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ABSTRACT

This paper presents an overview of the use of simulat
algorithms in the field of financial engineering, assumi
on the part of the reader no familiarity with finance and
modest familiarity with simulation methodology, but not it
specialist research literature. The focus is on the challen
specific to financial simulations and the approaches t
researchers have developed to handle them, although
paper does not constitute a comprehensive survey of
research literature. It offers to simulation researchers, p
fessionals, and students an introduction to an application
increasing significance both within the simulation resea
community and among financial engineering practitione

1 INTRODUCTION

Many problems in financial engineering require numeric
evaluation of an integral. Several virtues make simulati
popular among practitioners as a methodology for the
computations.

First, it is easy to apply to many problems. For mo
derivative securities and financial models, even those t
are complicated or high-dimensional, it takes relatively l
tle work to create a simulation algorithm for pricing th
derivative under the model. (A notable exception, Ame
can options, occupies Section 7.) Also, pitfalls in numeric
implementation of simulation algorithms are relatively rar
For the most part, a little knowledge and effort go a long w
in financial simulations; with some expertise and investm
of one’s time, one can go further and faster.

The second virtue of simulation is its good performan
on high-dimensional problems: the rate of convergence o
Monte Carlo estimate does not depend on the dimensio
the problem. While other numerical integration techniqu
may have advantages over simulation in various situatio
their rates of convergence tend to degrade as the dim
sion increases. The dimension of the problem is high,
instance, when dealing with models of markets that co
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tain many fundamental sources of risk or with derivativ
securities that depend in a nontrivial way on prices at ma
times. This issue is becoming increasingly important a
securities markets and financial risk management beco
more sophisticated.

A third attraction of simulation is the confidence in-
terval that it provides for the Monte Carlo estimate. Thi
information makes possible an assessment of the qua
of the estimate, and of how much more computational e
fort might be needed in order to produce an estimate
acceptable quality.

For these reasons, simulation is a valuable tool fo
pricing options, as Boyle (1977) pointed out. Twenty yea
later, Boyle, Broadie and Glasserman (1997) surveyed th
field and described research advances that had improv
efficiency and broadened the domain of problems to whic
simulation could be profitably applied. The present pap
touches on such advances in order to describe the techniq
presently available to financial engineers using simulatio
and the challenges still confronting them, without offerin
a comprehensive survey of the field.

The paper continues by explaining in Section 2 the th
ory that underpins the use of simulation to handle financi
engineering problems, and discussing in Section 3 the m
chanics of generating simulated paths for this purpose. Th
Section 4 deals with variance reduction, providing a philo
sophical perspective and examples of specific techniqu
and derivative securities to which they are well suited. Se
tion 5 is a discussion of quasi-Monte Carlo methods. Ne
comes a presentation of advances that have extended
range of effective application of simulation: in Section 6
approaches to estimation of Greeks, and in Section 7 rec
research into simulating American options; explanations
the technical terms “Greek” and “American” appear in thos
sections. The paper concludes with some thoughts ab
the future interplay of simulation research, and financi
engineering theory and practice.
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2 FINANCIAL BACKGROUND

Financial engineers most frequently apply simulation t
derivative securities, often called simply derivatives. Thes
are financial instruments whose payoffs derive from th
values of other underlying financial variables, such as pric
or interest rates. The canonical example is the Europe
call option, whose payoff is max{ST − K,0}, whereST
is the price of a stock at timeT , andK is a prespecified
amount called the strike price. This option gives its owne
the right to buy the stock at timeT for the strike price
K: if ST > K, the owner will exercise this right, and if
not, the option expires worthless. If the future payoff o
a derivative derives from the underlying, is there a way t
derive the present price of the derivative from the curren
value of the underlying?

Under some theoretical conditions on the payoff of th
derivative, the model of the stochastic process governing t
underlying, and the possibilities for trading in the marke
the answer is yes. If it is possible to replicate the derivative
payoff by trading in a portfolio of securities available on the
open market, then the combination of executing this tradin
strategy and selling the derivative has no risk. This is know
as hedging the sale of the derivative, and hedging strateg
are of great practical interest in their own right, as well a
being of theoretical interest in justifying no-arbitrage pricing
The pricing theory has this name because it postulates th
there are no arbitrages, which are opportunities to ma
a positive amount of money with zero risk or cost. Suc
opportunities are supposed to disappear, should they ex
because unlimited demand for them would drive their cos
above zero.

The riskless combination of a derivative minus the initia
portfolio of its replicating strategy must have nonpositive
cost to avoid arbitrage; assuming the same of the opp
site combination, the price of the derivative must equal th
cost of its initial replicating portfolio. A basic theorem of
mathematical finance states that this price is the expectat
of the derivative’s discounted payoff under an equivalen
martingale measure. This is a probability measure und
which discounted asset prices are martingales, and it gen
ally does not coincide with the original probability measur
which models the real world. When discounting is don
with the value of a riskless money market account, th
equivalent martingale measure is known as the risk-neut
measure, because if investors had a neutral attitude tow
risk, they would demand the same return on all risky asse
as on a riskless asset. There are many textbook accou
of this theory, such as Björk (1998) and Duffie (1996).

Given all this, pricing a derivative is evaluating the
expectation of the sum of all its discounted payoffs, unde
a specified measure. The discounting is crucial and allow
for appropriate comparisons between cashflows, wheth
positive or negative, at different times. However, for brevity
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henceforth “payoff” may be an abbreviation of “the sum o
all discounted payoffs.” Since the probability measures o
financial models typically have densities, derivative pricing
is evaluating the integral of the product of payoff and
probability density over all possible paths of the underlying

As an example, consider the European call option und
the Black-Scholes model, for which the distribution of the
log stock price lnST is normal with mean lnS0+(µ−σ 2/2)T
and varianceσ 2T under a probability measureP. HereS0
is the initial stock price andµ andσ are called respectively
the drift and volatility. Under the risk-neutral measureQ,
ln ST is normal with mean lnS0 + (r − σ 2/2)T and the
same variance, wherer is the instantaneous interest rate on
a riskless money market account. The no-arbitrage price
the European call option is

EQ[e−rT max{ST −K,0}]
= e−rT

∫ ∞
K

(s −K)φ
(

ln(s/S0)− (r − σ 2/2)T

σ
√
T

)
ds

= S08(d1)−Ke−rT 8(d2)

where

d1 = ln(S0/K)+ (r + σ 2/2)T

σ
√
T

, d2 = d1− σ
√
T

and8 and φ are respectively the cumulative distribution
and probability density functions of the standard norma
This is the famous Black-Scholes formula.

The standard Monte Carlo approach to evaluating suc
expectations is to simulate under the equivalent martinga
measure a state vector which depends on the underlyi
variables, then evaluate the sample average of the derivativ
payoff over all trials. This is an unbiased estimate of th
derivative’s price, and when the number of trialsn is large,
the Central Limit Theorem provides a confidence interval fo
the estimate, based on the sample variance of the discoun
payoff. The standard error is then proportional to 1/

√
n.

The Monte Carlo approach is similar for other financia
engineering problems, such as finding hedging strategies a
analyzing portfolio return distributions in order to asses
the risk of one’s current portfolio or select a portfolio with
the most attractive combination of rewards and risks. A
of these rely on the same basic approach of simulatin
many trials, each of which is a path of underlying financia
variables over a period of time, computing the values o
derivatives on this path, and looking at the distribution o
these values. The next section covers the generation
these paths.
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3 PATH GENERATION

In some applications of simulation, there is no great con
ceptual difficulty involved in generating simulated paths
other than that of producing pseudo-random numbers wit
a digital computer. For instance, when estimating the stead
state mean of a random variable in a queuing system, th
model specifies the transition rates from any state, and it
not theoretically difficult to sample the next state from the
correct distribution. The situation in financial simulations
is not so simple. The models of mathematical finance ar
usually specified by stochastic differential equations (SDEs
under the equivalent martingale measure used for pricin
Sometimes it is possible to integrate these SDEs and ge
tractable expression for the state vector, but not always.

An example that poses no difficulties is the Black-
Scholes model, which has

dSt = St (r dt + σ dWt)

whereW is a Wiener process (Brownian motion) under
the risk-neutral probability measureQ. By Itô’s formula,
a basic result of stochastic calculus, this is equivalent to

d ln St = (r − σ 2/2)dt + σ dWt

which integrates to

ln St − ln S0 = (r − σ 2/2)t + σWt .

BecauseWt is normally distributed with mean 0 and variance
t , the terminal log stock price lnST has the distribution stated
previously.

Pricing the European call option under the Black-
Scholes model therefore requires the generation of on
standard normal random variate per path. The simulate
value ofST on theith path is

S
(i)
T = S0 exp

((
r − σ 2/2

)
T + σ√T Z(i)

)
and the estimated option value is

1

n

n∑
i=1

e−rT max
{
S
(i)
T −K,0

}
.

In this model, the situation is not appreciably more
difficult when pricing a path-dependent option whose payof
depends on the value of the state vector at many times. F
instance, a discretely monitored Asian call option has th
payoff max{S̄T − K,0} where S̄T = ∑m

k=1 Stk /m is the
average price. Now the simulation must generate the enti
pathSt1, St2, . . . , Stm . Assumetk = T k/m = kh. The way
to simulate the whole path is to generatem independent
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standard normal random variablesZ(i)1 , . . . , Z
(i)
m for the ith

path and set

S
(i)
(k+1)h = S(i)kh exp

((
r − σ 2/2

)
h+ σ√hZ(i)k

)
.

This provides the correct multivariate distribution for
(St1, St2, . . . , Stm) and hence the correct distribution for
S̄T .

Another challenge in path generation is continuous path
dependence. While the payoff of the European call optio
depends only on the terminal value of the state vector, an
the payoff of the discretely monitored Asian call option
depends only on a finite set of observations of the stat
vector, some derivatives have payoffs that depend on th
entire continuous-time path. An example is a down-and-ou
option that pays off only if a stock price stays above som
barrier, or equivalently, if the minimum stock price is above
the barrier. Suppose the stock price obeys the Black-Schol
model. Because

min
k=1,...,m

Stk > min
t∈[0,T ] St

almost surely, the former is not an acceptable substitute fo
the latter. It is necessary to introduce a new componentMt =
minu∈[0,t] Su into the state vector; this can be simulated since
the joint distribution ofSt andMt is known (Karatzas and
Shreve 1991).

A slightly subtler example occurs in the Hull-White
model of stochastic interest rates. The SDE governing th
instantaneous interest ratert is

drt = α(r̄ − rt )dt + σ dWt

wherer̄ is the long-term mean interest rate,α is the strength
of mean reversion, andσ is the interest rate’s volatility.
Integration of this SDE yields the distribution ofrt , which
is normal. Then the simulated pathrt1, . . . , rtm is adequate
for evaluating payoffs that depend only on these interest rate
but not for evaluating the discount factorDT =

∫ T
0 ru du;

the discrete approximationh
∑m
k=1 rkh does not have the

right distribution. Instead one must addDt to the state vector
and simulate using its joint distribution withrt , which is
easily computable.

Some financial models feature SDEs that are not easi
integrable, as the Black-Scholes and Hull-White models
are. An example is the Cox-Ingersoll-Ross model, in which
the SDE is

drt = α(r̄ − rt )dt + σ√rt dWt .

This model’s principal advantage over Hull-White is that
the instantaneous interest rate must remain nonnegativ
However, there is no useful expression for the distribution
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of rt given r0. A simulation of this model must rely on
an approximate discretization̂r of the stochastic processr.
Because the laws of these processes are not the same,
Monte Carlo estimate based onr̂ may be biased for the
true price based onr. This bias is known as discretization
error.

Kloeden and Platen (1992) have written a major re
erence on the rather involved topic of discretizing SDE
whose surface this paper barely scratches. Faced with
SDE of the generic form

dXt = µ(Xt)dt + σ(Xt )dWt

one simulates a discretized processX̂t1, . . . , X̂tm . Even if
the only quantity of interest is the terminal valueXT , it is
necessary to simulate intermediate steps in order to redu
discretization error. The question is how to choose th
scheme for producing the discretized processX̂ and the
number of stepsm.

The most obvious method of discretizing is the Eule
scheme

X̂(k+1)h = X̂kh + µ
(
X̂kh

)
h+ σ

(
X̂kh

)√
hZk+1

whereZ1, . . . , Zm are independent standard normal random
variates. The idea is simply to pretend that the driftµ and
volatility σ of X remain constant over the period[kh, (k+
1)h] even thoughX itself changes. Is there a better schem
than this, and what would it mean for one discretizatio
scheme to be better than another?

There are two types of criteria for judging discretized
processes. Strong criteria evaluate the difference betwe
the paths of the discretized and original processes pr
duced on the same elementω of the probability space. For
example, the strong criterionE[maxk ‖X̂tk − Xtk‖] mea-
sures the maximum discrepancy between the pathX̂(ω)

and the pathX(ω) over all times, then weights the ele-
mentsω with the probability measureP. On the other
hand, weak criteria evaluate the difference between t
laws of the discretized and original processes: an examp
is supx |P[X̂T < x]−P[XT < x]|, measuring the maximum
discrepancy between the cumulative distribution function
of the terminal values ofX̂ andX. Weak criteria are of
greater interest in derivative pricing because the bias of t
Monte Carlo estimatorf (X̂t1, . . . , X̂tm) of the true price
E[f (Xt1, . . . , Xtm)], wheref is the payoff, depends only
on the distribution of(X̂t1, . . . , X̂tm).

Given a choice of weak criterion, a discretization schem
has weak order of convergenceγ if the error is of order
m−γ as the number of stepsm goes to infinity. Under
some technical conditions on the stochastic processX and
the exact nature of the weak criterion, the weak order
the Euler scheme is 1, and a scheme with weak order 2
the
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X̂(k+1)h = X̂kh + σZk+1h
1/2

+
(
µ+ 1

2
σσ ′

(
Z2
k+1− 1

))
h

+1

2

(
µ′σ + µσ ′ + 1

2
σ 2σ ′′

)
Zk+1h

3/2

+1

2

(
µµ′ + 1

2
µ′′σ 2

)
h2

whereµ, σ , and their derivatives are evaluated atX̂kh. This
is known as the Milstein scheme, but so are some othe
schemes. This scheme comes from the expansion of t
integral

∫ (k+1)h
kh

dXt to second order inh using the rules of
stochastic calculus.

The weak order of convergence remains the same
simple random variables with appropriate moments replac
the standard normal random variablesZ. Not only can such
a substitution improve speed, but it may be necessary whe
the SDE involves multivariate Brownian motion, whose
multiple integrals are too difficult to simulate.

It is also possible to use Richardson extrapolation in
order to improve an estimate’s order of convergence. Fo
instance, letf (X̂(h)) denote the payoff simulated under the
Euler scheme with step sizeh. The Euler scheme has weak
order of convergence 1, so the leading term in the bia
E[f (X̂(h))] − E[f (X)] is of orderh. The next term turns
out to be of orderh2. Because the orderh terms cancel, the
bias of 2E[f (X̂(h))] −E[f (X̂(2h))] is of orderh2, and this
extrapolated Euler estimate has weak order of convergen
2.

Turning to the choice of the number of stepsm, one
consideration is allocating computational resources betwee
a finer discretization and a greater number of paths (Duffi
and Glynn 1995). If there is a fixed computational budge
C, and each simulation step costsc, then the number of
paths must ben = C/(mc). For a discretization scheme of
weak orderγ , the bias is approximatelybm−γ for some
constantb. Estimator variance is approximatelyvn−1 for
some constantv. Therefore the mean squared error is
approximately

b2m−2γ + vn−1 = b2m−2γ + vc
C
m

which is minimized bym ∝ C1/(2γ+1). With this opti-
mal allocation, the mean squared error is proportional t
C−2γ /(2γ+1), which is slower than the rateC−1 of decrease
of the variance of a simulation unbiased by discretization
errror. A higher order of convergenceγ is associated with
a coarser discretization (m smaller) and more rapid diminu-
tion of mean squared error with increased computationa
budgetC.
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4 VARIANCE REDUCTION

The standard error of a Monte Carlo estimate decreas
as 1/

√
C, where C is the computational budget. This

is not an impressive rate of convergence for a numeric
integration method. For simulation to be competitive fo
some problems, it is necessary to design an estimator th
has less variance than the most obvious one. A varian
reduction technique is a strategy for producing from on
Monte Carlo estimator another with lower variance given
the same computational budget.

A fixed computational budget is not the same as a fixe
number of paths. Variance reduction techniques frequent
call for more complicated estimators that involve more wor
per path. WhereW is the expected amount of work per path
the computational budgetC allows approximatelyn = C/W
paths. There is a variance per pathV such that the estimator
variance is approximatelyV/n = VW/C. Thus a technique
achieves efficiency improvement (variance reduction give
a fixed budget) if it reducesVW .

In practice, one may be concerned with human effo
as well as computer time. Computing power has become
cheap that for many individual financial simulations, it is
not worth anybody’s time to implement variance reduction
On the other hand, some financial engineering problems a
so large that variance reduction is extremely important.

A large financial institution may have positions in thou-
sands of derivative securities, involving hundreds of unde
lying variables. In order to manage its risks, it must asse
the distribution of possible losses on its portfolio over som
time horizon. One way is to compute, for instance, th
one-day 5% value at risk (VaR), which is the amountL

such that the probability of having a loss larger thanL to-
morrow is 5%. Despite undesirable theoretical propertie
VaR is very popular and the adequacy of its computatio
is a matter of concern for world financial authorities. A
sound way to compute this VaR would be to simulate man
scenarios for tomorrow’s value of the underlying variables
price all of the derivatives in each scenario, and find th
level L such that 5% of the scenarios have a loss large
thanL. The difficulty is that simulation is required to price
many of the derivatives, and one might need to generat
for each of one thousand scenarios, ten thousand paths
one hundred time steps and one hundred state variables,
a total of one hundred billion primitive simulation opera-
tions. Despite advances in computing technology, this is n
yet affordable, and consequently financial institutions rel
on methodologies of questionable soundness for computi
VaR. Variance reduction makes better answers affordable

4.1 Antithetic Variates

Because of its simplicity, the method of antithetic variate
is a good introduction to variance reduction technique
es
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among which it is not one of the most powerful. A quantity
simulated on one path, such as a payoff, always has
representationf (U) whereU is uniformly distributed on
[0,1]m. The antithetic variate ofU is 1− U = (1 −
U1, . . . ,1− Um). The method uses as an estimate from
a pair of antithetic variates(f (U) + f (1− U))/2, which
can be called the symmetric part off . This is unbiased
because 1− U is also uniformly distributed on[0,1]m.

The antisymmetric part off is (f (U)− f (1−U))/2.
These two parts are uncorrelated and sum tof (U), so
the variance off (U) is the sum of the variances of the
symmetric and antisymmetric parts. The estimator usin
antithetic variates has only the variance of the symmetri
part off , and requires at most twice as much work as th
old. The variance of the antisymmetric part is eliminated
and if it is more than half the total variance off , efficiency
improves. This is true, for instance, whenf is monotone,
as it is in the case of the European call option in the
Black-Scholes model.

4.2 Stratification and the Latin Hypercube

Stratification makes simulation more like numerical integra
tion by insisting on a certain regularity of the distribution of
simulated paths. This technique divides the sample spa
into strata and makes the fraction of simulated paths in eac
stratum equal to its probability in the model being simu-
lated. Working with the representationf (U1, . . . , Um), one
choice is to divide the sample space ofU1 intoN equiproba-
ble strata[0,1/N ], . . . , [(N −1)/N,1]. Then the stratified
estimator is

1

N

N∑
i=1

f

(
i − 1+ U(i)1

N
,U

(i)
2 , . . . , U(i)m

)

where the random variablesU(i)k are i.i.d. uniform on[0,1].
This estimator involvesN paths, whose first components are
chosen randomly within a predetermined stratum. Becaus
theseN paths are dependent, to get a confidence interv
requires enough independent replications of this stratifie
estimator sufficient to make their mean approximately nor
mally distributed.

Stratification applies in the quite general situation of
sampling from a distribution that has a representation a
a mixture: above, the uniform distribution on[0,1] is
an equiprobable mixture ofN uniform distributions on
intervals of size 1/N . The general case is sampling from a
distribution that is a mixture ofN distributions, theith of
which has mixing probabilitypi , meanµi , and varianceσ 2

i .

The mixed distribution has mean
∑N
i=1piµi and variance
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N∑
i=1

pi

(
µ2
i + σ 2

i

)
−
(

N∑
i=1

piµi

)2

.

A stratified estimate has variance
∑N
i=1piσ

2
i . The amount

of variance reduction is the difference

N∑
i=1

piµ
2
i −

(
N∑
i=1

piµi

)2

which is the variance ofµη, whereη is a random variable
taking on the valuei with probability pi . That is, stratifi-
cation removes the variance of the conditional expectati
of the outcome given the information being stratified.

This approach can be very effective when the payo
depends heavily on a single random variable, and it is pos
ble to sample the rest of the path conditional on this rando
variable. For instance, if the payoff depends primarily on
terminal stock priceST whose processS is closely linked
to a Brownian motionW , then a good strategy is to stratify
onWT and simulateWt1, . . . ,Wtm−1 conditional on it.

Stratification in many dimensions at once poses a dif
culty. UsingN strata for each ofd random variables results
in a mixture ofNd distributions, each of which must be
sampled many times if there is to be a confidence interv
If d is too large there may be no way to do this with
out exceeding the computational budget. Latin hypercu
sampling offers a way out of this quandary.

Consider the stratification of each dimension of[0,1]m
intoN intervals of equal length. A Latin hypercube sampl
includes a point in onlyN of theNd boxes formed. This
sample has the property that it is stratified in each dimensi
separately, that is, for each stratumj and dimensionk, there
is exactly one pointU(i) such thatU(i)k is in [(j−1)/N, j/N].
The Latin hypercube sampling algorithm illustrates:

Loop over dimensionk = 1, . . . , m.

• Produce a permutationJ of 1, . . . , N .
• Loop over pointi = 1, . . . , N .

– ChooseU(i)k uniformly in [(Ji−1)/N, Ji/N ].
Because points are uniformly distributed within their boxe
the marginal distributions are correct. Choosing all perm
tations with equal probability makes the joint distribution
correct.

Because it is not full stratification, Latin hypercube
sampling does not remove all the variance of the cond
tional expectation given the box. Writing this conditiona
expectation as a functionµ(j1, . . . , jm) where jk is the
stratum in thekth dimension, Latin hypercube sampling
asymptotically removes only the variance of the additiv
part of this function. The additive part is the function
g(j1, . . . , jm) =∑m

k=1 gk(jk) that minimizes the expected
squared error of its fit to the original functionµ. Sometimes
n

i-

l.

e

n

-

-

the fit is quite good, for instance when pricing a relatively
short-term interest-rate swap in the Hull-White model. In
each of a sequence of periods, the swap pays the differenc
between preset interest payments and the then-prevailin
interest payments. These terms are linear in the norma
random variatesZ1, . . . , Zm, but for pricing must also be
multiplied by nonlinear discount factors.

4.3 Importance Sampling

The intuitive way to plan a simulation to estimate the
expectation of a payofff that depends on a pathX1, . . . , Xm
is to simulate paths according to the law of the processX,
then compute the payoff on each path. This is a way of
estimating the integral∫

f (x)g(x)dx =
∫ (

fg

g̃

)
(x)g̃(x)dx

as long asg̃ is nonzero wherefg is. The second integral
has an interpretation as simulation of paths under a new
probability measurẽQ. The pathX1, . . . , Xm has likelihood
g under Q and g̃ under Q̃. There is also a new payoff
f̃ = fg/g̃, the product of the original payofff and the
Radon-Nikodym derivative or likelihood ratiog/g̃.

The idea of importance sampling is to chooseg̃ so that
f̃ has less variance underQ̃ thanf does underQ. Whenf
is positive, the extreme choice isg̃ = fg/µ, whereµ is the
constant of integration that makesg̃ a probability density.
Then f̃ = µ and has no variance. However, this constant
µ is precisely

∫
f (x)g(x)dx, the unknown quantity to be

estimated. The goal is to chooseg̃ to be a tractable density
that is close to being proportional tofg. That is, one wishes
to sample statesx according to importance, the product of
likelihood and payoff.

It is possible for importance sampling to go awry, as
the following example demonstrates. Supposef (x) = x

and

g(x) =
{

e−x if x ∈ [0,K]
αx−4 if x > K

whereK is very large. The simulation estimates the mean of
a random variable whose distribution is almost exponential
but has a power tail. The mean and variance are both
finite. Supposeg̃(x) is simply e−x for all x ≥ 0. As x
goes to infinity, so does the likelihood ratiog/g̃. The new
simulation variance is infinite: the new second moment is∫ ∞

0

(
xg(x)

g̃(x)

)2

g̃(x) dx > α2
∫ ∞
K

x−6ex dx = ∞.

Moreover, we are likely not to simulate anyx � K, which
has a large likelihood ratio, in which case the sample standar
deviation will not alert us to the failure of the scheme.
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The potential for mistakes aside, importance sampl
has proven extremely powerful in other applications, es
cially in simulation of rare events, which are more comm
under an appropriate importance sampling measure. Th
have been some effective financial engineering applicati
in this spirit, involving the pricing of derivatives that ar
likely to have zero payoff. An example is an option th
is deep out of the money, meaning that the underlying
currently distant from a threshold that it must cross in ord
to produce a positive payoff.

Importance sampling may become even more valua
in financial engineering with the advent of more sophistica
approaches to risk management. There is an increa
appreciation of the significance for risk management
extreme value theory and the heavy-tailed distributions
many financial variables. In models and applications wh
behavior in the tails of distributions has greater impa
importance sampling has greater potential. An example
such developments is the work of Glasserman, Heidelber
and Shahabuddin (2000).

4.4 Control Variates

Unlike other methods that adjust the inputs to simulatio
the method of control variates adjusts the outputs directly
simulation intended to estimate an unknown integral can a
produce estimates of quantities for which there are kno
formulas. The known errors of these estimates cont
information about the unknown error of the estimate
the quantity of interest, and thus are of use in correct
it. For instance, using the risk-neutral measure, the ini
stock priceS0 = EQ[e−rT ST ], but the sample average
e−rT

∑n
i=1 S

(i)
T /n will differ from S0. If it is too large, and

the payofff (ST ) has a positive correlation withST , then
the estimate of the security price is probably also too lar

Generally, in a simulation to estimate the scalarE[X]
which also generates a vectorY such thatE[Y ] is known,
an improved estimator isX− β(Y −E[Y ]) whereβ is the
multiple regression coefficient ofX on Y . The variance of
this estimator is the residual variance ofX after regression
onY ; the better the linear fit ofX on the predictorsY , the less
variance remains after the application of control variat
The regression coefficientβ is presumably unknown ifE[X]
is unknown, but the usual least squares estimate will suffi
However, using the same paths to estimateβ and evaluate
the control variates estimator creates a slight bias.
alternative is to estimateβ on a small subset of the paths

A favorite example of the great potential of contro
variates is the discretely monitored Asian call option in t
Black-Scholes model, which appeared in Section 3. Av
aging, as in the average stock priceS̄T , is the distinguishing
feature of Asian options. For economic reasons, the c
vention is that the averaging is arithmetic, not geometr
For instance, an Asian option on oil futures could help
-
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power company hedge the average cost of its planned fut
purchases of oil, while an option on a geometric avera
of prices does not have such an obvious purpose. On
other hand, the distribution of the arithmetic average
jointly lognormal random variables (such asSt1, . . . , Stm )
is inconvenient, while the distribution of their geometri
average is again lognormal, so a geometric Asian opti
has a closed-form price in the Black-Scholes model. T
payoffs of arithmetic and geometric Asian call options a
extremely highly correlated, and therefore the geomet
Asian call option makes a very effective control variate fo
simulation of the arithmetic Asian call option: it can reduc
variance by a factor of as much as one hundred. Using t
control variate, the simulation is effectively estimating on
the slight difference between the arithmetic and geomet
Asian options.

4.5 Summary

The methods discussed above do not exhaust the finan
engineer’s repertory of variance reduction techniques,
they do illustrate two major types of variance reductio
Importance sampling and control variates rely on knowled
about the structure of the problem to change the pay
or sampling distribution. Stratified and Latin hypercub
sampling also benefit from a good choice of the variabl
to stratify. However, these methods and antithetic varia
work by making Monte Carlo simulation less purely rando
and more like other numerical integration techniques th
use regular, not random, distributions of points. Similarl
quasi-Monte Carlo simulation is a numerical integratio
technique that bears a resemblance to Monte Carlo, altho
its foundations are deterministic.

5 QUASI-MONTE CARLO

A sample from the multidimensional uniform distribution
usually covers the unit hypercube inefficiently: to the ey
it seems that there are clusters of sample points and vo
bare of sample points. A rectangular grid of points look
more attractive, but the bound on the error of this numeric
integration technique converges asn−2/d where n is the
number of points used andd is the dimension of the hyper-
cube. For dimension four or higher, there is no advanta
compared to the ordern−1/2 convergence of the standard
error of a Monte Carlo (MC) simulation. The quasi-Mont
Carlo (QMC) approach, often used in financial engineerin
is to generate a deterministic set of points that fills spa
efficiently without being unmanageably numerous in hig
dimension. Several authors have proposed rules for gen
ating such sets, known as low-discrepancy sequences:
Niederreiter (1992). The name “quasi-Monte Carlo” doe
not indicate that these sequences are somewhat rand
but rather that they look random; indeed they look mo
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random than actual random sequences, because the hum
mind is predisposed to see patterns that are statistica
insignificant.

The great attraction of low-discrepancy sequences is th
they produce an error of integration whose bound converg
as (logn)d/n. As this result suggests, QMC methods are
sometimes much more effective than MC. Perhaps becau
financial instruments usually have payoff functions that ar
close to smooth, financial engineering is a domain that
quite favorable for QMC. Lemieux and L’Ecuyer (2001) give
an overview of QMC methods for financial computations

There are also difficulties that attend the use of QMC
The superiority of the rate of convergence to that of MC
does not guarantee that the low-discrepancy sequence w
outperform at a reasonable fixed sample sizen. There is
also a potential pitfall: it is possible for the sample sizen to
be too small relative to the dimensiond. The regularity of
popular low-discrepancy sequences is such that, while t
points formed from the first two coordinates(x1, x2) may
cover the unit square evenly, the points(xd−1, xd) cover
it very badly, with a distribution nowhere near uniform.
Consequently, more care is required when using QMC tha
MC.

A promising approach is randomized quasi-Monte Carl
(RQMC), which randomizes a low-discrepancy sequence
that it gains desirable statistical properties while retainin
its regularity properties. An RQMC algorithm produces
dependent random vectorsU(1), . . . , U(n) each uniformly
distributed on[0,1]m. This makes RQMC much like MC
with a variance reduction technique: the uniformity of
eachU(i) means that the estimator is unbiased, while de
pendence suitable for the problem provides reduced va
ance. An example is the random shift. TakingŨ (i) from a
low-discrepancy sequence and1 uniformly distributed on
[0,1]m, U(i) = (Ũ (i) + 1) mod 1 is also uniformly dis-
tributed on[0,1]m, but retains the original spacing. From
repeated random draws of the shift1, a confidence interval
is available. As with importance sampling, there is the
potential for great improvement in efficiency, but a mistak
can lead to increased variance. For further information, se
the survey of L’Ecuyer and Lemieux (2002).

6 GREEKS

Within the theoretical framework of Section 2, the no-
arbitrage priceV of a derivative security, or a portfolio
thereof, is a function of the initial value and parameter
ψ of the stochastic process that models the underlyin
financial variables:V = V (ψ). The derivatives (in the
sense of differential calculus) of the price with respec
to initial values and parameters are called Greeks becau
capital Greek letters symbolize several of the most commo
For an accessible introduction, see Hull (1999).
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The Greeks are important in quantifying and reducing
risk. Financial institutions that sell derivative securities
usually hedge these sales, often by adding securities to
existing portfolio in order to reduce its Greeks. A lesse
sensitivity to changes in the environment is supposed t
lead to less risk of significant loss.

Having simulated an estimatêV (ψ) of V (ψ), how can
one estimate a derivative of the form(∂V/∂ψ1)(ψ)? For
simplicity, write the price asV (ψ1), suppressing every other
component ofψ . An obvious way is to simulate another
estimateV̂ (ψ1+ε) of the portfolio value using a slightly dif-
ferent value of the parameter. Then(V (ψ1+ε)−V (ψ1))/ε is
the forward finite-difference approximation to the derivative
evaluated atψ , and(V̂ (ψ1+ ε)− V̂ (ψ1))/ε is an estimate
of it. Somewhat better is(V̂ (ψ1 + ε)− V̂ (ψ1 − ε))/(2ε),
based on the central finite-difference approximation, bu
this requires three rather than two simulations to estimat
the price and derivative.

These estimates have biases directly related toε, be-
cause a finite-difference approximation is not the same a
a derivative. Their variances are inversely related toε be-
cause they involve division byε. Thus there is an optimal
ε for the sample sizen. Even using the optimalε, these
finite-difference estimates perform very poorly in that, for
typical problems, their root mean squared errors converge
zero at the ratesn−1/4 andn−1/3 respectively, more slowly
than the usual Monte Carlo rate ofn−1/2. Using the same
random numbers in the simulations withψ1 andψ1+ ε can
help a great deal by makinĝV (ψ1) andV̂ (ψ1+ε) positively
correlated, thus reducing the variance of their difference
Even then, finite-difference estimates are still poor for the
Greeks of securities such as barrier options because of th
discontinuous payoffs.

Frequently, better methods are applicable. Broadi
and Glasserman (1996) describe methods based on diffe
entiating inside the expectation in the risk-neutral pricing
equation

V (ψ) =
∫
f (x;ψ)g(x;ψ)dx

wheref (x;ψ) is the payoff on pathx andg(x;ψ) is its
likelihood. The freedom one has in factoring the produc
fg is important here.

For example, for the European call option in the Black-
Scholes model, the parameter vector isψ = (S0, σ, r, T ).
One may write

f (x;ψ) = e−rT max
{
S0e

(
r−σ2/2

)
T+σ√T x −K,0

}
g(x;ψ) = φ(x) (1)

so that the payoff is a function of a standard normal random
variable X whose densityg has no dependence on the
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parameters. Equally well one could write

f (x;ψ) = e−rT max{x −K,0}
g(x;ψ) = φ

(
ln(x/S0)− (r − σ 2/2)T

σ
√
T

)
(2)

so that the parametersS0 andσ appear only in the density
g of ST , the terminal stock price.

Using the expressions (2),

∂(fg)

∂σ
= f ∂g

∂σ
= f ∂(ln g)

∂σ
g.

The derivative

∂V

∂σ
(ψ) = ∂

∂σ

∫
f (x;ψ)g(x;ψ)dx

=
∫
f (x;ψ)∂(ln g)

∂σ
(x;ψ)g(x;ψ)dx

because the log likelihood lng is sufficiently smooth that
it is permissible to change the order of differentiation wit
respect toσ and integration with respect tox. The result is
an expectation that simulation can estimate directly. This
called the likelihood ratio method of estimating the Gree

Using instead the expressions (1), and writingST =
S0 exp

((
r − σ 2/2

)
T + σ√TX

)
,

∂(fg)

∂σ
= ∂f

∂σ
g = e−rT 1{ST > K}∂ST

∂σ
g

where 1{ST > K} is the indicator function for the event
that ST > K. The payoff is actually not differentiable
at ST = K, and it is now more difficult to justify the
interchange of differentiation and integration, but the resu
is similar: a simulation ofX according to the same density
g with e−rT 1{ST > K}∂ST /∂σ in place of the payoff gives
an unbiased estimate of the derivative. This is known
the pathwise method.

These two estimators require some analytical work
performing the differentiation and checking the condition
that allow the exchange of differentiation and integratio
ensuring unbiasedness in estimating the Greek. These iss
are more complicated in the case of second derivativ
Still, these estimators have the great advantage that w
them, a single simulation estimates the price and all desi
Greeks, whereas finite difference approximations require
least one additional simulation per Greek. Both methods a
faster than finite difference approximations, and the pathw
method is generally superior to the likelihood ratio metho
when both apply.
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7 AMERICAN OPTIONS

An American option has the feature that the owner ma
decide to exercise it at any time up to a maturity dateT ,
unlike a European option, which the owner may exercis
only atT , not before. Many financial options are American,
and the analysis of business investment opportunities as re
options has the same feature, making this an important topi

Whereas the risk-neutral price of a European-style se
curity with payoff f is EQ[f (ST )], for an American-style
security it is

max
τ≤T EQ[fτ (Sτ )] (3)

whereτ is a stopping time that does not exceedT . The
nominal payoff usually does not depend on time explicitly
but the discounted payoff does depend on time, requirin
the notationfτ .

In this context, a stopping time is a possible policy for
making the decision to exercise: the decision whether o
not to exercise at timet can depend on the past up tot ,
but not the future. The stopping timeτ ∗ that attains the
maximum is the optimal exercise policy, so the price is als
EQ[fτ∗(Sτ∗)].

One minor difficulty that simulation faces in pricing
an American-style security is that the optimal exercise ma
take place in between simulation steps. Simulation mor
easily prices Bermudan-style securities, for which exercis
is possible only at a discrete set of timest1, . . . , tm. The
fundamental difficulty is in determining the optimal exercise
policy. This is necessary for finding the price, and also fo
the owner to make the correct exercise decision and fo
the seller to hedge well. It is optimal to exercise when the
payoff from doing so now is greater than the continuation
value of owning the security if not exercised now, that is
when

ft (St ) > Ct(St ) = max
t<τ≤T EQ[fτ (Sτ ) | St ] (4)

assuming the state vector process is Markov. To determin
whether this is true requires knowledge of a conditiona
expectation whose value is not available in the simulation

An obvious attempt at a Monte Carlo estimator is

1

n

n∑
i=1

max
k=1,...,m

ftk

(
S
(i)
tk

)
which for each path picks the best time to have exercise
given knowledge of the entire path. This estimator is biase
high, because the best time to have exercised is not
stopping time: it depends on the future and thus leads t
higher average payouts than are attainable in reality. Muc
more useful biased estimators are possible.
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For instance, Broadie and Glasserman (1997a) produc
a low-biased and a high-biased estimator from simulate
trees. In these trees, each path hasb branches at each ofm
steps, so branches are conditionally independent given the
most recent common ancestor, but are generally depende
Using dynamic programming to find the continuation value
and exercise decision on these trees still results in a positiv
bias, but it is inversely related to the branching factorb.
On the other hand, using only some of the branches t
make the exercise decision and the rest of the branches
estimate value produces a negative bias: the stopping tim
is suboptimal and has no foresight on branches that evolv
conditionally independently. The total cost is of orderbm

and thus decreasing the bias is expensive, and it is difficu
to handle problems with many exercise opportunities. How
ever, there is no trouble with high-dimensional state vectors
and a confidence interval is still available, by creatingn
independent trees.

Broadie and Glasserman (1997b) also propose a stocha
tic mesh method which produces a low-biased and a high
biased estimator. This method is designed to handle larg
problems with a more manageable amount of work. In the
stochastic mesh, again each path hasb branches, but the
total number of nodes at each step is onlyb. The paths are
drawn by connecting every node at stepk to every node
at stepk + 1, requiringb2 connections at each ofm steps
for a cost of justmb2. The success of this method depends
on a good way of choosing the weights associated with
these connections. Again, the high-biased estimator come
from applying dynamic programming to the mesh, and this
time the low-biased estimator comes from generating en
tirely new paths and using the suboptimal exercise policy
estimated from the mesh. It seems that to be effective, thi
method requires intensive application of variance reduction
Avramidis and Hyden (1999) do further work on improving
stochastic mesh estimators.

Another line of research combines simulation with
regression (Carrière 1996, Tsitsiklis and Van Roy 1999
Longstaff and Schwartz 2001). These papers differ in thei
details; what follows is an algorithm in their spirit. The
basic idea is to approximate the continuation valueCt(St )

in condition (4) by regressing the simulated rewards to
continuation on the state vectorSt .

Working backward through the possible exercise date
tm, . . . , t1, the algorithm creates an estimated continuation
value functionĈt and an estimated value function̂Vt . At the
last step,V̂tm(Stm) = ftm(Stm). At stepk on pathi, the sim-

ulated reward to continuation from stateS(i)tk is V̂tk+1(S
(i)
tk+1
).

Regression produces the estimated continuation value fun
tion Ĉtk fit to these rewards, and then̂Vtk = max{ft , Ĉt }.
This approach has had success in practice because mo
American-style securities have a continuation value that i
easy to approximate well by regression on the state vecto
e

ir
t.
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Tsitsiklis and Van Roy (2001) and Clément, Lamber
ton, and Protter (2001) prove convergence results for su
regression-based methods. They are often much faster
arrive at an acceptable approximation to the price than t
two Broadie-Glasserman methods, at least when the d
mension of the state vector is low, but do not provide
confidence interval with a guaranteed minimum probabilit
of containing the price.

However, using one set of paths to produce a suboptim
stopping policy and a separate set of paths to estimate
price using this policy will result in an estimator biased low
Haugh and Kogan (2001) and Rogers (2001) offer metho
of producing an estimator biased high by considering th
dual of the American optimal stopping problem (3). Roger
shows that this dual approach is related to the America
option seller’s hedging strategy and does not depend
finding the American option buyer’s exercise policy and th
related low-biased estimator. Andersen and Broadie (200
describe a primal-dual simulation algorithm that is practica
for solving this important class of problems.

8 CONCLUSIONS

The application of simulation in financial engineering ha
been a great success story and occasioned much fruit
cross-pollination. Most evidently, financial simulations
draw strength from financial theory. One often has the
oretical knowledge that makes simulation a more effectiv
tool, because most financial problems are close to an a
alytically tractable problem, or have analytically tractable
elements. This is the key to successful variance redu
tion and the invention of methods that extend simulation
applicability to new types of problems.

Also, as financial engineering becomes increasing
important in the global economy, and the computationa
power needed to solve more problems by simulation b
comes increasingly affordable, more researchers investig
simulation methods designed for financial problems. A
these problems are typically members of some class
similarly structured problems from many domains, suc
research arrives at methods of general applicability. I
financial engineering, as anywhere, the ideal simulation a
gorithm takes advantage of all available knowledge of th
problem’s structure to deploy computational resources
effectively as possible in reducing variance and any bia
that might be present.

Finally, one interpretation of present events is that th
success of simulation in financial engineering is having a
impact on financial theory. Mathematical finance is unse
tled because its models do not describe financial proces
very well at all. Older models strove for simplicity and
analytical tractability at the expense of caricaturing realit
and fitting data poorly. Newer models tend to sacrific
simplicity in exchange for capturing features of reality tha
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had been unaccounted for in the past: for instance, jump
stochastic volatility, heavy tails, and transaction costs. Th
continuing success of simulation allows financial enginee
to adopt methods that do not yield analytical solutions an
are computationally expensive, but are more successful
describing and controlling financial risks. The result of bet
ter engineering should be more efficient markets and few
disasters.
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