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ABSTRACT 

The DASH model for Power Portfolio Optimization pro-
vides a tool which helps decision-makers coordinate  pro-
duction decisions with opportunities in the wholesale 
power market. The methodology is based on a stochastic 
programming model which selects portfolio positions that 
perform well on a variety of scenarios generated through 
statistical modeling and optimization. When compared 
with a commonly used fixed-mix policy, our experiments 
demonstrate that the DASH model provides significant ad-
vantages over several fixed-mix policies. 

1 INTRODUCTION 

Deregulation is an evolving process. In many states (in-
cluding Arizona), the major electricity producers have the 
responsibility of meeting a certain “native load” which 
constitutes the regulated portion of the business. Beyond 
this regulated native load, a power producer may buy or 
sell power in the wholesale electricity market in a manner 
that the producer finds profitable. Prior to the emergence of 
electricity markets, profitability was determined simply by 
the ability of a power producer to convert fuel into electric-
ity in a least-cost manner. Hence minimization of genera-
tion costs provided the appropriate strategy. With the 
emergence of wholesale electricity markets, a utility can 
manage its power production and revenue potential by 
trading within this market. A forward (contract) for power 
is a financial instrument that allows a power producer to 
buy or sell power for delivery on a future (maturity) date at 
a price that is agreed upon several months earlier. As 
weather patterns, economic activity, and market prices 
evolve, these power portfolios can be rebalanced so as to 
maximize expected profitability, while appropriately bal-
ancing risk exposure. In this environment, judicious deci-
sion- making can mean the difference between survival and 
demise of a power company.  

 

The DASH model for Power Portfolio Optimization 

provides a tool which helps decision-makers coordinate 
production decisions with opportunities in the wholesale 
power market. Before providing the technical details of our 
approach, we provide a brief outline of some of the major 
determinants of profitability in electricity markets. Follow-
ing this description, we describe statistical models that are 
used for scenarios used within the stochastic programming 
model. The latter model consists of a financial sub-model 
and a generation sub-model which are used to determine 
the profitability of any portfolio position.  We also describe 
an alternative investment strategy based on a certain type 
of “fixed-mix” policy which is commonly used by electric-
ity traders. This strategy provides a “base-case” against 
which we compare the results of a stochastic programming 
model. Our results are based on data obtained from Pinna-
cle West Capital, which is a holding company for Arizona 
Public Service, the largest investor owned electric utility in 
Arizona. In order to maintain confidentiality of their data, 
our results will be presented in terms of percentage gain.  
The backcasting experiment, which covers a five month 
operating period from January 2001 through May 2001, 
shows a monthly advantage of approximately 7% in favor 
of the stochastic programming approach. The DASH 
model has also been tested against a variety of synthetic 
scenarios. These experiments reveal the robustness of the 
forward decisions recommended by DASH.  

2 SCOPE OF THE DASH MODEL 

To begin with, we outline the manner in which we expect 
the decision process to unfold. At the start of each month, 
financial analysts/traders for the producer wish to reevalu-
ate/rebalance their power portfolio. At this point, they may 
invoke some decision model (e.g. DASH) which recom-
mends the mix of power products that the producer ought 
to hold. While the decision model itself may be dynamic 
(as in DASH), the trader only commits to a recommenda-
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tion for the current month. After the appropriate rebalanc-
ing trades are executed, the traders wait and observe the 
market until the end of the month, at which point, they up-
date the decision model by “rolling the horizon” forward, 
and providing up-to-date information to the decision model 
which then provides an updated recommendation for the 
next month. While it is possible to use the DASH model at 
decision-epochs that are less than a month long, the portfo-
lios within DASH are represented at monthly intervals.   

Market modeling is another feature incorporated 
within DASH. In some cases, power producers trade elec-
tricity in multiple markets. For example, a California utility 
may trade in Palo Verde (AZ) and the California-Oregon 
Border (COB). For the sake of this model however, we will 
consider only one market for electricity. In addition to 
electricity, the model also allows interactions with one 
natural gas market. On the generation-side, the unit com-
mitment decisions are made on a weekly basis, and allow 
us to incorporate heat-rates, start-up costs, minimum 
downtimes, etc. The current model does not accommodate 
hydro generation, although this extension is currently un-
der consideration. Some of the modeling issues related 
with the above features are discussed below.  

2.1 Electricity Demand 

In a completely deregulated market, the traditional notion 
of load takes a back-seat to demand-curves relating prices 
and quantities. However the extent of deregulation is in a 
state of flux in most states in the U.S. For instance in Ari-
zona, retail tariffs are regulated by the state Corporation 
Commission and are held constant over long periods of 
time. Electric utilities are required to serve the “native 
load” that arises from their customers at regulated retail 
rates. There are several different demand models that have 
been studied in conjunction with current the DASH model, 
including time-series that use temperature as one of the 
main factors. In more humid climates, we expect that hu-
midity will play an important role as well (Feinberg 2002).    

2.2 The Wholesale Electricity Market 

The current market model allows electricity forward con-
tracts, and spot market activity. While the current model 
does not accommodate options, these can be included 
without adding to the computational burden of the current 
model. While prices in the electricity market (especially 
the spot market) vary on an hourly basis, we have discre-
tized time according to a sixteen hour “on-peak” period, 
and an eight hour “off-peak” period for each day.  

2.2.1  Forward Contracts for Power 

For the purposes of our model, forward contracts will be 
assumed to be “monthly”, so that planning for period t re-
fers to some month t in the future. Note that the megawatts 
committed (bought or sold) to the market in period j influ-
ences the total electricity generated during period t, t>j. To 
facilitate profit-making, trading decisions must consider 
future load projections and generation capacity, both of 
which are subject to uncertainty. If the decisions for the de-
livery month (t) could be treated independently of other 
months, then one could develop a model that could treat 
each delivery month independently. However, such an as-
sumption might expose the firm to far greater risk level  
than might be acceptable. This is because (financial) risk 
exposure of a firm depends on the mix of instruments in its 
portfolio at any point in time. Hence, it is not sufficient to 
simply consider profitability for a delivery month; the col-
lection of forwards held at any point in time is an impor-
tant determinant of risk exposure.   

The current price of any forward contract is usually 
assumed to be known. However, forward prices for each 
delivery month will evolve over time until the delivery 
month. As one might expect, this evolution is uncertain on 
the decision-making date. In the current version of the 
DASH model, we use a non-parametric approach in which 
historical data is used to create a vision for the future (e.g., 
the next six months). This vision is based on creating a 
number of scenarios of “returns” (percentage change in 
prices) which may be revealed in the future.  The actual 
process of developing these scenarios is discussed in the 
next section.  

2.2.2 Spot Market for Wholesale Power 

 As with forward contracts, “on-peak” and “off-peak” 
power have different price trajectories, and are modeled 
separately. However, there are two important observations 
in modeling the spot market. The time scale for spot prices 
can be  hourly. In the interest of computational tractability,  
we treat spot market on a daily basis, and allow it to fluc-
tuate according to the sixteen-hour “on-peak” and eight-
hour “off-peak” periods. Also, the spot prices for each day 
(d) during the month (t) must be correlated to the forward 
prices associated with the scenario (s) that unfolds. 

2.3 Unit Commitment 

The technological constraints of this socio-technical model 
arise in the unit- commitment problem. Traditionally, unit 
commitment models are used to determine a short-term 
(weekly) power generation schedule. While they have also 
been used to estimate annual production costs, the deter-
ministic nature of the original models (e.g. Bertsekas et al. 
1983) do not lend themselves to mid- and long-term analy-
sis. More recently, these models have been extended to ac-
commodate uncertainty in load forecasts, fuel prices, etc.   
(Takriti, Birge, and Long 1996), (Takriti, Krasenbrink, and 
Wu 2000), and (Nowak and Romisch 2000). Recent ad-
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vances in unit commitment models are summarized in the 
edited volume by Hobbs et al (2001).  

The models mentioned above are typically focused on 
a short-term scheduling issue (a week or two at most). Due 
to the medium-term nature (i.e., one year) of many finan-
cial instruments, it is difficult to measure their impact us-
ing short-term models. Our approach integrates the unit-
commitment model with financial decision-making by in-
cluding the forwards and spot market activity within the 
scheduling decision model.   

3 STATISTICAL INPUT MODELS 

With the exception of the Unit Commitment model, all fea-
tures discussed in the previous section are represented by 
statistical models. The main purpose of these statistical 
models is to help generate a finite number of scenarios 
which are represented in the form of a tree. A scenario 
models the evolution of information during the decision 
process (Birge and Louveaux 1997). It is important to em-
phasize that our procedures are a combination of statistical 
methods and heuristics that maintain tractability of the de-
cision model.  

3.1 Modeling Electricity Demand 

Our load data represents an eleven-year period (1990 –
2000) of hourly loads in an APS service area. Since each 
day is modeled by “on-peak” and “off-peak” segments, we 
begin by transforming the hourly data into averages for 
“on” and “off” peak segments. The hours 6 a.m. to 10 p.m. 
are considered on-peak, and the remaining hours are con-
sidered “off peak.” In order to give the reader a sense of 
the load data, Figure 1 provides a three year sequence of 
“on peak” loads. The “off peak” loads also portray similar 
cyclical and seasonal trends, and these are confirmed by 
the Kendal-Tau and Turning Point tests.  

 

 
Figure 1: On Peak Load 
Data for 3 Years 

 
Based on seasonality of loads as depicted above, we 

partition the data for a year into four groups. The first has a 
decreasing trend, the next an increasing trend and soon. 
For each group/partition, we develop the following model: 

 

0 1 (1)d dL dα α ε= + +      
7

1 8 1 , ~ (0,1) (2)d i i d i d d d Nε β ε η β η η= − −= Σ + +  
where d stands for days of the year. In order to create load 
scenarios from such a model, we generate standard normal 
random numbers as suggested in (2). One shortcoming of 
this process is that we treat load as independent of  whole-
sale prices. We plan to incorporate a correlation between 
the two in our future work. 

For the data set we investigated, the de-trended load 
(for both on peak and off peak segments) followed 
ARIMA(7,0,1) for each partition. This is consistent with 
the study of Dupacova, Growe-Kuska and Roemisch 
(2000) who examined hourly loads (which can be consid-
ered as high frequency data) and concluded that 
SARIMA(7,0,9)× (0,1,0) was an appropriate model for 
hourly loads.  

In Figure 2, we provide plots of the remaining residu-
als, the autocorrelation, partial autocorrelation functions, p-
values of  Ljung-Box statistics, and qq-normal plot of re-
siduals. Both ACF and PACF of residuals are in the 
bounds and portmanteau test validates this with the qq-
normal plots as well.  These diagnostics validate the suffi-
ciency of the approach. 
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Figure 2: Diagnostic Checking of ARIMA(7,0,1) 
Fitting of De-trended Load Series, Quantile-
quantile Plot, and ACF of Remaining Residuals 

3.2 Modeling Electricity Forward Prices 

This part of the DASH model forms the core of our sce-
nario generation procedures. The inputs we use are the for-
ward prices for the preceding year, together with recent 
trends in the market. Let us first focus on the forward prices 
for the preceding year. These are available as hourly quotes 
which we transform into “on-peak” and “off-peak” average 

prices. We have following format for the prices: eτκπ , 

where π is the price, and ,τ κ and e denote the contract 

week, delivery week and segment, respectively. Here, the 
range of indices are: 1, 2,...52τ = , {1, 2,..., }Nκ = , 

{ , }e on off∈ , N denotes the last week in which delivery will 

happen. For example, 1,60,onπ is the price ($/Mwh) on  
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January 7th (i.e. end of week 1) for on-peak power delivered 
starting on March 1st (for the entire month of March). How-
ever we use “returns” to predict prices; that is, 

, , 4, , , , , ,( ) /e e e erτ κ τ κ τ κ τ κπ π π+= − . The quantity 4 above re-

flects the assumption of four weeks in a month.  
There are two important reasons behind this choice (of 

using returns over prices). First, this approach allows us to 
treat different power contracts (associated with different 
months) with the same scenario tree, thus reducing the com-
plexity of modeling the evolution of prices associated with 
each type of contract. We have empirically verified that it is 
the interval of time between contract and delivery that is im-
portant for modeling returns, and not the actual contract. 
Hence the same scenario tree remains a valid representation 
of returns for alternative contacts. Secondly, the economet-
rics literature recommends that “returns” are better for pre-
dictive purposes because empirical evidence suggests that 
they appear to have better properties (e.g.  stationarity) from 
a computational point of view (Taylor 1986).  

A discrete scenario tree may now be formed by group-
ing returns into subsets for each period (i.e. month), and 
modeling the return process as one that allows probabilistic 
transitions from one subset to another, over time. In order 
to maintain computational tractability, we consider only 
two subsets in each period: “High” and “Low” return 
states. Thus, the resulting scenario tree can be represented 
by a binary tree in which the returns can assume “High” or 
“Low” values over the course of the decision process.  

To assign “High” and “Low” values for the return 
states, we adopt a sampling-based procedure that is guided 
by recent observations of the return series. The nominal 
value that we assign to each state (“High” or “Low”) is the 
median of the corresponding group for that period. How-
ever, without accommodating extreme values, the scenario 
tree (and consequently the decisions themselves) overlooks 
extreme events opening up the possibility for catastrophic 
losses. We will of course, include some loss constraints 
within the decision model, but in the absence of extreme 
scenarios, such constraints can only have limited impact.  
Accordingly, we use a combination of medians and ex-
treme values (“Min” and “Max”) to assign values to the 
High and Low states. The precise manner in which we 
choose one or the other depends on a heuristic guided by 
market conditions prior to running the model.   

Finally, the formation of the scenario tree requires a 
specification of transition probabilities between nodes which 
represent information states. Recall that our scenario tree is 
binary, and hence there are only two probabilities that need 
to be specified. In the event that our heuristic produced two 
nodes that are represented by medians (High and Low re-
spectively), then we simply use equal conditional probabili-
ties for these two transitions. On the other hand, if the heu-
ristic produces an extreme value for one path, and a median 
for the other, then we associate a conditional probability of 
¼ for the extreme value, and ¾ for the median value. Our 
heuristic does not produce two extreme values from any 
node, and hence this possibility is not considered. 

The above process creates a binary scenario tree for 
the return series, which is then used to create prices scenar-
ios that are used within the stochastic programming model 
described in the following section.  

3.3 Modeling Gas Forward Prices  

The process used to model gas forward prices is similar to 
the process described in the previous subsection (on electric-
ity forward prices). We will also assume that the returns for 
gas and electricity are perfectly correlated so that a scenario 
obtained from the electricity forwards returns tree generates 
a similar scenario from the gas forwards return tree.  

3.4 Modeling Electricity Spot Prices 

Recall that the forward price process is discretized on a 
monthly basis. However, spot prices must be modeled on a 
different time scale. As discussed earlier, on-peak and off-
peak spot prices will be modeled on a daily basis, with the 
understanding that they will be correlated with an appro-
priate forward price scenario. As with the forwards, we re-
sort to modeling the return series of spot prices.  

The spot prices during a delivery month are generated 
from the following formulation (of spot returns): 

, , , , , , , ,e d e tp f e t d tr r z
τ ω ω ωσ= + , where ω is the node number of 

the forward scenario tree, 
,e tσ  is the standard deviation of 

spot returns which changes from delivery month to deliv-
ery month, and 

, ,e tfr
ω

is daily equivalent of the forward re-

turn on node ω  for month t. The quantity z represents a 
standard normal random variate. Here 

,e tσ  may be inter-

preted as the volatility associated with on-peak and off-
peak returns during month t and are estimated using a 
GARCH (Generalized Auto Regressive Conditional Het-
eroskedasticity) model (Hamilton (1994)). Because the ex-
pectation of spot market prices may be assumed to equal the 
expected forward prices (Hull 1997), the above relationship 
between spot and forward returns captures both the first as 
well as second moments of the spot price process.   

4 THE DECISION MODEL 

The DASH model may be classified as a multi-stage sto-
chastic integer program which recommends forward deci-
sions on a here-and-now basis, whereas, the operational 
decisions (generation, spot market activity etc.) are used to 
evaluate the viability of the portfolio. In this sense, the 
generation and spot market decisions are adaptive (i.e. 
wait-and-see), and allow us to compute medium (six 
months to a year) decisions without being mired in daily 
(here-and-now) details. 
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In formulating the stochastic program, all decision 
variables and parameters are dependent on the scenario. 
However, in the interest of simplifying the notation we 
have suppressed this dependence below. We remind the 
reader that all forwards variables will be required to satisfy 
the non-anticipativity requirements of stochastic program-
ming (Birge and Louveaux 1997). The formulation is pre-
sented in two parts: the financial problem and generation 
costing problem. 

4.1  The Financial Problem 

Scenario Independent Parameters 
 

α   : Max liquidity limit coefficient; 
 T  : Number of periods; 
 

Scenario Dependent Parameters 
 

tePPτ  : Price of power forward for delivery period 

t, peak e (on/off peak) at contract period τ; 

tPG τ  : Price of gas forward for delivery period t, 

at contract period τ; 
 

Scenario Dependent Decision Variables 
 

teFPτ  : Power forward for delivery period t, peak e 

(on/off peak), signed at contract period τ  
(positive for long position, negative for 
short position); 

+
teFPτ  : Power forward in long position for delivery 

period t, peak e (on/off peak), signed at 
contract period τ; 

−
teFPτ  : Power forward in short position for deliv-

ery period t, peak e (on/off peak), signed at 
contract period τ; 

tFG τ  : Gas forward in long position for delivery 

period t, signed at contract period τ; 

teYPτ  : Power forward for delivery period t, peak e 

held at period τ (positive for long position, 
negative for short position); 

teYLτ  : Power forward in long position for delivery 

period t, peak e held at period τ;  

teYSτ  : Power forward in short position for deliv-

ery period t, peak e held at contract period 
τ;  

tYGτ  : Gas forward for delivery period t held at 

contract period τ;  
 

Scenario Dependent Constraints 
 

−+ += tetete FPFPFP τττ           ττ ≥∀ te,, ; 

tetete YSYLYP τττ +=           ττ ≥∀ te,,  ; 
+

− += tetete FPYLYL τττ )1(      ττ ≥∀ te,, ; 

(Power forward balance in long position at period τ; 
for 1=τ , initial position teYL0  is assumed given); 

−
− += tetete FPYSYS τττ )1(      ττ ≥∀ te,,  

(Power forward balance in short position at period τ; 
for 1=τ , initial position teYS0  is assumed given); 

ttt FGYGYG τττ += − )1(      ττ ≥∀ te,,  

(Gas forward balance at period τ; for 1=τ ; 
initial position tYG0  is assumed given); 

te
Tt

te
Tt

YLFP )1(
],[],[

−
∈

+

∈
∑∑ ≤ τ

τ
τ

τ

α      e,τ∀  

(Max liquidity limit for long position); 

te
Tt

te
Tt

YSFP )1(
],[],[

−
∈

−

∈
∑∑ ≤ τ

τ
τ

τ

α      e,τ∀  

(Max liquidity limit for short position); 
 
The last two constraints above provide a way control 

the extent to which a portfolio is allowed to change. 
These constraints help avoid speculation, thus limiting 
risk exposure. The less the value ofα , the tighter the 
control on the trajectory allowed by the model is. Finally, 
there are two important factors required in specifying the 
financial problem. 

 
• Non-anticipativity constraints require that scenar-

ios which share the same history until period t 
should be associated with decisions which have 
the same values until period t. These linear con-
straints couple decisions from different scenarios, 
thus allowing a well hedged plan. 

• The objective function for the financial problem 
maximizes discounted expected profits associated 
with the portfolio. In calculating the profits, we 
accommodate the generation cost, which is com-
puted via the model discussed next.   

4.2 The Generation Problem 

With each scenario we associate a generation problem that 
models power production. This is accomplished via a se-
quence of biweekly unit-commitment problems. Thus for 
any scenario, there will be twice as many unit-commitment 
problems as there are months in the financial model. In this 
formulation, the generation and spot market variables are 
allowed to be adaptive. As before, the notation suppresses 
the dependence on scenarios. 
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Scenario Independent Parameters 
 

J : The number of segments in a period; 
Gas : The set of gas generators; 
p(j) : Peak status(on/off) of segment j; 
j(d) : The set of segments associated with day d; 
 P : Regulated power price; 
 L : Maximum loss limitation for any day; 

eH  : Hours of one on/off peak, eH =16h for e=on 

peak, and 8h for e=off peak; 

iQ  : Maximum generation capacity of generator i; 

iq  : Minimum generation capacity of generator i; 

iL  : Minimum up time requirement for generator 

i; 

il  : Minimum down time requirement for genera-

tor i; 
)(xF : Conversion formula (based on heat rate) 

specifying the amount of gas needed to pro-
duce electricity; 

 
Scenario Dependent Parameters 

 

itjW  : Scheduled outage ( itjW =0, if outage is sched-

uled in period t, segment j for generator i; 1, 
otherwise); 

itjω   : Forced outage ( itjω =0, if outage is forced in 

period t, segment j for generator i; 1, other-
wise); 

tjPS : Price of power in spot market in period t, seg-

ment j; 

tjD   : Electricity demand in period t, segment j; 

 
Scenario Dependent Decision Variables 

 

tjG   :  Total generated power in period t, segment j; 

tjC   : Total generation cost in period t, segment j; 

itjG : Power generated by generator i in period t, 

segment j; 

itjU : Decisions about turning on/off generator i in 

period t, segment j (binary variables); 

tjSP  : Power exchanged with spot market in period 

t, segment j (positive for purchase, negative 
for sale); 

 
Scenario Dependent Constraints 
 

tjtjtjtte DGSPYP =++     jt,∀ , e=p(j) 
( Demand -generation- forward - spot relationship); 
)(

,
itj

jGasi
tt GFYG ∑

∈

=     t∀  

(Conversion from gas to power for period t); 

itj
i

tj GG ∑=                jt,∀  

(Total generated power at period t, segment j); 

itjiitjitji UQGUq ≤≤     jti ,,∀  

(Operating range for each generator); 

τitjititj UUU ≤− −1, it,∀ , τ=j+1,…min{j+Li-1,J}, j=2,…J, 

(Minimum up-time requirement); 

τititjjit UUU −≤−− 11, it,∀ ,τ=j+1,…min{j+li-1,J}, j=2,…J, 

(Minimum down-time requirement); 

itjitj WU ≤              jti ,,∀   (Scheduled outage); 

itjitjU ϖ≤                    jti ,,∀   (Forced outage); 

0]([ )(
)(,

≥+−−+ ∑∑
∈≤

LHCPSSPPDHPPFP jptjtjtjtj
djj

etete
et

ττ
τ

 

∀d, t is the period associated with the day d (Max 
daily loss constraint); 

 
Finally, there is an important factor required in speci-

fying the generation problem. The objective function for 
the generation costing problem minimizes the generation 
cost (including the cost in spot market activities) associated 
with each segment in the planning period.                                   

4.3 The Solution Approach 

The stochastic programming model presented above is a 
very large scale optimization problem. Fortunately, the 
model is amenable to solution using decomposition tech-
niques. Our approach decomposes the stochastic program 
into three interrelated optimization problems which are 
motivated by a nested column generation (i.e. Dantzig-
Wolfe) type method. The three problems may be summa-
rized as follows. 

 
1. We use a master problem to enforce non-

anticipativity restrictions. Each scenario is repre-
sented by a collection of columns in this problem, 
and its goal is to find a convex combination of col-
umns of each scenario that also satisfy non-
anticipativity restrictions. Initially, a Phase I prob-
lem is solved to obtain a feasible solution to this 
problem.  We note that the objective function coef-
ficient for each column in this problem represents 
the total profit under a particular scenario of for-
wards prices, spot prices, and electricity demand 

2. Given the price for achieving non-anticipativity 
from the master problem described above, a mid-
level coordinating problem is formulated to make 
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the best forward decisions for each scenario. This 
is essentially the same formulation as the financial 
problem described in section 4.1. However, the 
summation of forward decisions for a certain de-
livery period is once again represented via a con-
vex combination of forward columns that are gen-
erated by generation costing model where the 
summation of forward decisions appear in the 
demand constraint. 

3. Finally, the lowest level problem, which generates 
the aggregation (i.e. summation) of forward col-
umns for the higher levels, consists of a series of 
biweekly unit-commitment problems. As with the 
level 2 coordinator, this problem assumes that the 
scenario is given, and a series of deterministic in-
stances of the unit commitment problem are 
solved. The prices of forwards in this model are 
modified by the dual prices from forward balance 
constraints in the mid-level coordinator. 

 
The details associated with the above mathematical 

programming procedure will be the subject of a forthcom-
ing paper, and providing further details here would not be 
germane to the experimental study provided in this paper.    

5 EXPERIMENTAL RESULTS 

In this section we present experimental evidence that the 
stochastic programming approach provides significant ad-
vantages over other commonly used policies for hedging.  
On such policy is a “fixed-mix” policy, which in this in-
dustry may be described as follows. 

On any contract date, an appropriate hedging position 
for a future delivery date (month) is one that is determined 
according to the following strategy. Make a prediction of 
expected demand and expected capacity for the delivery 
month. If expected demand exceeds expected capacity, 
then assume a long position for forwards in that delivery 
month, and the quantity of this transaction should be a 
fraction “f” of the difference. On the other hand, if ex-
pected capacity exceeds expected demand, then one should 
assume a short position for forwards in the delivery month 
being considered. Once again, the quantity associated with 
this transaction should be a fraction  “f” of the difference.  

One can devise several  variations on this scheme. For 
instance, instead of using expected demands and capaci-
ties, one may use scenarios to determine scenario-
dependent strategies, and then use some weighted averag-
ing to determine the exact mix. For our experiments we 
only tested the basic scheme outlined in the previous para-
graph. However, we ran our simulations using several val-
ues of the fixed-mix fraction f, including 0, 0.1, 0.2, 0.3 
and 0.4.  
5.1 The Backcasting Experiment 

As outlined in the introduction, this experiment covers a 
five month operating period from January 2001 through 
May 2001, with hedging decisions being made once each 
month. The decisions at the beginning of each month are, 
of course, made prior to observing the markets. Once the 
transactions are carried out, no portfolio changes are al-
lowed for the rest of the month. During this period, we do 
run a generation costing simulation based on biweekly 
unit-commitment. At the start of the next month, we once 
again use the fixed-mix policy to obtain the newly rebal-
anced positions, and the process resumes again. For all 
runs reported here, we used an initial position of forwards 
amounting to 15% of the averaged electricity load for a 
certain period. The electricity market data for our study re-
flects prices at Palo Verde, AZ, whereas, the gas market 
prices reflect data from Henry Hub, LA. The hedging deci-
sions made in this study allowed delivery dates up to six 
months in the future. For the sake of this study, transaction 
costs were not included, although such calculations are 
easily accommodated within a simulation. Moreover, since 
all rules carry out the same number of transactions, the dif-
ference in transactions costs between the different policies 
can be ignored. Finally, a word is about costs and revenue 
calculations. Costs/revenues are calculated using the unit 
commitment (generation) model which includes spot mar-
ket and forwards activity. Thus revenues are accounted for 
in a delivery month only.  

 

  Figure 3: Comparisons between fixed-mix strategies 
 
The experiments reported in this study are based on 

data obtained from Pinnacle West Capital. In order to 
maintain confidentiality of  the data, we will report per-
formance in terms of fractions, with the best policy assum-
ing the value of 1. Figure 3 is based on outputs that showed 
that using f = 0.1 provided the most profitable fixed-mix 
strategy. Note that although some other fractions appear to 
be competitive during certain months, using f = 0.1 pro-
vides the overall winner among the fixed-mix strategies. 

Next we proceed to experiments with the Stochastic 
Programming approach. These experiments were run with 
the same data as above, except that the fixed-mix hedging 
rule was replaced by decisions from the stochastic pro-
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gramming model. During each month (January 2001 
through May 2001), we run the stochastic programming 
model once. As before, decisions are made before observ-
ing market prices at Palo Verde, AZ and Henry Hub, LA.  
The planning period used within the decision model was 
five months long  (i.e. T = 5). Hence as in the previous ex-
periments, delivery dates of six months in the future were 
permitted in the model. Thus, the experimental setup, and 
data are exactly the same as in the previous study, and this 
permits comparisons between hedging decisions from sto-
chastic programming and those from the fixed-mix rule. 

Figure 4: Comparing DASH with Fixed-mix Strategy 
(Backcasting  Data) 

 
In Figure 4 we use the best fixed-mix strategy (f = 0.1) 

as the basis for our comparisons. We made two series of 
runs with the DASH decisions: one using α = 0.3 (i.e. 30% 
change allowed in the portfolio from one month to the 
next), and another series of runs using α = 0.5 (i.e. 50% 
change allowed in the portfolio from month to month).  
The motivation for such controls was discussed earlier in 
the paper (see section  4.2). In any event, both series of 
DASH runs perform significantly better than the best 
fixed-mix strategy. It turns out that the series of revenues 
for α = 0.5 exceeds that for the best fixed-mix strategy by 
approximately 7% per month, on average. This is a signifi-
cant advantage in favor of the DASH model.  

Before closing this subsection, we should comment on 
a certain initialization bias that results from restrictions 
imposed by the initial portfolio. Recall that when we allow 
a 50% change allowed in the portfolio from month to 
month (α = 0.5), it takes about 2 months for the effect of 
the initial portfolio to wear off. It is therefore appropriate 
to focus our attention on the performance of DASH (with 
α = 0.5) for months 3, 4 and 5. Similarly, when α = 0.3, 
the output for months 4 and 5 are critical. Thus if we set 
aside the initialization bias, the performance of the DASH 
model for the period March – May 2001 is clearly superior 
to all tested fixed-mix strategies.  

5.2 Experiments with Synthetic Scenarios 

In order to test the robustness of the decisions provided 
by the DASH model, we created synthetic scenarios and 
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tested the decisions provided by the model against these 
scenarios. In conducting this phase of our experiments, 
we did not re-optimize to allow DASH to adapt to the  
observed (synthetic) scenario; instead, we used the  
decisions obtained from the backcasting experiment, and 
applied those to the synthetic scenarios.  Hence the gains 
reported here are lower bounds on potential  
improvements. 
 The synthetic scenarios were created in two steps.  
First, we create a series of forward prices from a discrete-
time stochastic process with each time step reflecting the 
passage of a month. During each month, we draw a ran-
dom number representing a particular outcome of forward 
prices. We allow four such outcomes in any month: 
{Max, High-Median, Low-Median, Min}. The values for 
these quantities are obtained from historical data as de-
scribed in section 3.2, and the probability of these out-
comes is assumed to be {1/8, 3/8, 3/8, 1/8}. Note that 
over a five month period, we can create a total of 1024 
scenarios. For the purposes of our tests, we generate 30 
scenarios, against which the model is tested. For each of 
these scenarios, we also generate spot market prices, and 
loads. The latter are created in the same manner as de-
scribed in section 3.   
 Due to the initialization bias in the first two months 
(see the last paragraph of section 5.1), the comparison we 
report pertains to months 3, 4 and 5. This comparison in-
volves the DASH model (α = 0.5) and the fixed-mix 
strategy using f = 0.1. Figure 5 depicts the fraction of dif-
ferences (i.e. (DASH – Fixed-Mix/Fixed-Mix)) over all 
30 scenarios, for months 3, 4 and 5. Upon examining this 
figure, it is clear that DASH is the winner over most sce-
narios, with the magnitude of wins being significantly 
higher than the magnitude of losses. A summary of Fig-
ure 5 in terms of win-loss statistics is provided in Table 1. 
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 Figure 5: Comparing DASH Runs with Fixed-mix  
(Synthetic Scenarios)  

 
Table 1: Win-Loss Statistics 

Month\Statistics Wins-Losses 
for DASH 

Average 
Size of 
Wins 

Average 
Size of 
Losses 

3 22-8 3.2% 4.7% 

4 19-11 11.03% 6.7% 

5 19-11 21.81% 12.8% 
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The win-loss advantages in favor of DASH are unmis-
takable. Moreover, these results may underestimate the 
gains because the DASH model was not re-optimized 
based on observations of the evolving (synthetic) scenario.  

6 CONCLUSIONS 

In this paper we have provided a summary of the DASH 
model, and reported experimental evidence that the sto-
chastic programming approach provides a powerful tool 
for scheduling and hedging in deregulated electricity mar-
kets. There are several additional features (e.g. options, 
swaps etc.) that are being incorporated into the DASH 
model, and future papers will report on these extensions.  
The integration of market and production data with statisti-
cal models, optimization models, and simulation within 
one software framework requires fairly heavy investments 
in modeling and simulation technology. However, as dem-
onstrated by our experiments, such an investment is very 
likely to bear fruit.  

ACKNOWLEDGMENTS 

This research has been partially supported by a grant from 
the National Science Foundation. We thank several of our 
colleagues at Pinnacle West Capital, the holding company 
for APS. In particular, we thank Ned Lesnick (formerly at 
Pinnacle West Capital), Wen Lin,  Bill Maese, Steve Mur-
phy, and Gary Zhu for their insights and support. 

REFERENCES 

Bertsekas, D.P., G.S. Lauer, N.R. Sandell Jr., and T.A. 
Posbergh. 1983. “Optimal short-term scheduling of 
power systems,” IEEE Transactions on Automatic 
Control, AC-28, pp. 1-11. 

Birge, J.R. and F. Louveaux. 1997. Introduction to Sto-
chastic Programming, Springer 

Dupacova, J., N. Growe-Kuska and W. Romisch. 2000. 
“Scenario reduction in stochastic programming: an ap-
proach using probability metrics,” Working paper, In-
stitute for Mathematics, Humboldt University, Berlin, 
Germany. 

Feinberg, E.  2002. “Electricity Power Load Pocket   Mod-
eling and Forecasting,” University of Florida Seminar, 
March. 

Georgantzas, N. C. and W. Acar. 1995. Scenario-Driven 
Planning, Quorum Books, Westport, CT. 

Hamilton, J. D. 1994. Time Series Analysis, Princeton Uni-
versity Press. 

Hobbs, B.F, M.H. Rothkopf, R.P. O”Neill, and H-P. Chao 
(eds.). 2001. The Next Generation of Electric Power 
Unit Commitment Models, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands. 
Hull, J.C. 1997. Options, Futures, and Other Derivatives, 
Prentice-Hall, NJ. 

Nowak, M.P. and W. Romisch. 2000. “Lagrangian relaxa-
tion applied to power scheduling in a hydro-thermal 
system under uncertainty,” Annals of Operations Re-
search, 100, pp. 251-272. 

Takriti,S., J.R. Birge and E. Long. 1996. “A stochastic 
model for the unit commitment problem,” IEEE Trans. 
of Power Systems, 11, pp. 1497-1508. 

Takriti, S., B. Krasenbrink  and L. S-Y. Wu. 2000. “Incor-
porating fuel constraints and electricity spot prices into 
the stochastic unit commitment problem,” Operations 
Research, 48, pp. 268-280. 

Taylor, S. 1986. Modeling Financial Time Series, John 
Wiley & Sons. 

AUTHOR BIOGRAPHIES 

SUVRAJEET SEN is Professor of Systems and Industrial 
Engineering at the University of Arizona. His interests are 
in optimization algorithms, especially those arising in sto-
chastic optimization problems. He has published over 60 
papers, many of which deal applications arising in electric 
power systems, communications networks and transporta-
tion. He has been active in INFORMS for over 20 years, 
and led the formation of the very successful Optimization 
Section. He is also a past Optimization (Area) Editor for 
Operations Research, and a past President of the 
INFORMS Telecommunications Section. He can be 
reached at  <sen@sie.arizona.edu>. 

LIHUA YU is a PH.D. student of Systems and Industrial 
Engineering at University of Arizona. He received his 
Master’s degree from University of Arizona in May, 2002. 
His research interests are mainly in stochastic program-
ming and its application to power portfolio optimization. 
His email address is < lihua@email.arizona.edu>. 

TALAT GENC is a Ph.D. student of Economics and M.S. 
student of Industrial Engineering at the University of Ari-
zona. His research interests are industrial organization and 
applied econometrics. He is working on stochastic general 
equilibrium and power portfolio optimization. He can be 
reached at  <tgenc@u.arizona.edu>. 

mailto:sen@sie.arizona.edu
mailto:lihua@email.arizona.edu?subject=About%20WSC02%20paper
mailto:tgenc@u.arizona.edu

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1530
	02: 1531
	03: 1532
	04: 1533
	05: 1534
	06: 1535
	07: 1536
	08: 1537
	09: 1538


