for Two Consecutive Tasks 
Moreover, as tasks are initiated, these estimates can be up-
dated using feedback information from the chain of control-
lers that are responsible for executing their particular task as-
signments.  This capability can be further enhanced using on-
line simulation procedures (see Davis 1998) that would allow 
one to project future consequence for alternative task as-
signment strategies.  However, before demonstrating how 
such capabilities are possible, one should demonstrate how 
one would coordinate the planning among the controllers.  
This is again beyond the scope of this paper. 
 
6 CONTRASTING TWO PERSPECTIVES 
 
Section 4 defined the state evolution from the perspective 
of the job upon which tasks are being executed. In Section 
5, the perspective focused upon the controllers that man-
aged the task executions. Section 5 also discussed the in-
terconnection between planning for and the control of task 
executions.  It was demonstrated that a specific controller 
manages when each event occurs during the task execution 
process.  It also estimates when future events associated 
with the execution of its assigned tasks and then employs 
these estimates in planning its future responses. In more 
complex situations, a given controller might also employ 
on-line simulation to project its future response as it inter-
acts with its own Assignor(s) and Acceptors.  Because the 
overall planning and execution functions are distributed 
across an ensemble of interacting controllers, several con-

Fk → ′ k 
j c( )

F ′ k 
j c ′ k 

−( )

Fk → ′ k 
j c( )

Ak
j ck

−( ) Fk
j ck

−( ) Fk' −1
j c k'− 1

−( )

Ak
j ck

−( ) Fk
j ck

−( )

•• •

A ′ k 
j c ′ k 

−( ) F ′ k 
j c ′ k 

−( )
•• •

Ak →k'
j c( )

Sk →k +1
j c( )

Fk
j ck

−( )

Fk →k'
j c( )

Fk +1
j c k +1

j( )
•• •

Fk'
j c k '

j( )
(a)

(b)

(c)

Ak →k'
j c( )

Sk →k '
j c( )

Ak →k'
j c( )

Sk →k '
j c( )

 
Figure 3:  Event Estimation for Series of Tasks 
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trollers could be concurrently performing their specialized 
on-line simulations, each using its own dedicated model. 
 Obviously, these dedicated models should integrate 
into a model for the overall system, but it is uncertain what 
use for the overall model might exist, particularly during 
the operation of the system.  During the last decade, new 
standards and approaches for the distributed simulation of 
complex systems have been sought (see Fujimoto 1999).  
With respect to military simulations, the High-Level Archi-
tecture (HLA) now defines the interfacing requirements for 
insuring that individual models for specialized military ac-
tivities can be integrated into a comprehensive model for 
the combined military response. HLA further provides the 
support for simulating this comprehensive model upon a set 
of distributed computing processes. Underlying the HLA 
perspective, there is an assumed need or goal for simulating 
behavior of the entire system as a monolithic object using 
distributed computational procedures.  The utility for 
achieving this goal appeared intuitive.  However, intuition 
can be deceiving. 
 HLA provides minimal consideration of command and 
control constraints (see Davis and Moeller 1999). More-
over, HLA’s procedures for synchronizing the distributed 
simulation impose significant overhead upon the distrib-
uted computation and intrinsically limit the number of 
computational threads that can be employed.  Given such 
inherent limitations that exist for the HLA, it is improbable 
that massively distributed simulations with the detailed 
consideration of both the employed tactics and command 
and control structure can ever be achieved. 
 The latter observation is derived from knowing how 
one can achieve the overall goal.  That is, using the state 
descriptions included in this paper, I have mathematically 
described how one can address the command and control 
constraints within massively distributed simulations, which 
are inherently self-synchronizing.  Given that billions of 
dollars have been spent seeking such a capability, some 
might consider this accomplishment to be a major 
achievement.  Unfortunately, I believe the simulation of the 
entire system in a monolithic fashion is useless, if not dele-
terious. In this regard, I am withholding these mathematical 
existence proofs for this capability, which incidentally have 
been checked by other researchers in simulation. My con-
science will not allow me to show others how to do some-
thing that I believe that they should not do. 
 Let us return to the two distinct perspectives for view-
ing state as discussed in Sections 4 and 5.  Beginning from 
the job-based perspective, each job’s state delineates what 
tasks have been performed (by whom and when) and what 
tasks remain.  If you look across the collection of finished 
and current jobs, one can reconstruct the physical behavior 
of the system as it reached the current state.  That is, the 
past (real-world) response has been recorded and can be 
replayed.  Now for the active jobs, the remaining tasks de-
 
lineate what tasks should be executed in the future.  Let us 
view the future as a virtual world of anticipated or planned 
responses.  Ironically, the jobs upon which the tasks will be 
performed cannot plan that future response. 
 The system’s future/virtual response is planned by the 
controllers as they interact with each other to establish the 
ideal assignments and schedule for executing the remaining 
tasks.  Because that planning must always consider the fu-
ture, the planning horizon for any controller never includes 
the current time.  In order to act in real time, a process must 
know its action at each moment. The process’s real-time 
response then becomes a part of the job’s history of what 
happened in the real world.  In this regard, the current time 
represents the continuously advancing portal between the 
real world of what has happened and the virtual world of 
what might occur. 
 In order to view the two state perspectives as being in-
terchangeable representations for the same system, the sys-
tem must be time invariant and the strategies that each con-
troller employs to determine every future action must be 
predefined.  The latter requirement eliminates the potential 
for any planning or deliberation pertaining to the system’s 
future response.  (Incidentally, this is the traditional ap-
proach to conducting simulation analyses where the focus 
is upon the processing of entities while employing prede-
fined strategies or prioritization schemes.)  It also reflects 
HLA’s intent to simulate the system as a single monolithic 
entity.  Since addressing the system as a single monolithic 
entity inherently excludes planning, command and control 
concerns can never be addressed. 
 Even though the two state perspectives share events, 
the two state representations are not interchangeable. Be-
cause they are distinct, we can conclude that the current 
definition for each representation is probably incomplete.  
With regard to the job, the detailed physical instruc-
tions/constraints for executing each remaining tasks are es-
sential.  In most time-variant systems, current processing 
tasks are updated, and entirely new tasks might be defined.  
Moreover, only the process controller needs to know the 
detailed instructions to be executed. The Assignors above 
the process controllers need only know which processes 
can execute a given task and what initial state should be 
achieved before the task can be executed.  An Assignor’s 
planning usually involves selecting which process will exe-
cute a given task upon a given job, scheduling when the 
task is to be performed and defining the essential support-
ing task for achieving the specified initial state. 
 The required time to execute a task also changes in 
most time-variant systems.  In this manner, a present job is 
intrinsically linked to the historical record for performing 
similar tasks upon the previous jobs.  In general, the statis-
tics for the most recent completions are more meaningful 
for estimating the time required to complete a remaining 
task.  Thus, after each execution of a given task, the task’s 
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statistics should be updated based upon the most recent ob-
servations.  The current statistical estimates for the time 
needed to complete a given task and the probability that the 
task can be successfully executed represent an essential 
component for specifying each remaining task and, conse-
quently, the state of the job associated with the given re-
maining task. 
 Now consider the controller’s perspective.  Certainly, 
its current state and future behavior depends upon the jobs 
under its control and the tasks it has been assigned to exe-
cute.  In fact, these components of the state represent the 
collective outcome of the controller’s prior interactions 
with its Assignor(s).  Given this information, each control-
ler must then be able to project its response in coordination 
with its managed subsystem’s under any feasible scheme 
for executing the tasks. The projected future behavior of its 
Acceptors is dependent upon statistical information imbed-
ded within each assigned job’s state, their assigned tasks, 
and the feedback they receive from their Acceptors.    
 Given these observations, the state of each controller 
depends upon the state of the controllers with which it in-
teracts and its prior assessment of planned alternatives for 
executing its remaining tasks. This implies that the control-
ler’s state with its associated planning process is entirely 
dynamic as the state of controllers with which itinteracts 
changes and the set of considered alternatives continues to 
grow.  Each controller’s state is dynamic. Therefore its 
planning is dynamic and incessant. 
 A controller’s projection of its future performance un-
der a given alternative will likely require the on-line simu-
lation with a specialized model of that controller as it inter-
acts with its Assignor(s) and Acceptors.  Moreover, this 
same situation occurs at each controller other than the most 
basic process controllers.  Therefore, it is essential that 
each controller concurrently conducts its specialized simu-
lation with its specialized models.  Clearly, the specialized 
model that each controller employs should include the 
submodel for the controller’s behavior that would be in-
cluded within a monolithic model for the entire system.  
However, the models of an interaction between any two 
controllers cannot be independent of each other.  More-
over, there are alternative means through which such inter-
actions might occur.  During the real-time operation of the 
system, the consequences of a potential interaction between 
two controllers might be determined by permitting one con-
troller to ask another controller to access the potential con-
sequences resulting from a particular assignment.  It might 
even be possible for an Acceptor to provide a model of 
how it would behave to its Assignor(s) along with the feed-
back information pertaining to its current state.  Given 
these possibilities, it is uncertain how one would model in-
teractions among the controllers within a monolithic model.  
What is clear, however, is the simulation of the monolithic 
system operating with on-line planning will require on-line 
 
simulations to be embedded within the primary simulation 
for the entire system.  Today, we do not know how to re-
cursively embed simulations within other simulations.  
 Returning to the two different state representations, 
both representations address the basic physical task execu-
tion process that is central to the systems response.  How-
ever, both state representations must be further enhanced, 
and these enhancements distinguish the representations 
from each other.  Consequently, the representations are not 
alternatives for each other.  Actually one can show that 
they are dual representations, the job’s state describing the 
world of realities and the controller’s state describing the 
world of virtual possibilities. These dual worlds are linked 
at the current time where a next state along the virtual tra-
jectory of a potential response becomes next state in the 
observed (real) response.  Therefore, it is essential that 
these dual representations share common variables. 
 The dynamism of the duality between real and virtual 
worlds can never be described with a single simulation.  
Because prior simulation development has focused primar-
ily upon the processing of entities and has devoted little or 
no attention to planning, this duality has ignored.  How-
ever, if planning is to be addressed within an adopted 
command and control structure for managing the system 
this dualism must be recognized.  
 
7 CONCLUSION 
 
After completing this paper in a sequence of papers 
pertaining to the future needs in simulations, I am still 
learning.  I expect new needs to evolve and the 
specifications of previously defined needs to be modified.  
During recent years, I devoted several man months to 
proving that massively distributed simulation of command 
and control systems was possible.  Indeed, the original 
draft of this paper included that proof as the sixth section.  
Given the effort required to develop this demonstrate, it 
was difficult for me to accept that it was detrimental to 
future simulation evolution and should be omitted. 
 The issue then arises as to whether others should con-
tinue to seek such capabilities.  That is a question that each 
researcher must answer for herself.  However, the experi-
ence that I gained from demonstrating how massively par-
allel simulations of a monolithic model can be achieved, I 
have drawn the following conclusions: 
 

• Mathematically, it is impossible to achieve this 
capability under the HLA standards.  HLA cannot 
address the interactions required to consider 
command and control constraints.  Moreover, the 
overhead that it incurs in synchronizing concur-
rent event processing limits the number of compu-
tational threads that can be employed. 
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• The goal of performing distributed simulations 
upon monolithic models of large systems should 
be abandoned.  Such simulations can assess only 
the primal behavior of the real world real-world 
response while ignoring the dual behavior in the 
virtual planning world. 
– When planning is ignored, one implicitly as-

sumes that command and control structures 
do not influence the behavior of the system. 

– Moreover, if the consequences of planning 
cannot be considered, then effective tools for 
supporting planning cannot be created.  

 
 Clearly, much effort and resources have been devoted 
to the development of HLA and establishing it as the stan-
dard for distributed simulation.  The original intent for de-
veloping HLA was genuine and plausible.  Progress pro-
duces change and an opportunity to revisit prior decisions.  
The simulation community has faces two mutually exclu-
sive options.  If they continue to support the desire to per-
form monolithic simulations of large systems, then it will 
be virtually impossible to support system management 
functions.  On the other hand, if one recognized the intrin-
sic primal-dual nature of the state evolution for these com-
plex systems, then we can explore what new capabilities 
become virtually possible in the discovered world of future 
responses. 
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