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ABSTRACT 

Simulation-based wafer fabrication optimization models 
require extensive computational time to obtain accurate es-
timates of output parameters.  This research seeks to de-
velop goal-driven optimization methodologies for a variety 
of semiconductor manufacturing problems using appropri-
ate combinations of “resource-driven” (R-D), “job-driven” 
(J-D), and Mixed (combination of R-D and J-D) models to 
reduce simulation run times. The initial phase of this re-
search investigates two issues: a) the use of the R-D simu-
lation control variates for the J-D simulation and b) devel-
opment of metrics that calibrate the output from the R-D 
and J-D modeling paradigms.  The use of the R-D model as 
a control variate is proposed to reduce the variance of J-D 
model output. Second, in order to use the R-D model out-
put to predict the J-D model output, calibration metrics for 
the R-D and J-D modeling approaches were developed. 
Initial developments were tested using an M/M/1 queuing 
system and an M/D/1 queuing system. 

1 INTRODUCTION  

1.1 Motivation 
 
Modeling semiconductor manufacturing systems is a non-
trivial task.  Issues related to appropriate model detail, suf-
ficient run length for accurate output parameter estimation, 
and short project life cycles all influence the analysts’ abil-
ity to produce results in a timely fashion.  Currently, it 
takes too long to build and execute wafer fabrication simu-
lation models. This is true for models that do not include 
automated material handling system (AMHS) and those 
that do.  Obviously, this problem is even more profound 
when one attempts to use simulation as part of an optimiza-
tion or goal-driven modeling effort. 

 

Unlike mathematical methods, simulation cannot 

evaluate the performance of a system exactly but generates 
data in order to estimate it. In principle, one can eliminate 
this complication by making so many replications that the 
estimate has essentially no variance. This practice, how-
ever, requires a large amount of execution time, especially 
when one is trying to optimize a performance measurement 
of a complex system. With the combined use of R-D and J-
D simulation in the approaches proposed in this paper, 
more replications can be obtained with the same amount of 
simulation time to reduce the variance of the estimate. 
These approaches can be applied to optimize a system de-
sign such that it helps us decide more effectively if one de-
sign is better than another when we try to move in an im-
proving direction. More alternative designs could also be 
explored as less time is required to simulate each design. 

In a joint effort to overcome these obstacles, the Semi-
conductor Research Corporation (SRC) and International 
SeMaTech (ISMT) have created the Factory Operations 
Research Center (FORCe).  The center is charged with the 
mission of funding and directing university research in ar-
eas prioritized by the consortiums’ member companies.  
The work presented here is a portion of the results to date 
for one of the projects funded through FORCe; Research 
#ID 878 - New Approaches for Simulation of Wafer Fabri-
cation.  The project has three interrelated tasks. 

This research proposes methods to reduce run time 
and increase model usefulness through development of a 
new model building paradigm (Task 1) and the automatic 
generation of resource-driven models from job-driven 
models (Task 2).  See Section 2.2 for further explana-
tion. The development of a strategy for determining 
when and how to apply the appropriate modeling para-
digms to optimally solve semiconductor-manufacturing 
problems that require discrete-event simulation is the fo-
cus of this research. 
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1.2 Research Outline 

 
• Phase 1: Determine the metrics that permit 

comparison of the R-D and J-D modeling 
paradigms and investigate the feasibility of using 
control variates and calibration metrics in 
optimization schemes. Also, determine whether 
the R-D approach (fast execution) is effective as 
an estimator for the J-D approach (comprehensive 
detail) under certain sets of physical and/or 
logical model structures.   

• Phase 2: Develop optimization strategies that in-
corporate the methods developed and test on vari-
ous models with a variety of complexities inherent 
to the semiconductor-manufacturing environment. 

• Phase 3: Optimization methods will be applied to 
various classes of semiconductor manufacturing 
problems, and an approach will be developed to 
compare other existing approaches in the literature. 

2 BACKGROUND  

2.1 Efficiency Improvement 
 
In this paper, we refer to “efficiency improvement” by two 
goals: a) reducing the variance of a parameter estimate 
while having the same computational cost, and b) estimat-
ing a parameter with less computational cost. 
 
2.2 R-D and J-D Concepts 

 
Most conventional simulation software packages used for 
modeling and optimizing wafer fabrication dynamics are 
designed around a “job-driven” worldview.  The jobs are 
modeled as active system entities while system resources 
are passive. Each entity is characterized by data values 
called attributes, which are recorded and maintained in a 
list. In a discrete-event simulation model, the collection of 
these attributes is used to describe system at a particular 
point in time, (Law and Kelton 2000). The J-D approach 
records and maintains every state of every job throughout 
the system. This practice leads to long execution times as 
the number of simultaneous entities increases.  The speed 
and space complexity must be at least on the order of some 
polynomial of the entities in the system, see Schruben and 
Hyden (2000).   

In the R-D paradigm proposed by Schruben and Hy-
den (2000), individual jobs are passive and system re-
sources are active. Instead of attributes, integer counts for 
the numbers of jobs of particular types at different steps 
and the status of the resources are necessary to describe 
the system’s state. Information of the system’s state is not 
held locally in jobs but globally in vectors of integers.   
This practice can lead to a significant reduction of execu-
tion time since data processing requirements become re-
lated to the systems physical characteristics, not the den-
sity of entities.   

The main disadvantage of the R-D paradigm is that 
since individual jobs cannot be easily tracked, there is a 
loss of detailed entity information. For example, it is easy 
to use Little’s Law to estimate average cycle time but 
much more difficult to obtain the distribution of cycle time. 
More information of the R-D concept can be found in 
Schruben and Hyden (2000) and Hyden et al. (2001). 
      
2.3 Control Variates  
 
Control variates (CVs) is a variance reduction technique 
for improving the efficiency of simulation outputs without 
the need to increase the sample size. The main idea is to 
exploit certain variables correlated with variables of inter-
est and to adjust their estimates in order to obtain variance 
reduction. Law and Kelton (2000) provide a detailed ex-
planation on CV.    

The sources of CVs are classified into two main cate-
gories: a) when the control variate mean is known, b) when 
it is unknown but can be estimated or approximated. For 
the known case, the CV can be obtained from the same 
model; examples of such CV’s are input random variables 
whose expectations are generally known.  Alternatively, 
CV can also be obtained from the external model, which 
generally is a simplification of the original model and it is 
possible to compute the simplified model’s output.  

The application of internal CVs can be found in 
Lavenberg and Welch (1981), Lavenberg et al. (1982), 
Avramidis and Wilson (1990), Schaeffer et al. (1995), 
Rubstein and Marcus (1985), and Moeller et al. (1979). 
Applications of external CV can be found in Sharon and 
Nelson (1988), Taaffe and Horn (1983), and Nelson et al. 
(1997). These authors study external CV where the control 
has a known mean.  

For the unknown case, Schmeiser and Taaffe (1994) 
study the use of control variate estimation to the case 
where the control mean is only approximated from a sim-
pler model. Taaffe et al. (2001) study biased control vari-
ate estimation where the tradeoff between correlations in-
duced and the analysis error are considered. Taaffe et al. 
(2000) study the same problem but replace the control 
mean with an estimated value for the control mean, ob-
tained from a prior simulation experiment. In all of these 
procedures, such a limited portion of the given simulation 
time is provided that asymptotic behavior cannot be 
achieved.  Instead, fixed proportions of simulation time are 
allocated to estimate the mean. 

However, Markus (2000) proposes a procedure, which 
allocates sufficient time to estimate an unknown CV mean 
and then proceeds with the classical control variate simula-
tion by using the estimate in lieu of the unknown mean.  
The author also provides an asymptotic analysis of quasi 
CV in terms of asymptotic variance parameters. The 
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method is effective when the mean of the control variable 
can be efficiently estimated in an auxiliary simulation that 
does not involve variables of interest.   

 
2.4 Calibration Metrics 

 
This section provides a brief background of the proposed 
method, “Calibration Metrics,” that seeks to exploit a fast 
(R-D) simulation model to predict results of a slower (J-D) 
model.  Specifically, random simulation outputs of R-D 
and J-D simulation model from an initial (small) number of 
replications are used to estimate a bias correction factor.  
This factor is then used to adjust the random simulation 
outputs of the R-D model to those of the J-D model.  

Two forms of the bias correction factor (CF) were  
investigated: 

  
1. Multiplicative CF = (JDn /RDn) 
2. Additive CF = (JDn – RDn) 
 

where n is the number of replications used to calculate CF, 
JDn is an average of simulation output from n replications 
of the J-D model, and RDn is an average of simulation out-
put from n  replications of the R-D model. 

3 EXPERIMENTS AND ANALYSIS 

3.1 A Comparison of J-D Vs. R-D Model  
Output to Validate the R-D Paradigm 

 
In order to investigate the feasibility of using the control 
variate approach, we first needed to determine how well J-D 
and R-D simulation outputs compared. The example used is 
the simplified semiconductor manufacturing system, called 
Mini-Fab “Light” (see Appendix A), built in the R-D and J-D 
paradigms. The simulation models are constructed using the 
Sigma software package (Schruben and Schruben 2000). We 
used a paired-t test to validate that the R-D paradigm pro-
duced statistically indistinguishable results as compared to 
the same model coded in the J-D paradigm.  

A paired-t test is performed in order to determine if 
the average cycle time from the two models is comparable.  
The null hypothesis (Ho) is that there is no difference in 
average cycle time between the J-D and R-D models.  The 
alternative hypothesis (H1) is that there is a difference in 
average cycle time between J-D and R-D models.  The test 
statistic for this hypothesis is )/(/ nSdt do = . The number 

of replications (n) is 10 runs and the confidence level (α) is 
0.05.  The results are shown in Table 1.   

Results show that the confidence interval (CI) of the 
difference is (-1.010, -0.328).  Since the CI does not contain 
zero, we reject the null hypothesis and conclude that there is 
a statistical difference in average cycle time between the J-D 
and R-D models at the 95% level of significance.  However, 
even though we detect a statistical difference, it is actually 
very small (less than 0.1%) and we conclude that there is no 
practical difference (in this example).     

 
Table 1:  Paired-t Test Results for Average Cycle Times of 
the J-D and R-D Paradigms 

Simulation Paradigms 
Cycle 
Time Job-Driven 

Resource-
Driven 

Cycle Time 
Difference 

Average 1166.656 1167.325 -0.669 
Std Dev. 19.048 19.122 0.476 

95% CI for Mean Difference 
n 10 

Lower -1.010 
Upper -0.328 

3.2 Using Control Variates (CV) to Reduce the 
Variance of Simulation Model Output 

In this section, the R-D model is used as control variate to 
reduce the variance of simulation model output. 

The steps that we undertook to use the method of con-
trol variates in J-D and R-D models were: 

 
1. Let an R-D simulation of 1 million observations 

be taken as the expected value of cycle time, de-
noted as E[c]. 

2. Let an R-D simulation of 10000 observations be 
the observed value of cycle time for replication i, 
denoted as ci. 

3. Let a J-D simulation of 10000 observations be the 
actual estimate of cycle time for replication i, de-
noted as xi.  

4. We assume there exists a known positive correla-
tion between the means of the R-D and J-D simu-
lation output cycle time variables. 

5. Compute the variance of the n observations of the 
R-D simulation. 

6. Compute the covariance of the n observed value 
of cycle time in the R-D paradigm to the n ob-
served values of cycle time from the J-D para-
digm (from simulation). 

7. Compute the scalar factor a* 
    

 
)(

),(
*

2 cs

cxCov
a =        (1) 

 
8. Compute the controlled estimate of the output 

variable. 
 

    ])[(* cEcaxx iici −−=       (2) 

 
One run of one million observations from the control 

(R-D) model was executed to get the expected mean cycle 
time: E(c) = 1170.496. Table 2 shows the average and 
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standard deviation of the average cycle time from 10 repli-
cations each from the J-D model, the R-D model, and from 
the J-D means adjusted by the control variates.  The Cov(x, 
c) is 327.7036, a* is 0.8962, and correlation is 0.9997. 

 
Table 2:  Average Cycle Time Using Control Variates for 
Mini-Fab “Light” Model 

Simulation Paradigms 

Cycle 
Time 

Job-Driven 
(Actual Es-

timate) 

Resource-
Driven 

(Observed 
Input) 

Adjusted 
Job-Driven 
(Controlled 
Estimates) 

Average 1166.656 1167.325 1169.498 
Std Dev. 19.048 19.122 1.961 

 
Note that, the use of control variate reduces the sample 

variance from 19.122 to 1.961, which is about a 90% re-
duction in standard deviation (and thus the half-width of 
the confidence interval) of the J-D model output.  Confi-
dence intervals (α=0.05) on the average cycle time for the 
J-D model and the J-D model adjusted by the control vari-
ates are shown in Table 3. 
 
Table 3:  Confidence Interval with and without the Use of 
Control Variates for the J-D Model 

Models N Mean 
Std. 
Dev. 

SE 
Mean 

95% CI 

JD 10 1166.66 19.05 6.02 
(1153.03,
1180.28) 

Adjusted 
J-D 

10 1169.50 1.96 0.62 
(1168.10,
1170.90) 

 
3.3 Calibration Metrics for J-D and R-D Models 

(M/M/1-M/D/1 systems) 
 
The objective is to investigate the feasibility of using cali-
bration metrics to determine whether the R-D approach 
(fast execution) is effective as an estimator for the J-D ap-
proach (comprehensive detail) under certain model struc-
tures. An M/D/1 queuing system built in the R-D paradigm 
is used to estimate the average cycle time of an M/M/1 pri-
ority-queuing system simulation model built in the J-D 
paradigm. A procedure using calibration metrics for R-D 
and J-D simulation was also developed. 

To estimate the J-D output from the R-D model, a bias 
correction factor estimated from initial runs of the J-D and 
R-D models is used. The quality of the bias correction fac-
tor is one of the major concerns in this investigation.  Two 
types of analysis were conducted. The first one uses queu-
ing theory to calculate the theoretical (true) value of the 
bias correction factor.  For the second analysis, different 
numbers of replications are run to estimate the value of the 
bias correction factor.  Five to fifteen replications of the 
M/M1 and M/D/1 queuing systems are used to estimate the 
value of this factor. 
The hypothesis of this experiment is that the quality of 
the factor depends on the number of replications used to 
estimate it and the correlation of the output of the two 
models.  This research aims to find a methodology to de-
termine an appropriate number of replications to ade-
quately estimate the factor.  In addition, we are investigat-
ing the relationship between the number of replications, 
correlation, and paired-t confidence intervals. 

The experiment also uses the method of common ran-
dom numbers (CRN) to facilitate the comparison between 
actual simulation output of the J-D model and estimated 
output of the J-D model.  To implement this, we dedicated 
one random number stream to generating service times and 
a different random number stream to generating inter-
arrival times.  For each replication, the J-D and R-D simu-
lations start off with the same seed value for each random-
number stream. 

In addition to the use of CRN’s, we investigate the use 
of Antithetic Variates (AV) as a variance reduction tech-
nique for simulation models in this study.  When using 
AV’s, we make n pairs of runs of the simulation with the 
length of m, which results in a pair of sample means 

),( ,,
−+
mimi XX , where +

miX ,
is from the first run of ith pair and 

−
miX ,

 is from the antithetic run.  A sample mean of the AV 

average of each replication is defined as 
miX ,

= 

),( ,,
−+
mimi XX /2, (Law and Kelton 2000).   

 
3.3.1 Calibration Metrics Using  

Theoretical Bias Correction Factors  
 
To illustrate the use of calibration metrics, let Model 1 be 
the M/M/1 priority-queue system with the mean service 
rate, µ, of 0.25 parts per unit time, and the mean arrival 
rate, λ, of 0.245 parts per unit time.  The long-run traffic 
intensity, ρ, for this system is 98%.  The parts are proc-
essed according to highest-value-first rule and a uniform 
distribution with range of [0,1] is used to generate the 
value.  Let Model 2 be the M/D/1 system with the same 
service and arrival rate as Model 1.  Parts are processed in 
FIFO order.  Appendix B1 describes a generic procedure 
using calibration metrics for the case of theoretical bias 
correction factors (TBCF). The following shows the step-
by-step procedure for our example: 

 
Step 1:   Based on queuing theory, Gross and Harris 

(1998), the long-run average cycle time, w, of 
model 1 (M/M/1) priority queuing system) is 
200. 

Step 2:   The long-run average cycle time, w, of model 
2 (M/D/1 queuing system) is 102. 

Step 3:   Multiplicative CF = (200/102) = 1.961 
  Additive CF = 200 - 102 = 98. 
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Step 4:   Obtain average cycle time of 30 replications 
from R-D model, shown in Table 4. 

Step 5:   The estimated outputs of Model 1 from 30 
replications of Model 2 for both multiplica-
tive and additive correction factor are shown 
in Table 4. 

 

A paired-t test is performed in order to test if the esti-
mated average J-D cycle time from the R-D runs is statisti-
cally different from the average cycle time of the J-D runs. 
The null hypothesis (Ho) is that there is no difference in the 
average cycle times. The alternative hypothesis (H1) is that 
there is a difference in the average cycle times.  The test 
statistic for this hypothesis is )/(/ nSdt do = .  The num-

ber of replications is 30 and the confidence level is 0.05. 
Table 4 shows the results from the cases where CRN’s and 
TBCF are used, while Table 5 shows cases where 
CRN’s/AV’s and TBCF are used.   
 
Table 4:  Results of Using Model 2 Output to Predict 
Model 1 (CRN’s TBCF) 

Paired-t Test N Mean Std Dev 
SE 

Mean 
J-D 30 196.77 17.88 3.26 

Estimated J-D 
(Multiplicative) 

30 199.83 10.40 1.90 

Difference 30 -3.06 16.78 3.06 
95% CI for Mean Difference: (-9.32,3.21) 

Paired-t Test N Mean Std Dev 
SE 

Mean 
J-D 30 196.77 17.88 3.26 

Estimated J-D 
(Additive) 

30 199.91 5.30 0.97 

Difference 30 -3.14 16.53 3.02 
95% CI for Mean Difference: (-9.32,3.03) 
 
Table 5:  Results of Using Model 2 Output to Predict 
Model 1 (CRN’s/AV TBCF) 

Paired-t Test N Mean Std Dev 
SE 

Mean 
J-D 30 196.16 9.55 1.74 

Estimated J-D 
(Multiplicative) 

30 198.86 6.01 1.10 

Difference 30 -2.70 7.49 1.37 
95% CI for Mean Difference: (-5.50,0.09) 

Paired-t Test N Mean Std Dev 
SE 

Mean 
J-D 30 196.16 9.55 1.74 

Estimated J-D 
(Additive) 

30 199.42 3.07 0.56 

Difference 30 -3.26 8.01 1.46 
95% CI for Mean Difference: (-6.25,-0.27) 

 

For the cases without using AV’s, we conclude that 
we cannot reject Ho: µd = 0 for both tests at 0.05 level of 
significance.  The estimated J-D average cycle time from 
the R-D runs is not statistically different than the average 
cycle time of the J-D model when theoretical bias correc-
tion factors are used.  

When we use AV’s, the estimated J-D average cycle 
time from the R-D runs is not statistically different from 
the average cycle time of the J-D model when the theoreti-
cal bias correction factor is used for the multiplicative case. 
However, in the additive case, we reject the null hypothesis 
and conclude that the results are statistically different. 
 
3.3.2 Calibration Metrics Using  

Estimated Bias Correction Factors 
 
This section illustrates a procedure using the R-D model to 
estimate the bias correction factor from a preliminary set of 
R-D and J-D runs and then making additional R-D runs to 
estimate J-D model output.  We are interested in the per-
formance of the estimated bias correction factor when dif-
ferent numbers of replications are used.  The generic pro-
cedure is shown in Appendix B2.   

Consider the previous models: M/M/1 priority queuing 
system for the J-D model, and the M/D/1 queuing system 
for the R-D model.  A case using 10 replications to deter-
mine the bias correction factors is illustrated in detail as 
shown below.  
 
Calibration Metrics for n1 = 10 and n2 = 20 replications 

 
Step 1:   Average CTMM1, 10 replications = 195.96 minutes 
Step 2:   Average CTMD1, 10 replications = 102.89 minutes 
Step 3:   Multiplicative CF = 1.9046  

   Additive CF = 93.070 
Step 4:   Obtain average cycle time of 20 additional 

replications from R-D model. 
Step 5:   Estimated outputs of Model 1 from 30 repli-

cations of R-D Model for both multiplicative 
and additive correction factors are shown in 
Table 6. 

Step 6:   Obtain average cycle time of 20 additional 
replications from J-D model. 

Step 7:   Build and compare CI of R-D and J-D model, 
shown in Table 6.  

 
A paired-t test is performed in order to determine if 

the estimated average J-D cycle time from the R-D runs is 
statistically different from the average cycle times of the J-
D model.  The null hypothesis (Ho) is that there is no dif-
ference in average cycle time between them.  The results 
are shown in Table 6.   

It can be concluded that we cannot reject Ho: µd = 0 
for either test at a 0.05 level of significance.  The estimated 
average J-D cycle time from the R-D runs is not statisti-
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cally different than the average cycle times of the J-D 
model when 10 replications are used to estimate the bias 
correction factor.  
 
Table 6:  Results of Using R-D Model Output to Estimate 
J-D Model Output (n1 = 10 and n2 = 20 Replications) 

Paired-t Test N Mean Std Dev 
SE 

Mean 
JD 30 196.77 17.89 3.26 

Estimated J-D 
(Multiplicative) 

30 194.10 10.10 1.84 

Difference 30 2.67 16.72 3.05 
95% CI for Mean Difference: (-3.57,8.92) 

 

Paired-t Test N Mean Std Dev 
SE 

Mean 
JD 30 196.77 17.88 3.26 

Estimated J-D 
(Additive) 

30 194.98 5.30 0.97 

Difference 30 1.79 16.53 3.02 
95% CI for Mean Difference: (-4.39,7.96) 
 
3.3.3 Execution Time Comparison 
 
This section shows the benefit of using the R-D paradigm, 
which is more efficient than the J-D paradigm in terms of 
execution time.  Specifically, execution time using solely 
the J-D model to generate a confidence interval of simula-
tion output is compared to using the R-D model output to 
estimate J-D model output.  Table 7 shows the execution 
time of using R-D model output to estimate J-D model 
output for the case with n1 = 10 and n2 = 20 replications as 
described above.  
 
Table 7:  Execution Time of Using R-D Model Output to 
Predict J-D Model Output for Case n1 = 10 and n2 = 20 
Replications  

Models Execution Time (Seconds) 
J-D 10 Rep. 159.10 
J-D 30 Rep. 478.00 
R-D 10 Rep. 88.90 
R-D 10 Rep. 178.40 

 
To get estimated J-D output in this case, we need to run 

the J-D and R-D models 10 replications each to obtain bias 
correction factors and another 20 replications of the R-D 
model.  The total execution time to predict the J-D output is 
426.4 seconds.  The execution time to run 30 replications of 
the J-D model is 478 seconds.  It can be seen that using the  
R-D model output to estimate the J-D model output is more 
efficient than using only the J-D model to do the same task. 
There was a 10.8% improvement in execution time in this 
experiment.  The systems used in this experiment were very 
simple and we expect greater benefits of using the R-D ap-
proach will be realized in more complex models. 
3.3.4 Percentage of Experiments with  
Confidence Intervals Containing Zero 

 
This section illustrates the performance of the estimated 
bias correction factor when different numbers of replica-
tions are used. A case using 5 replications to determine the 
BCF was also performed. We found that the percentage of 
experiments with CI containing zero, which is at a range of 
60%, was not acceptable. Experiments using 5, 6, 7, 8, 9, 
10, and 15 replications to estimate the bias correction fac-
tor are conducted for further analysis. For each case, we 
perform 100 independent experiments of 30 replications 
each. Table 8 shows the percentage of the 100 independent 
experiments in which the estimated average J-D cycle time 
from the R-D runs is not statistically different than the J-D 
model at alpha = 0.05.  Note that the paired-t test was used 
to perform the calculations.     
 
Table 8: Percentage of 100 95% CI’s in which the Esti-
mated Average J-D Cycle Time from the R-D Model is not 
Statistically Different from the J-D Model 

CRN CRN + AV 
Factor 

Determined by 
x Replications 

Mul. 
Factor 

Additive 
Factor 

Mul. 
Factor 

Addi-
tive 

Factor 
True 83% 81% 81% 60% 

5 60% 67% 57% 61% 
6 63% 69% 61% 66% 
7 77% 75% 72% 74% 
8 72% 77% 75% 83% 
9 79% 80% 80% 82% 

10 83% 90% 84% 88% 
15 97% 97% 97% 97% 

 
The result shows that the chance of the confidence 

interval containing zero increases as more replications are 
used to estimate the bias correction factor, but at a corre-
sponding higher cost of simulating execution time. 

4 CONCLUSIONS AND  
FUTURE DIRECTIONS 

During the first phase, the Mini-Fab “Light” model was 
built in the J-D and R-D paradigm using the Sigma soft-
ware package.  The two models have been exercised to in-
vestigate the possible use of the R-D simulation model 
control variates for the J-D simulation.  The result shows 
that the standard deviation of the adjusted J-D average cy-
cle time is reduced by 90% compared to the case where 
control variates are not used.   

In addition, a procedure to determine metrics that 
permit comparison of R-D and  J-D modeling was devel-
oped.  This procedure was tested with M/M/1 (J-D) and 
M/D/1 (R-D) queuing systems.  Determining the bias cor-
rection factor, which is used to estimate J-D output from 
R-D output, is an important issue in this experiment.  We 
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investigated the use of the theoretical value for the bias 
correction factor and considered different numbers of rep-
lications to estimate the bias correction factor.  The results 
show that estimated J-D simulation outputs become similar 
to the J-D simulation outputs as the number of replications 
used to estimate the bias correction factor increases.  In our 
specific example, there was a 10.8% reduction in the com-
puter time needed to build the confidence intervals. This 
procedure is expected to be more efficient as the system 
becomes more complex. 

It is obvious that the success of the Control Variates 
and Calibration Metrics Method depends on the relation-
ship among replications, correlation, and confidence inter-
val between the R-D and J-D simulation. In the simple sys-
tems as illustrated in this paper, it is easy to show the 
relationship between the two models and to exploit it by 
the Control Variates and Calibration Metrics approaches. 
However, in a more complex system with batch tools and 
downtimes of machines, a methodology to obtain an R-D 
model with a relationship (such as that obtained for the 
simple models) is needed. Specifically, the key question is 
how we are to build the R-D model, which is correlated to 
the more complex system built in J-D model.  

Summarized below are the outstanding issues regard-
ing the use of calibration metrics:  

 
1. When is the additive correction factor preferable 

to the multiplicative correction factor, and vice 
versa?  Should other factors be considered? 

2. How many replications are needed to reasonably 
estimate the bias correction factors? 

3. How can we characterize the relationships among 
replications, correlation and confidence intervals? 
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APPENDIX A:  MINI-FAB “LIGHT”  
MODEL DESCRIPTION 

The Mini-Fab “Light” model consists of three groups of 
machines with two identical machines (A and B) in tool 
group 1, two identical machines (C and D) in tool group 2, 
and one machine (E) in tool group 3.  There are six proc-
essing steps and the processing times for each step are 
shown in Figure 1.  Machines A and B are used for proc-
essing steps S1 and S5, machines C and D are used for 
processing steps S2 and S4, and machine E is used for 
processing steps S3 and S6.  Steps S1 and S5 are batching 
process steps with a batching policy that allows lots from 
both steps to processed together in batches of 3 lots. There 
is only one part type in the model and it has a mean inter-
arrival time of 120 minutes. First-In-First-Out (FIFO) dis-
patching is used at all tool groups.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Process Flow and Processing Time of Mini-Fab 
“Light” Model 
 
APPENDIX B: CALIBRATION METRICS FOR 
SIMPLE MODELS – USING MODEL 2 OUTPUT TO 
PREDICT MODEL 1 OUTPUT   

 
B-1 Theoretical Bias Correction Factors 
 

Step 1: Use queuing theory to calculate the true value of 
the output parameter for Model 1 

Step 2: Use queuing theory to calculate the true value of 
the output parameter for Model 2, a more abstract 
model 

Step 3: Determine the bias correction factors (CF) for 
Model 1 
a) Multiplicative CF = (Model 1/Model 2) 
b) Additive CF = (Model 1 - Model 2) 

Step 4: Run N replications of Model 2 
Step 5: Calculate estimated outputs of Model 1 from N rep-

lications of Model 2 
a) Using Multiplicative CF:  Estimated Model 1 

= Simulated Output of Model 2 *  Multiplica-
tive CF 

b) Using Additive CF:  Estimated Model 1 = 
Simulated Output of Model 2 + Additive CF 

 
B-1 Estimation of Bias Correction Factors 
 
Step 1: Run n1 replications of a J-D Model. 
Step 2: Run n1 replications of a R-D Model. 
Step 3: Determine bias correction factors (CF) for J-D 

Model. 
a) Multiplicative CF = (JD/RD) 
b) Additive CF = (JD - RD) 

Step 4: Run n2 replications of R-D Model 

Tool Group 1
- Machine A
- Machine B

Tool Group 2
- Machine C
- Machine D

Tool Group 3
- Machine E

Starts

Outs

1 3
2

4

5
6

7

Process Tool Group Process Time Batch Size
Step (machines) (mins) (lots)

1 1 (A, B) 225 3
2 2 (C, D) 30 1
3 3 (E) 55 1
4 2 (C, D) 50 1
5 1 (A, B) 255 3
6 3 (E) 10 1
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Step 5: Calculate the estimated outputs of the J-D model 

from N (= n1 + n2) replications of R-D model  
a) Using Multiplicative CF:  Estimated JD = RD 

* (JD / RD) 
b) Using Additive CF:  Estimated JD = RD + (JD 

- RD)   
Step 6: (For testing/validation only) Obtain another n2 rep-

lications of J-D model 
Step 7: Build and compare CI of estimated J-D (from step 5) 

with J-D model (from steps 1 & 6) on N replications. 
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