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ABSTRACT

Continuing the previous work on growth stocks, we propo
a diffusion model for growth stocks. Since growth stoc
tend to have low or even negative earnings and high volati
it is a great challenge to derive a meaningful mathemat
model within the traditional valuation framework. Th
diffusion model not only has economic interpretations
its parameters, but also leads to some interesting econo
insight — the model postulates mean reversion (with a h
mean reverting level) for growth stocks, which could
useful in understanding the recent boom and burst of
“internet bubble”. Simulation and an empirical evaluation
the model based on the size distribution are also presen
The simualtion and numerical results are quite encourag

1 INTRODUCTION

Although the components of growth stocks may vary ov
time (perhaps consisting of railroad and utility stocks
the early 1900’s, and biotechnology and internet sto
in 2002), studying their general properties is essentia
understand financial markets and economic growth in
past, at present, and perhaps in the future too.

Motivated by Ijiri and Simon (1977) on size distribution
Kou and Kou (2001) proposed a discrete model for grow
stocks (e.g., biotechnology and internet stocks in 2000
utility and railroad stocks in the early 1900’s). The mod
only uses a unique feature of growth stocks — their h
volatility. Neither earnings (which are not available for mo
of growth stocks) nor forecasted sales numbers (which are
only unreliable, as evident in the event of the recent “inter
bubble”, but also lack a clear mathematical relationship w
stock prices) are used in the model.

In particular, it is shown in Kou and Kou (2001) that
the market capitalization of the stocks is modeled as a bi
death process, then, in the steady state, the model lea
an almost linear curve for stocks with high volatility (suc
as biotechnology and internet stocks) when the log-mar
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capitalization is plotted against the log-ranks; meanwhile
for non-growth stocks such a phenomenon should not b
expected, primarily because of the very slow convergenc
of the birth-death process to its steady state distribution du
to a low volatility. Therefore, the discrete model also shed
light on an empirically observed puzzle that there is an
“almost” linear relationship between the logarithm of the
market capitalization of growth stocks and the logarithm o
their associated ranks, which was first reported in the Wa
Street Journal (Dec. 27, 1999) only for internet stocks (thi
observation was summarized later in a report by Maubouss
and Schay, 2000). Translating into a probabilistic language
this empirical puzzle means that the size distribution of th
growth stocks almost follows a power law, and it is not so
for ordinary stocks.

This article furthers the study of growth stocks, attempt
ing to find a continuous diffusion model for growth stocks.
We achieve it by first consider the weak convergence o
the birth-death processes; then, guided by that limit, w
investigate a general class of diffusion processes to identi
the processes that can lead to the size distribution observ
for growth stocks.

The continuous diffusion model also leads to some
interesting economic insight. Not only do the parameter
in the model have some economic interpretations (see, e.
Remark 2 in Section 6), but also the model postulates mea
reversion for growth stocks with ahighmean reverting level.
This may be useful in understanding therecent boom and
burst of the “internet bubbles”.

2 THE MODEL

2.1 Review of the Discrete Model

The birth-death process used in Kou and Kou (2001) is
linear birth-death process with immigration and emigration
More precisely, consider at timet a stock with total market
capitalizationX(t), taking values in non-negative integers
X(t) = i, i = 0, 1, 2, .... (The unit ofX(t) could be,
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for example, millions or billions of dollars.) The model
postulates that givenX(t) being in statei, the instantaneous
changes are:i → i+1, with rateiλ+g, i ≥ 0; i → i−1,
with rate iµ+ h, i ≥ 1. The two parametersλ andµ rep-
resent the instantaneous appreciation and depreciation ra
of X(t) due to the market fluctuation; the model assume
that they influence the market capitalization proportional
to the current value. In general, because of the difficulty
predicting the instantaneous upward and downward pri
movements, for both growth stocks and non-growth stoc
λ andµ must be quite close,λ/µ ≈ 1. In addition, for
growth stocks, bothλ andµ must be large, because of the
high volatility. The requirementλ < µ is also postulated to
ensure that the birth-death process has a steady state di
bution. The parameterg models the rate of increase inX(t)
due to non-market factors, such as the effect of addition
shares being issued through public offerings, or the effe
of warranties on the stock being exercised (resulting in ne
shares being issued). The parameterh models the rate of
decrease inX(t) due to non-market factors, such as th
dividend payment; for most of growth stocksh ≈ 0, as no
dividends are paid.

2.2 Weak Convergence

In this paper we want to derive continuous diffusion mode
for growth stocks. An intuitive approach is to consider th
limit of the discrete model, with the jump size being 1 an
the infinitesimal incrementdXt satisfying

dX(t) =
 1, with prob. (λX(t)+ g)dt + o(dt)
−1, with prob. (µX(t)+ h)dt + o(dt)
0, otherwise.

Now if we let the jump size be1s, then we have a birth-death
process with

dX(t) =
 1s, with prob. (λX(t)+ g)dt + o(dt)
−1s, with prob. (µX(t)+ h)dt + o(dt)

0, otherwise.

The mean ofdX(t) is [(λ−µ)X(t)+(g−h)]1s ·dt+o(dt);
the variance ofdX(t) is [(λ+µ)Xt+(g+h)]1s2·dt+o(dt).
If we let 1s → 0 in such a way that(λ − µ)1s →
−εσ 2 < 0, (g − h)1s → aσ 2 > 0, (λ + µ)1s2 → σ 2,

and (g + h)1s2→ 0, then the limiting stochastic process
satisfies

E(dX(t)|Ft ) = (−εσ 2X(t)+ aσ 2)dt,

var(dX(t)|Ft ) = σ 2X(t)dt.

With the above parameterization, it is intuitively reason
able to expect that the birth-death process would conver
tes
s
y
f
e
s

tri-

al
ct
w

s

-
ge

to a limiting diffusion process that satisfies the stochast
differential equation

dX(t) = (−εσ 2X(t)+ aσ 2)dt + σ√X(t)dW(t), (1)

with X(0) = x > 0, whereW(t) is a standard Brownian
motion. The following proposition makes the intuition
rigorous.
Proposition 1. Under suitable regularity conditions, the
birth-death process converges weakly to the diffusion proce
X(t) in (1).

See Kou and Kou (2002) for a list of the regularity
conditions, the precise meaning of “converges weakly”, a
well as the proof of the proposition.

The Model. Proposition 1 motivates us to consider a
general model

dX(t) = (−εσ 2X(t)+ aσ 2)dt + σXγ (t)dW(t), (2)

withX(0) = x > 0, whereγ > 0. Note that whenγ = 1/2,
we have the limiting diffusion process in Proposition 1.

Of course, without the previous model based on th
birth-death process, it would be very hard to imagine
model like (2). Therefore, the discrete birth-death proce
provides a nice intuition for the continuous diffusion models
However, the diffusion model has its own merits: (1) Gen
erally speaking, diffusion models can lead to many close
form solutions, whence have better analytical tractabilit
than birth-death processes; (2) it is possible to do riskle
hedging for diffusion models, while it is impossible to do
so for many discrete models.

2.3 High Mean Reverting Level

Before we analyze the model, we must answer a questi
first: whether the model (2) makes any economic sense

The most interesting feature of the model (2) is that
has mean reversion which is somewhat unusual for mode
of stock prices. However, if we assume thatε ≈ 0, then the
mean reverting levela/ε is high. The high mean reverting
level effectively yields that, although ultimately the proces
is mean reverting (in both transient and steady states), with
a reasonable time period it may bevery difficult to observe
the mean reverting phenomenon (even in the steady sta
Once we accept this model with a high mean revertin
level, then it is easy to see that the high mean reverting al
provides some interesting insight aboutthe recent boom
and burst of the “internet bubble”: in other words “what
goes up must comes down eventually”, but it may take
while to do so (even if the process is already in the stead
state). Note the difference between mean reversion a
convergence from the transient states to the steady stat

The bottom line is that growth stocks and non-growt
stocks may be two different animals, and one may hav
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mean reverting and the other may not. Therefore, we s
take this assumption as a key feature of the model:
Assumption: ε ≈ 0.

Note that, due to the problem of measurement units
makes more sense to talk about the relative magnitude
ε. In other words,ε ≈ 0 means thatε is small relative to
other parameters such asa andσ 2.

From a finance viewpoint, this assumption also mak
the current model different from the CEV model in Cox an
Ross (1976) and CIR model (or the Feller process) in C
Ingersoll, and Ross (1985). To be more precise, (1) o
model has mean reversion while the CEV model does n
(2) Whenγ = 1/2, the same process is called CIR mod
for interest rates, but there are some major differences
for example, the mean reverting levels are quite differe
More importantly, here we point out that the same proce
with a small negative drift (ε is a very small number) and
a high mean reverting level can be used to model grow
stocks, giving an explanation to the size distribution puz
(see Section 5) as well as modeling the boom and burs
the growth stocks.

The current model has several attractive features.
It leads to an explanation of the size distribution puzz
as will be outlined in Section 4. (2) Because the curre
diffusion model has a simple form, it leads to an analytic
expression of the steady state distribution which in tu
yields a simple way to price growth stocks relative to the
peers; see Sections 3 and 5.2. (3) Recent events relate
the boom and burst of the “internet bubble” further indica
the usefulness of introducing the concept of high-level me
reverting to the analysis of growth stocks.

3 PROPERTIES OF THE DIFFUSION MODEL

In general, unlessγ = 1/2 (called Feller process) orγ = 1
(called Wong process) it is impossible to write down th
transition density ofX(t) in (2) explicitly. However, we
can compute the steady state distribution ofX(t) as the
following.
Theorem 1. As t → ∞, the distribution of the solution
X(t) of (2) converges to a steady state distribution.

(a) Whenγ > 1, f (x), the density of the steady stat
distribution, is given by

f (x) = C2x
−2γ

· exp{2( ε

2γ − 2
x2−2γ − a

2γ − 1
x1−2γ )}.

The tail probability has an asymptotic expressio
F(z) := P(X(∞) > z) ∼= Cz1−2γ , as z → ∞,
whereC2 and C are two normalizing constants
Here and hereaftera ∼= b means that lima/b = 1.
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(b) When γ = 1, f (x) = C2x
−2(1+ε)e−2a/x, with

the tail probabilityF(z) ∼= Cz−1−2ε, for some
constantsC2 andC.

(c) When 1/2< γ < 1,

f (x) = C2x
−2γ exp(− ε

1− γ x
2−2γ )

·exp(− 2a

2γ − 1
x1−2γ ),

with the tail probability F(z) ∼=
Cz−1 exp( ε

γ−1z
2−2γ ).

(d) Whenγ = 1/2, f (x) = C2e
−2εxx2a−1, with the

tail probability F(z) ∼= Ce−2εzz2a−1, for some
constantsC2 andC.

(e) When 0< γ < 1/2,

f (x) = C2x
−2γ exp(− ε

1− γ x
2−2γ )

·exp(− 2a

2γ − 1
x1−2γ ),

and

F(z) ∼= Cz−1 exp(− ε

1− γ z
2−2γ )

·exp(− 2a

2γ − 1
z1−2γ ),

for some constantsC2 andC.

Here we only show Case (d), which is the easiest one t
prove. The proofs for the other cases are more complicate
see Kou and Kou (2002). Forγ = 1

2, X(t) is the well-
known square-root process (see Karlin and Taylor, 1981
p. 334), whose steady-state distribution is well known to
be gamma with densityf (x) = Ce−2εxx2a−1. It follows
easily that the tail probabilityF(z) ∼= Ce−2εzz2a−1.

4 GENERAL PROPERTIES OF
SIZE DISTRIBUTION

ConsiderM (hereM is an unknown quantity) growth stocks
governed by the same diffusion process (2), among whic
theK largest stocks (in terms of their market capitalization)
are included in a group to be studied. Suppose we rank th
market capitalization from 1 toK and denote the resulting
ranked values asX(1), X(2), ...,X(K), with X(1) being the
largest, andX(2) the second largest etc. Then the empirica
tail distributionF̃ (x) (the empirical version ofF ) evaluated
at X(i) is simply F̃ (X(i)) = i/M, i = 1, ..., K. Now
assume

(A1) The diffusion process has reached the steady stat
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(A2) For each stock included in the group, the marke
capitalization is large; in other words, evenX(K)
is large.

Then we can apply the result of Theorem 1 to study th
size distribution of growth stocks. It is worth pointing out
that assumption (A2) implies that the model is only valid
for large-cap growth stocks. According to Theorem 1, ther
are five different cases for the size distribution. Table
below summarizes the size distribution under the five case

Table 1: Size Distribution in Five Cases.
Cases Slope in the size distribution:
γ > 1 − 1

2γ−1

γ = 1 − 1
1+2ε

1
2 < γ < 1 −1
γ = 1

2 − 1
1−2a

0< γ < 1
2 Nonlinear pattern

The detailed derivation of the above result is give
in Kou and Kou (2002). Here we only give a deriva-
tion of Case (d),γ = 1/2, as it is the simplest one. By
Theorem 1, in the steady state, for largez, logF(z) ≈
−2εz − (1− 2a) logz + C, for some constantC. There-
fore, empirically with X(i) = z, we shall expect that
log F̃ (X(i)) = log(i/M) ≈ −2εX(i)−(1−2a) logX(i)+C.
Rearranging the terms above yields

logX(i) ≈ CM − 1

1− 2a
log i − 2ε

1− 2a
X(i) (3)

for some constantCM that depends onM. Hence, the slope
in the size distribution is− 1

1−2a .

Equation (3) provides a link between the market cap
italization of the stocks and their relative ranks within the
group. However, since it involves a nuisance parameterCM ,
a better equation can be obtained by eliminatingCM first,
as is typical in many standard statistical procedures. Th
can be done by taking the difference of logX(i)− logX(1):
for 1≤ i ≤ K,

log
X(i)

X(1)
≈ − 1

1− 2a
log i − 2ε

1− 2a

(
X(i) −X(1)

)
. (4)

Thanks to the assumptionε ≈ 0, the last term in (4) is
generally negligible.

5 SIZE DISTRIBUTION FOR BIOTECHNOLOGY
AND INTERNET STOCKS

5.1 Explaining the Size Distribution Puzzle

For biotechnology and internet stocks, the empirical ev
idences suggest that the slope of the size distribution
t

e

e

s.

-

is

-
is

always less than−1. Therefore, in view of the result of the
previous section, for biotech and internet stocksγ must be
1/2 in the model (2). In other words,

dX(t) = (−εσ 2X(t)+ aσ 2)dt + σ√X(t)dW(t), (5)

with X(0) = x > 0,which corresponds to the Feller process
also used in finance as the CIR model for the spot interest
rate (but here we have a high mean reverting level).

Remark 1. This, however, does not imply that for
other growth stocks, such as railroad and utility stocks back
in the 1900’s, or for any new groups of growth stocks in
the future,γ must be 1/2. It only says that currently for
biotechnology and internet stocksγ appears to be 1/2.

Now recall for large growth stocks (thus satisfying
assumption A2) we have derived in the previous section
the steady state size distribution (4), which explains why a
plot of log-market-capitalization versus log-rank displays a
linear pattern. However, it is important to note that the size
distribution in steady state is only relevant if the convergence
from the transient states to the steady state is fast enough,
i.e. if the convergence can be observed in a timely fashion.
A good measure of the convergence speed is the decay
parameter defined by

δ := sup{α ≥ 0 : p(t, x, y)− p(y) = O(e−αt ),∀x > 0},

wherep(t, x, y) = P(X(t) ∈ dy|X(0) = x) is the transition
density ofX(t) andp(y) is the steady-state density function.
Immediately from an expansion in Karlin and Taylor (1981,
p. 334), we getδ = εσ 2.

Two comments are needed. First, it is well known
that, due to the problem of measurement units, it is better
to compare the relative magnitude of differentδ’s, rather
than focusing on the absolute magnitude ofδ, which may
not provide much information. More precisely, comparing
decay parameters may give us some idea of different conver-
gence speeds among various stochastic processes. Second
the decay parameterδ affects the convergencein an expo-
nential way; in other words, a small difference inδ can
have a remarkable effect on the speed of convergence.

This helps to explain why the almost linear relationship
between the logarithm of the market capitalization and the
logarithm of the ranks does not appear for non-growth stocks.
There are at least two reasons. First, the mean reverting
diffusion model may not be valid for non-growth stocks.
Second, even if the model is valid for non-growth stocks, in
order to empirically observe such a linear phenomenon as
implied by (4), the convergence from the transient states to
the steady state must be fast enough. This in turn depends
on the magnitude of the decay parameterδ.

It is well known the volatility for growth stocks is much
larger than that of the non-growth stocks. For example,
Kerins, Smith, and Smith (2001) show empirically that the



Kou and Kou

at

fo
th
m
e

bl
he

ve
er

h
e
c
u

th
in

gy
ui
s
is

n

h
y

he

p
ve
v

of
ed
ie

r
et
ck

s

f

l

volatility of internet stocks may be at least five times th
of traditional stocks. In the model (5), ifσ of growth
stocks is five times larger, thenσ 2 is 25 times larger!
This leads to in a much larger decay rateδ (which affects
the convergence in an exponential way). Therefore,
non-growth stocks, although in the steady state plotting
logarithm of the market capitalization against the logarith
of the relative ranks might display a linear relationship, th
linear relationship may not emerge at all within a reasona
amount of time, due to the slow convergence from t
transient states to the steady state.

5.2 Relative Pricing of Growth Stocks

Equation (4) provides a way to price a growth stock relati
to its peers within the group (the contribution of the pe
group is to provide an estimate ofa andε, and the relative
ranks) by running a nonlinear regression subject to t
constraintsa > 0 and ε > 0. Once these parameters ar
obtained, the theoretical market capitalization of the sto
can be calculated according to equation (4), with the inp
being its rank.

To use the model to relatively price large-cap grow
stocks, it is important to keep in mind that the stocks with
the peer group should have similar parametersa andε (for
example, it may not be sensible to group biotechnolo
stocks with internet stocks as their parameters may be q
different). However, in principle, the relative pricing doe
not requireσ 2 to be the same; the only requirement
that σ 2 must be very large, asσ 2 only controls the speed
of convergence from transient to steady state and does
enter the equation (4).

6 SIMULATION AND NUMERICAL
ILLUSTRATION

To this whether the model (1), fits our intuition of growt
stocks, Figure 1 provides an illustration of the model b
simulating a sample pat of (1) for about 10 years. T
parameters used here are:X(0) = 500, εσ 2 = 0.001,
aσ 2 = 0.5, andσ = 100%.

The sample path suggests two things: (1) The sam
path is quite volatile. (2)Although the sample path may ha
a mean reversion, one may not notice the mean reversion e
within 10 years, which confirms the theoretical property
the model that mean version may be difficult to be observ
Note the difference between mean reversion (in both trans
and steady state) and convergence to the steady state.

To illustrate the results of the size distribution, fo
biotechnology stocks we plot the logarithm of their mark
capitalization relative to the largest biotechnology sto
versus the logarithm of their ranks, i.e. log(X(i)/X(1))
versus logi. The list of 139 biotech stocks is given in
Appendix C in Kou and Kou (2001). The result indicate
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Figure 1: A Simulated Sample Path of the Model

that it shows a clear linear trend, a pattern also predicted
by the diffusion model. In contrast, for other non-growth
stocks with low volatility, such as Dow transportation and
saving and loan stocks, the plot suggests that the pattern
of the size distribution is far from linear, which is again
expected from the model here.

Table 2 reports the estimatedâ and ε̂ from (4), as well
as theR2 for six trading days, which represent days from
January 2, 1998, and every 100 trading days onward. Note
that, comparing tôa, the estimated̂ε’s are all very small,
confirming our earlier assumptionε ≈ 0. TheR2 being
at least 97% directly supports the prediction of the model.
The regression results of internet stocks are quite similar to
those of biotechnology stocks, and are omitted here. Table
3 reports the estimated parameters and theR2, as of August
22, 2001 (after the burst of the “internet bubble”). Again
theR2 is at least 96%. The fitting is good even under this
severe market downturn.

Table 2: Estimateda andε for Biotechnology Stocks
â ε̂ R2

Jan 2, 98 0.0400 6.905× 10−10 97.8%
Aug 7, 98 0.0825 6.260× 10−10 98.2%
Mar 15, 99 0.1475 5.285× 10−10 98.3%
Oct 15, 99 0.1360 5.460× 10−10 99.2%
May 19, 00 0.0985 6.020× 10−10 98.6%
Dec 21, 00 0.1325 2.826× 10−9 97.5%

Table 3: TheR2 and Estimated Parameters for the
Recent Market (August 22, 2001)

â ε̂ R2

Biotech Stocks 0.096 4.615× 10−7 96.4%
Internet Stocks 0.181 1.715× 10−6 98.5%

Remark 2. As we mentioned before, the parameter
a attempts to measure the magnitude of money inflow to
the stock due to non-market factors, such as exercising o
employee stock options and public offering of new/additional
shares, etc. It is interesting to see that in the above numerica
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examples,a tends to be bigger between March 1999 and
October 1999 (when the activities of public offerings were
quite frequent), and again around December 2000 (when
many employees began to exercise their stock options at
the beginning of the current bear market).

7 DISCUSSION

Under the model (2), it is ready to derive option pricing
formulae. This is because under the risk neutral measure
P̃ , the dynamics becomes the CEV process; thus, one can
simply use the results in Cox and Ross (1976) for call
and put options, and Davydov and Linetsky (2001) for
path-dependent options.

The diffusion model proposed in this paper should only
be viewed as a understanding of growth stocks, not as a
trading tool. This is mainly because the relative pricing for-
mula needs the ranks of market capitalization as the input;
but the model does not directly provide a dynamics of the
ranks. Nevertheless, hopefully the results may stimulate
some further discussions of using some non-standard meth-
ods, such as size distribution, to analyze a non-standard (yet
important) finance problem.
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