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ABSTRACT 

Hedging of fixed income securities remains one of the 
most challenging problems faced by financial institutions. 
The predominantly used measures of duration and convex-
ity do not completely capture the interest rate risks borne 
by the holder of these securities. Using historical data for 
the entire yield curve, we perform a principal components 
analysis and find that the first four factors capture over 
99.99% of the yield curve variation. Incorporating these 
factors into the pricing of arbitrary fixed income securities 
via Monte Carlo simulation, we derive perturbation analy-
sis (PA) estimators for the price sensitivities with respect 
to the factors. Computational results for mortgage-backed 
securities (MBS) indicate that using these sensitivity 
measures in hedging provides far more protection against 
interest risk exposure than the conventional measures of 
duration and convexity.  

1 INTRODUCTION 

Despite the abundance of research on identifying the vari-
ous factors affecting bond prices, e.g. Litterman and 
Scheikman (1991), Litterman, Scheikman, and Weiss 
(1991), Knez, Litterman, and Scheikman (1994), Nunes 
and Webber (1997), there has been little or no research on 
hedging these factors effectively.  Generally people still 
use duration and convexity to measure the interest risk sen-
sitivity of a fixed income security, which assumes parallel 
shifts in the yield curve, i.e., only shifts upward and 
downward in a parallel manner. Chen and Fu (2001) ad-
dress the need for hedging the different factors affecting 
the yield curve shape by considering a representation using 
a Fourier-like harmonic series. However, there is no em-
pirical evidence that such a series provides a good model 
of the actual yield curve. In this paper, we use historical 
data to empirically address this question. Based on the as-
sumption of stationary volatility in a short time period, we 
discompose any yield curve change into a linear combina-
tion of these volatility factors, and we are able to derive the 
hedging measures for these factors.  

 

 We then test the accuracy of our hedging strategy on a 
mortgage-backed security (MBS), which is a security col-
lateralized by residential or commercial mortgage loans, 
predominantly guaranteed and issued by three major MBS 
originating agencies: Ginnie Mae, Fannie Mae, and 
Freddie Mac. The cash flow of an MBS is generally the 
collected payment from the mortgage borrower, after the 
deduction of servicing and guaranty fees. However, the 
cash flows of an MBS are not as stable as that of a gov-
ernment or corporate coupon bond. Because the mortgage 
borrower has the prepayment option, mainly exercised 
when moving or refinancing, an MBS investor is actually 
writing a call option. Furthermore, the mortgage borrower 
also has the default option, which is likely to be exercised 
when the property value drops below the mortgage bal-
ance, and continuing mortgage payments would not make 
economical sense. In this case the guarantor is writing the 
borrower a put option, and the guarantor absorbs the cost. 
However, the borrower does not always exercise the op-
tions whenever it is financially optimal to do so, because 
there are always non-monetary factors associated with the 
home, like shelter, sense of stability, etc. And it is also 
very hard for the borrower to tell whether it is financially 
optimal to exercise these options because of lack of com-
plete and unbiased information, e.g., they may not be able 
to obtain an accurate home price, unless they are selling it. 
And there are also some other fixed/variable costs associ-
ated with these options, such as the commission paid to the 
real estate agent, the cost to initialize another loan, and the 
negative credit rating impact when the borrower defaults 
on a mortgage.  
 All these factors contribute to the complexity of MBS 
cash flows. In practice, the cash flows are generally pro-
jected by complicated prepayment models, which are based 
on statistical estimation on large historical data sets. Be-
cause of the complicated behaviors of the MBS cash flow, 
due to the complex relationships with the underlying inter-
est rate term structures, and path dependencies in prepay-
ment behaviors, Monte Carlo simulation is generally the 
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only applicable method to price an MBS. An MBS differs 
from other fixed income securities in the following aspects: 

 
• It has relatively large cash flows far prior to the ma-

turity date, in contrast to zero and coupon bonds. 
• Its cash flows are stochastic, affected by prepay-

ment and default behavior. 
• There is no single termination event before the 

maturity, in contrast to callable and default bonds. 
 
All these features make an MBS very difficult to hedge and 
also make it ideal for our empirical test. 
 The paper is organized in the following manner. Sec-
tion 2 presents the principal component analysis used to 
evaluate the main factors. Section 3 describes the MBS 
valuation problem, while section 4 presents PA gradient 
estimators used for hedging the MBS against the factors. 
Section 5 contains the numerical example. Section 6 con-
cludes the paper. 

2 PCA FOR YIELD CURVE SHIFT 

The Principal Components Analysis method is generally 
used to find the explanatory factors that maximize succes-
sive contributions to the variance, effectively explaining 
variations as a diagonal matrix. This method has been used 
in yield curve analysis for more than 10 years, see Litter-
man and Scheinkman (1991), Steeley (1990), Carverhill 
and Strickland (1992). Here we give a brief description of 
PCA method applied in yield curve analysis: 

 
1. Suppose we have observation of interest rates 

)( jti
r τ at time ti, i=1, 2, …, n+1, for different 

tenor dates τj. 
2. Calculate the difference )()(

1, jtjtji ii
rrd ττ −=

+
,  

where the di,j are regarded as observations of a 
random variable, dj, that measures the successive 
variations in the term structure. 

3. Find the covariance matrix ),...,cov( 1 kdd=Σ . 

Write ),cov( where},{ ,, jijiji dd=ΣΣ=Σ . 

4. Find an orthogonal matrix P such that P’=P-1 and 

kk λ ... λ), ..., λdiag(λPP ≥≥=Σ 11   where,' . 

5. The column vectors of P are the principal compo-
nents. 

6. Using P, each observation of dj can be discom-
posed into a linear combination of the principal 

components. By setting jii dpe '= , where pi is 

the ith column of P, we can find ei, which is the 
corresponding coefficient for principal component 
i, i=1, …, k. A small change in ei will cause the 
term structure to alter by a multiple of pi along the 
time horizon. 
 We use the nominal zero coupon yield from January 
1997 to October 2001 as the term structure data. All data 
were retrieved from Professor McLulloch’s web site at the 
Department of Economics, Ohio State University, at 
http://econ.ohiostate.edu/jhm/ts/ts.html. 
For each observation date, interest rates are provided for 
maturities in monthly increments from the instantaneous 
rate to the 40-year rate, providing a total of 481 interest 
rates as principal components. Table 1 lists the eigenvalues 
and % variance explained by the first ten factors, and Fig-
ure 1 graphs the shapes of the first four factors. 
 

Table 1: Statistics for Principal Components 
Factor Eigenvalue Explained(%) Cumulative(%) 

1 16.38 75.824 75.824 
2 4.41 20.432 96.257 
3 0.72 3.335 99.592 
4 0.087 0.40 99.995 
5 0.00088 0.0041 99.999 
6 8.67E-05 0.00040 99.9996 
7 1.59E-05 7.4E-05 99.99966 
8 4.20E-06 1.9E-05 99.99968 
9 4.03E-06 1.9E-05 99.99970 

10 3.67E-06 1.7E-05 99.99972 

 

 
Figure 1: The first four Principal Components 

 
 The statistics indicate that the first three factors ex-
plain about 99.6% of the yield curve changes, and the first 
four factors explain about 99.995% of the total variance of 
yield curve. These results are similar to findings by Litter-
man and Scheikman (1991), and Nunes and Webber 
(1997). Figures 2 and 3 plot the matching results with three 
and four factors, respectively, for a monthly yield curve 
shift, as well as for an annual shift. The figures indicate 
that four factors provide a substantially improved match, 
both for the short term and the long term, over three fac-
tors, so in our model we will use four factors.  Thus, hedg-
ing against these factors will lead to a considerably more 
stable portfolio, thereby reducing hedging transactions and 
its associated costs. 

http://econ.ohiostate.edu/jhm/ts/ts.html
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Figure 2: Match Monthly Yield Curve Shift 

 

 
Figure 3: Match Annual Yield Curve Shift 

3 MBS VALUATION 

Generally the price of any security can be written as the net 
present value (NPV) of its discounted cash flows under the 
risk neutral probability measure. Specifying the price of 
any fixed income security is as follows: 
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where  

 
P is the price of the security; 
Q is the risk neutral probability measure; 
PV(t) is the present value for cash flow at time t; 
d(t) is the discounting factor for time t; 
c(t) is the cash flow at time t; 
M is the maturity of the security. 
 

 Monte Carlo simulation is a numerical integration 
technique that is widely used to price derivative securities 
in the financial industry. See Boyle et. al. (1997) for more 
 
technical details. Basically, it is used to generate cash 
flows on many sample paths, so that by the strong law of 
large numbers, the sample mean taken over all of the paths 
converges to the desired quantity of interest: 
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where  

 
Vi is the value calculated out in path i., under the risk-
neutral probability measure. 
 

 The calculation of d(t) is found from the short-term 
(risk-free) interest rate process:  
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where 

 
d(i, i+1) is the discounting factor for the end of period 
i+1 at the end of period i; 
r(i) is the short term rate used to generate d(i, i+1), 
observed at the end of period i; 
∆t is the time step in simulation, generally monthly, 
i.e. ∆t= 1 month. 

 
 An interest rate model is used to generate the short 
term-rate r(i); then d(t) is instantly available when the 
short-term rate path is generated. 
 For a risk-free zero coupon bond, we know the cash-
flows c(t) ahead of time explicitly. For a callable and de-
faultable coupon bond, we can use an option model to pre-
dict what is the best time to recall or default that bond. For 
an MBS, generating c(t) is more complicated, because the 
cash flow c(t) for month t, observed at the end of month t, 
depends not just on the current interest rate, but also on 
historical prepayment behavior. From Fabozzi (1993), we 
have the following formula for c(t): 
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where   

 
MP(t) is the scheduled mortgage payment for month t; 
TPP(t) is the total principal payment for month t; 
IP(t) is the Interest payment for month t; 
SP(t) is the scheduled principal payment for month t; 
PP(t) is the principal prepayment for month t. 
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 These quantities are calculated as follows: 
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where 

 
B(t) is the principal balance of MBS at end of month t; 
WAC is the weighted average coupon rate for MBS; 
WAM is the weighted average maturity for MBS; 
SMM(t) is the single monthly mortality for month 
t, observed at the end of month t; 
CPR(t) is the conditional prepayment pate for month t, 
observed at the end of month t. 
 

 In Monte Carlo simulation, along the sample path, the 
only thing uncertain is CPR(t), and everything else can be 
calculated out once CPR(t) is known. Different prepayment 
models offer different CPR(t), and it is not our goal to derive 
or compare prepayment models. Instead, our concern is, 
given a prepayment model, how can we efficiently estimate 
the price sensitivities of MBS against parameters of interest? 
Generally different prepayment models will lead to different 
sensitivity estimates, so it is at the user’s discretion to 
choose an appropriate prepayment function, as our method 
for calculating the “Greeks” is universally applicable.  

4 DERIVATION OF GENERAL  
PA ESTIMATORS 

If P, the price of the MBS, is a continuous function of the 
parameter of interest, say θ, we have the following PA es-
timator by differentiating both sides of (1): 
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 This reduces the original problem from estimating the 
gradient of a sum to estimating a sum of gradients. In par-
ticular, now we only need to estimate two gradients, 

θ
θ

∂
∂ ),(tc

 and 
θ

θ
∂

∂ ),(td
, at each time step.  

4.1 Gradient Estimator for Discounting Factor 

We know that the discounting factor takes the following 
form from section 2, when the option adjusted spread 
(OAS) is not considered. For simplification, we write d(t) 
as for d(t, θ): 
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Differentiating w.r.t. θ: 
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4.2 Gradient Estimator for Cash Flow 

To simplify notation, we write c(t) for c(t, θ). A simplified 
expression for c(t) is derived from (4) and (5) as follows: 
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where 
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Then we can derive the gradient for c(t), if WAC and t are 
independent of θ: 
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 This leads to recursive equations for calculation of the 
above gradient estimator from (5) and (8): 
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 We know that the initial balance is not dependent on 
θ; we have the initial conditions: 
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 Then we can iteratively work out 
θ∂

∂ )(tc
 for all t. Thus 

the problem of calculating the gradient estimator of cash 

flow c(t) is reduced to calculating 
θ∂

∂ )(tSMM
. From (5), 

we have 
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 As discussed earlier, generally CPR(t) is given in the 
form of a prepayment function, and  we are using the fol-
lowing type of prepayment model: 

 
 )()()()()( tBMtMMtAGEtRItCPR = , (16) 

 
where   

 
RI(t) is refinancing incentive; 
AGE(t) is the seasoning multiplier; 
MM(t) is the monthly multiplier, which is constant for 
a certain month; 
BM(t) is the burnout multiplier. 

 
 From the gradient estimators for cash flow and dis-
counting factor, we can easily get the gradient estimator of 
PV(t) in (7). The last step would be to apply a specific pre-
payment model and interest rate model to arrive at the ac-
tual implemented gradient estimators. To illustrate the pro-
cedure, we carry out this exercise in its entirety for one 
setting in the following section. 

5 NUMERICAL EXAMPLE 

As discussed in Section 2, any yield curve shift can be de-
composed into a linear combination of all the principal com-
ponents, and we have seen that the first four factors explain 
99.995% of the yield curve variation. Here, we estimate the 
price sensitivities of an MBS w.r.t. these four factors.  
 The interest rate model we use is a one-factor Hull-
White model with the following settings: 
 
 ),())()(()( tdBdttarttdr σϕ +−=  (17) 

 
where  

 
B(t) is a standard Brownian motion; 
a is the constant mean reverting speed, use 0.1; 
σ is the standard deviation, constant, use 0.1; 
ϕ(t) is chosen to fit the initial term structure, which is 
determined by: 
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where f(0,t) is the instantaneous forward rate, 
which is determined by 
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 R(0,t) is the continuous compounding interest rate 
from now to time t, i.e. the term structure. 

 
 The prepayment model we use, (16), is acquired from 
<http://www.numerix.com>, with the following 
components: 

 
RI(t)=0.28+0.14tan-1(-8.571+430(WAC-r10(t-1))); 
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MM(t)=[0.94, 0.76, 0.74, 0.95, 0.98, 0.92, 0.98, 1.1, 
1.18, 1.22, 1.23, 0.98], starting from January, ending 
in December; 

;
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r10(t) is the 10-year rate, observed at the end of period 
t, a quantity that is highly correlated with the prevail-
ing 15-year and 30-year fixed mortgage rates. 
 

 The MBS we price is a fixed-rate mortgage pool, with 
a WAC of 6.62 and pool size of $4,000,000. 
 In order to estimate the accuracy of our PA estimator, 
we also estimate the gradient via finite differences (FD). 
Table 2 gives the sensitivities of the MBS price to the prin-
cipal component factors for each method. The sensitivities 
measure the percentage change in the price w.r.t. a 1/100 
change in the principal components factor coefficient. 

From Table 2 we can see that the error is very small, 
and the 95% confidence intervals are almost the same. 
Thus, the accuracy of the PA estimator is comparable to 
that of the FD estimator, but the PA estimator requires over

http://www.numerix.com/
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Table 2: Comparison of PA/FD gradient estimators 
PC Factor 1 2 3 4 

PA estimators 0.25498% 0.23950% 0.02971% 0.15917% 

C.I. of PA 0.01288% 0.01134% 0.02769% 0.02317% 

FD estimators 0.25493% 0.23955% 0.02974% 0.15925% 

C.I. of FD 0.01289% 0.01135% 0.02770% 0.02317% 

Error 0.00005% -0.00005% -0.00004% -0.00008% 

Error% 0.0194% 0.0190% 0.1195% 0.0525% 

  
70% less computation time for this four-dimensional gra-
dient.  Clearly, for higher dimensions, the efficiency gains 
using PA will be even greater. 
 Next we investigate the prediction power for these PC 
sensitivities against the traditional measures of duration 
and convexity. From October to November in 2000, the in-
terest rate term structure shift took the form in Figure 2. 
These changes can be approximated by a linear 
combination of the first four factors, whose coefficients are 

determined by jii dpe '= ,  

 
[e1 e2 e3 e4]’=[2.08941 -0.90018 0.084261 0.303106]’. 

 
So the predicted change in the MBS price would be: 

%3679.0
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=≅∆ ∑
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, where gi is the gradient in table 

2. By conventional measures like duration and convexity, 
we have the following approximation: 

 

 convexityrdurationr
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P ⋅∆+⋅∆−≅∆ 2

2

1
. (20) 

 
However, it is difficult to define ∆r, since no single ∆r can 
summarize the entire yield curve shift. For example, defin-
ing the shift as the change in the instantaneous rate is very 
misleading, since the short rate is increasing while the 
long-term rate is dropping. So here we define it as the first 
harmonic series of the Fourier cosine transformation as in 

Chen and Fu (2001), yielding the value of %5406.0≅∆
P

P
. 

The real percentage change in the MBS price we calculate 
to be 0.3572%, so our method provides much better 
prediction than the duration and convexity measures for 
this example. 

6 CONCLUSION 

In this paper, we applied principal components analysis on 
historical interest rate data to identify the first four factors 
that explain 99.995% of the variation in the yield curve. 
We then used perturbation analysis to efficiently estimate 
MBS price sensitivities w.r.t. these factors. Using these 
sensitivity measures to predict the MBS price change due 
 
to a real scenario yield curve shift leads to significantly 
greater accuracy than conventional measures like duration 
and convexity, which implies that our model will also be 
superior for hedging purposes. 
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