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ABSTRACT

Applications in financial engineering have relied heavily o
Brownian Motion as a workhorse model for pricing deriva
tive securities and implementing risk management program
When more than one state variable is required, the stand
approach is to use a multivariate Brownian Motion with
constant correlations. This article briefly summarizes se
eral important reasons why this approach is not adequ
(and in some cases, can lead to disaster). Examples incl
fat tails, volatility clustering, large discrete jumps, parame
ter instability, and asymmetric correlations. Including suc
features makes analytic modelling less tractable, and p
tentially makes simulation a more attractive alternative.

1 INTRODUCTION

One of the main questions facing the financial engineerin
profession is how best to model the dynamics of price
in financial markets, such as individual stock prices, stoc
indices, commodities, interest rates, and exchange rat
Armed with a model of price dynamics, the financial engine
can:

• calculate theoretical prices for options, swaps, an
other derivative securities,

• measure the amount of risk associated with holdin
these positions,

• aggregate risk measures across a large number
positions, and

• identify offsetting positions in other securities to
control aggregate risk exposure.

The textbook approach is to specify a diffusion proces
for each underlying asset price—that is, a stochastic integ
or stochastic differential equation where the uncertainty
driven by Brownian Motion. For stocks and stock indices
the typical assumption is Geometric Brownian Motion, wit
a constant volatility. This implies a normal distribution fo
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the continuously-compounded stock return, or a lognorm
distribution for the stock price. Correlations between ass
prices are generally assumed to be constant over tim
For interest rates, the process usually includes a mea
reverting drift term, and sometimes extra state variables a
added to give the models additional flexibility. But still,
the underlying state variables are modelled as diffusio
processes.

The widespread adoption of Brownian Motion as a
framework for describing changes in financial asset price
is most likely due to its analytic tractability. Under Brow-
nian Motion, prices of options and other simple derivativ
securities can often be expressed as functions of the Norm
CDF, and these prices can be computed very rapidly. In
risk management context, the assumption of joint normali
in asset returns makes it fairly easy to calculate the tail pro
abilities for portfolios of assets. Moreover, for problems too
complicated to solve analytically, the assumption of con
stant volatility allows for a very simple implementation of a
discrete-time lattice model, or a binomial tree. In addition
this framework lends itself naturally to simulation, as it is
a simple matter to generate pseudo-random deviates fro
a multivariate normal distribution with a known covariance
structure.

Unfortunately, it appears that asset prices in the re
world are not driven by diffusion processes, nor are varianc
and covariances constant over time. There is now a va
literature on the time-series modelling of asset prices. Th
research has revealed many empirical failures of the consta
parameter multivariate diffusion model. In some cases, usi
a multivariate diffusion model can lead to large errors in
estimated prices and hedge parameters.

In risk management, success or failure depends cri
cally on the accuracy of the model specified for the join
dynamics of the underlying asset prices. To illustrate, co
sider the notorious case of the hedge fund Long Ter
Capital Management (LTCM). It appears that immediatel
prior to the Russian debt crisis in August 1998, LTCM
had calculated their daily “Value-At-Risk” (VAR) to be $35
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Million. That is, a one-day loss in excess of $35 Million
would constitute a “rare event.” Lowenstein (2000) repor
that their VAR numbers implied that it would take a te
standard deviation rare event for LTCM to lose all the
capital in one year. They were wiped out in five week
LTCM lost $553 million (more than 15 times VAR) on Au-
gust 21, 1998, and $277 million more on August 27. Th
losses continued throughout September, including anot
loss exceeding $500 million on September 21, and ma
other daily losses in excess of $100 million. According
LTCM’s risk management model, losses of such magnitu
were virtually impossible.

In retrospect, it appears that LTCM had failed to reco
nize that the correlations between their various risk exposu
would be much, much higher during an international cris
than during normal times. LTCM’s capital was spread o
across positions in various markets and strategies. Th
analysis of historical time-series data led them to belie
that the correlations between their individual positions we
relatively low, so that the overall portfolio was thought t
be well-diversified and low-risk. A rare event in one mark
might generate large losses to a particular position, but
each position represented only a small portion of the who
it was thought, the portfolio would not suffer unduly larg
losses. When the crisis hit, LTCM suffered large loss
simultaneously in nearly all its major positions.

Those who aspire to develop effective and reliable ri
management tools should seek a deeper understandin
the dynamics of asset price returns. This essay briefly
views some of the more important empirical regularities th
have been documented in the literature, including fat ta
(Section 2), volatility clustering (Section 3), large jump
(Section 4), non-Gaussian copulas (Section 5), and par
eter instability (Section 6). A few of these features ha
been incorporated into theoretical option pricing mode
and in some special cases closed-form solutions are av
able. But in general, incorporating these features tends
make the models analytically intractable. These featu
can also make lattice-based recursive models considera
more complicated. However, most of these features can
simulated without undue difficulty. Historically, many in
the industry have been reluctant to embrace simulation d
to concerns about computation speed. These concerns
growing less relevant over time, as a result of technologi
improvements in processor speed and parallel process
along with variance reduction techniques and other impro
ments in simulation technology. It is my belief that ove
time, simulation will become more firmly established as th
premier technique for measuring risk in financial marke

2 FAT TAILS

It has long been known that the distribution of security retur
is leptokurtic—that is, tends to exhibit “fat tails” relative
s
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to the normal distribution. Work by Mandelbrot (1963
Fama (1965) and others inspired a flurry of research activ
in the 1960s and 1970s in search of alternative distributio

Fat tails are especially pronounced in the distributi
of stock returns over short horizons. To illustrate, let
consider the unconditional distribution of daily stock in
dex returns in the United States from 2/17/1885 throu
8/15/2002, a sample of 32,572 index returns. These data
available from Professor Schwert (1990) at The Univers
of Rochester and from the Center for Research in Secu
Prices (CRSP). Suppose that one were to model these
turns as being independent and identically distributed (iid)
draws from a normal distribution. The sample standa
deviation of percentage daily stock returns over this tim
period is 0.0102, and the mean is .0003. Based on a nor
distribution, we would expect to see a return more than fi
standard deviations below the mean approximately once
13,822 years (based on 252 trading days/year). In fa
this has occurred 66 times since 1885, most recently
April 14, 2000. On the positive side, there have been
five-standard deviation events. At seven standard de
tions, there have been 18 negative and 22 positive eve
The crash of October 19, 1987 was a 20-standard devia
event. See Table 1 for a list of the ten largest one-d
percentage increases and decreases.

Table 1: Extreme Negative and Positive Re-
turns, 1885-2002

Date Return Date Return
19871019 -0.2047 19330315 0.1665
19291028 -0.1233 19291030 0.1254
19291029 -0.1015 19311006 0.1238
19291106 -0.0990 19320921 0.1183
19371018 -0.0927 19390905 0.0964
19330720 -0.0888 19330420 0.0954
19330721 -0.0870 19871021 0.0910
18951220 -0.0851 19291114 0.0897
19871026 -0.0828 19320803 0.0888
19321005 -0.0819 19311008 0.0861

Clearly, the assumption of normally distributed return
is not appropriate in this market. As a result of this exce
kurtosis, option pricing models based on the lognormal
sumption, such as the Black-Scholes model, will sever
underprice short-term out-of-the-money options. In ad
tion, Value-at-Risk estimates (estimates of tail probabilitie
based on the normal distribution will be way too low, lea
ing risk managers to dramatically underestimate the risk
large losses.

One alternative that gives fat tails is the bivariate d
fusion stochastic volatility family of models, such as He
ston’s (1993) model. In these models, the instantane
diffusion coefficient in the stock process itself follows
diffusion process. But these models also tend to underp
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short-term out-of-the-money options, because the distrib
tion gets close to normal as the time horizon shrinks.
order to model the extreme fat tails over short horizon
it appears that some type of jump model is necessary (
Bakshi, Cao and Chen 1997).

3 VOLATILITY CLUSTERING

If fat tails were the only problem, an obvious remed
would be to model returns as being drawn from a fat-tail
distribution. Over the years, various authors have sugges
using thet distribution, a mixture of normals, or a membe
of the Stable Paretian family, among others. This approa
is not fully adequate, however, as there is clear eviden
that returns are notiid.

A clear example is the phenomenon of “volatility clus
tering” or “volatility persistence”—the tendency of extrem
returns to cluster together in time. If returns were fat-taile
but iid, extreme events would tend to be evenly distribut
over time—we would be no more likely to observe an e
treme event the day after a stock market crash as on
other day. But in fact, we tend to observe extended episo
of high volatility.

To illustrate, imagine estimating a risk-manageme
model on October 22, 1929. The stock market had n
moved up or down five percent in a single day in near
twelve years. One might have easily classified a five perc
move in one day to be a rare event. As shown in Table 2
occurred twelve times in the following four weeks. Prior t
October 16, 1987, the market had not declined five perc
in one day in more than twenty-five years (May 28, 1962),
increased five percent in more than seventeen years (M
27, 1970). There are many other examples. A few a
shown in Table 2.

Table 2: Examples of Volatility Clustering

Date Return
19291023 -0.0590
19291028 -0.1232
19291029 -0.1015
19291030 0.1254
19291031 0.0505
19291104 -0.0523
19291106 -0.0990
19291111 -0.0620
19291112 -0.0566
19291113 -0.0569
19291114 0.0897
19291115 0.0554

Date Return
19330719 -0.04914
19330720 -0.0888
19330721 -0.0870
19330724 0.0814

19871016 -0.0516
19871019 -0.2047
19871020 0.0533
19871021 0.0910
19871026 -0.0828

19971027 -0.0687
19971028 0.0512

Volatility clustering has important implications for risk
management. Risk management is most important dur
periods of crisis. A good measure of volatility persisten
can help the risk manager assess the likelihood of an “
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tershock” following a major market move, and thus can
improve risk measures exactly when an accurate measu
is needed most.

Volatility clustering also has direct implications for the
calculation of option hedge ratios. When a stock price
declines, this will generally cause the price of a call option
to decline. If volatility is highly persistent, however, a
sudden decline in the stock price will cause the market’s
forecast of subsequent volatility to increase, and this ha
an offsetting effect on the option price. As a result, the cal
option price will fall less than it would have in a world
without volatility persistence.

Various time-series techniques have been proposed
account for volatility clustering. One popular approach is to
use some variant of the discrete-time Generalized Autore
gressive Conditional Heteroskedasticity (GARCH) model
pioneered by Engle (1982) and Bollerslev (1986). In thes
models, the conditional variance of today’s stock return is a
function of yesterday’s conditional variance and of yester
day’s realized return. Extreme returns increase the varianc
over the following days, making additional extreme returns
more likely.

There are other ways to allow for short episodes of high
volatility. For example, one might use a continuous-time
stochastic volatility model, or a regime-switching model, in
which the variance of returns randomly switches betwee
multiple levels (see Hamilton 1994).

Further research on the conditional distribution on stock
returns has revealed additional empirical regularities beyon
simple volatility clustering. Negative return shocks are more
likely than positive shocks to be followed by subsequen
high volatility (see, for example, Bekaert and Wu 2000).

4 LARGE JUMPS

As mentioned above, jumps in the stock price will tend to
cause fat tails in the distribution of returns. In addition,
jumps have other important implications for risk manage-
ment. The traditional approach to option pricing assume
that market participants may trade at any time, with no trans
action costs. Coupled with the assumption of a continuou
diffusion process, this allows the hypothetical arbitrageu
to replicate an option using a continuously-updated tradin
strategy in the stock. Alternatively, in this fictional world,
a risk manager could follow a “stop loss” strategy. For
example, if you were to buy a stock at 100, you could
guarantee that your loss on that position will never excee
ten percent by selling the stock the moment it reaches 90

In practice, large jumps in prices can make it impossible
to implement a dynamic replicating strategy or a stop-los
strategy. The stock may close above 90 one day and ope
below 90 the next day, with no opportunity to sell on the
way down. Or, the price can jump down while the market
is open.
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Figure 1: Large Jumps: Bid Prices for AAPL Stock, 9/28/2000
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To illustrate, on September 28, 2000, after the close o
regular trading hours, Apple Computer announced that the
quarterly profits would be considerably lower than the marke
had anticipated. After-hours trading was immediately halte
when the announcement hit the market, at around 4:24 P.M
When trading stopped, the bid price for Apple was at $53.25
When after-hours trading resumed at 5:18, the bid pric
immediately dropped to $42.50, and then less than sixt
seconds later dropped to $37.00. By 6:30, the price ha
dropped to around $29. Such large sudden moves tend
wreak havoc on dynamic hedging or replicating strategies

Another example involves the “Portfolio Insurance”
strategy, which gained great popularity with institutiona
investors in the mid 1980s. The idea here was that institution
could protect their capital against a stock market crash, b
still enjoy upside potential, by following a dynamic strategy
that was essentially equivalent to buying a protective pu
on the portfolio. The strategy required the investor to mov
money out of cash into stocks as the market rose, and to s
the stocks as the market fell. During the crash of 1987, th
strategy performed far worse than predicted, as investo
found it extremely difficult to unload stocks as the price
dropped. At times during the day, liquidity completely
vanished, and investors could not sell at any price.
f
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5 NON-NORMAL COPULAS

Up until now, our discussion has focused on propert
that are readily apparent in univariate time series (fat ta
volatility clustering, jumps). But the heart of risk manag
ment is aggregation across several sources of risk, and
requires assumptions on the joint distribution of multip
state variables. For problems involving multiple sourc
of risk, the standard approach that has been used by p
titioners and academics for many years is to estimate
variance-covariance (VC) matrix for the returns on all th
securities in the portfolio. The VC matrix is an integral pa
of the machinery of modern portfolio theory, as develop
by Markowitz (1952) and others.

If returns are assumed to be multivariate normal, t
VC matrix is sufficient to identify the distribution, and thu
can be used to calculate tail probabilities for a portfol
of positions in the individual securities. For more gener
distributions, this is no longer true. As we have seen, t
univariate distributions are not normal, and recent histo
has taught us the dangers of using historical correlation
estimate VAR.

The dependence between two variables can be ch
acterized more generally by the copula function—that
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the function relating the joint distribution to the margina
distribution. It is difficult to make blanket generalization
about joint distributions between financial time series,
there are many different combinations of variables, and o
a few results have been published. With that caveat in mi
let us mention in passing a few results that deserve furt
attention.

There is ample evidence that the covariance betwe
two financial variables is somewhat predictable. Just
the conditional variance is a function of past return shoc
in univariate GARCH models, the conditional covarianc
in multivariate GARCH models is often related to rece
shocks in both variables. Volatility shocks in the bon
market can leak over to the stock market, and vice ve
(Fleming, Kirby and Ostdiek 1998).

In addition, there is evidence of asymmetri
dependence—the extent to which stock prices move
gether appears to be different for positive and negat
price changes. Specifically, correlations between sto
seem to be higher when the market goes down. Also, pri
tend to move together more closely on days of extrem
market movements, particularly on the negative side. F
more details, see Longin and Solnik (2001).

6 PARAMETER INSTABILITY

Markets are always changing. Regulatory structures evo
new financial instruments are introduced, new trading stra
gies are invented, information technology advances, macr
conomic variables fluctuate, new industries come and go
is not surprising that the parameters estimated from GARC
and other time-series models tend to fluctuate considera
over time (see, for example, Lamoureux and Lastrapes 199
In the face of changing market conditions, the financial e
gineer must address the vital question of “how far ba
to look” when estimating volatility, correlation, or othe
parameters in time-series models.

The econometrician is stuck between Scylla and Char
dis. With too little data, the parameters cannot be estima
with any precision—in an idealized, unchanging worl
five to ten years of daily returns may be required to obta
reliable estimates for GARCH and other more elabora
time-series models. With too much data, the model will
misspecified because the parameters are not stable ove
time period. The best course depends on how quickly
world is changing. If there were one true and unchangi
returns generating process, and we knew its form, we co
get a more and more accurate estimate of its parameter
using more and more data. On the other extreme, the wo
may be changing so quickly that it is impossible to obta
reliable parameter estimates, and only the most recent d
would be informative at all.

For measuring short-horizon volatility, the prevailin
view among practitioners seems to be that only the ve
.

e

recent history is relevant. Thus, we see data provide
like RiskMetrics providing volatility forecasts based on an
exponentially-weighted moving average with a decay facto
around .94, a procedure that places most of the weight o
the most recent observations, and relatively little weight o
events older than a few weeks.

It is not uncommon to see GARCH models estimate
with samples as short as one or two years. Although lon
daily time series are usually available, the older observation
are frequently ignored. Presumably, this is based on a
underlying belief that market conditions change so quickl
that there is little to learn from the older data. However
one should be cautious about using such short samples.
order to get a reliable measure of how quickly volatility
shocks decay, one needs a sample long enough to cont
a decent number of large shocks. The shorter the samp
the more noisy will be the estimates. Parameter estimat
tend to be sensitive to the inclusion or exclusion of extrem
events like the crash of 1987.

We must be especially wary of small samples when ou
goal is to estimate tail probabilities. How can one estimat
the frequency of extreme events using a sample so small th
it does not include any? One would not think of using only
one month of data to estimate the distribution of earthquak
sizes in San Francisco. For distributions with high skewnes
and/or kurtosis, it can be very difficult to obtain reliable
estimates of these moments, even with a large number
observations. To highlight this problem, let us again retur
to our sample of 32,572 daily stock index returns from
1885 to 2002. Over this entire period, the sample skewne
is approximately -0.133. If October 19, 1987 is omitted
from the sample, the sample skewness becomes positive
approximately 0.114. If we also omit the positive return on
March 15, 1933, the estimate goes back down to -0.01
Even with well over a hundred years of returns data, ou
estimates of skewness are highly sensitive to the inclusio
of one or two observations.

There is much to be learned from going back and
examining a long history of stock returns. Most academi
research on daily returns in the U.S. stock market uses t
CRSP database, which begins in 1962. Restricting focus
the period since 1962 may have distorted our perception
about markets in favor of characteristics that are most evide
in that period.

Figure 2 depicts market volatility from 1885 to the
present. On the Y axis is a rolling one-year estimate of th
standard deviation of daily stock returns. The past few yea
have been quite volatile, one of the most volatile period
since World War II. Data from the great depression help
put these volatility numbers in perspective.

As another example, Ahn et al. (2002) state tha
“[a]rguably one of the most striking asset price anomalies i
the evidence of large, positive short-horizon autocorrelation
for returns on stock portfolios.” Figure 3 depicts the sampl
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Figure 2: Standard Deviation of Daily Returns: Rolling One-Year Window
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first-order autocorrelation for a moving window of 1,000
trading days since 1885. Certainly, positive autocorrelatio
appears to have been the norm since the end of World W
II, and particularly in the 1970s. However, prior to the wa
there were several long periods when autocorrelation w
near zero or negative. Interestingly, the most recent da
seem to indicate that we may have moved back to a regim
of autocorrelations near zero.

To summarize, regardless of what specific model
chosen, the parameters describing the dynamics of as
price returns tend to be hard to estimate, and they tend
be unstable over time. As a result, it is difficult to determin
which of many competing models is most suitable for optio
pricing and risk management. No consensus has emer
as to which model is the most accurate, or about how mu
data should be used when estimating parameters. By tes
our models over long historical time periods, we can obser
the extent to which parameter estimates tend to vary ov
time, and attempt to ascertain whether these fluctuatio
correspond to true structural changes or to extreme even
Using simulation, we can explicitly measure the potenti
costs of model misspecification and parameter uncertain
or generalize existing models to allow for randomly changin
parameters.
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