
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

DEVELOPMENT OF DISTRIBUTED SIMULATION MODEL FOR THE
TRANSPORTER ENTITY IN A SUPPLY CHAIN PROCESS

Richard J. Linn
Chin-Sheng Chen

Jorge A. Lozan

Department of Industrial and Systems Engineering
Florida International University

Miami, FL 33199, U.S.A.

ABSTRACT

Transporter is a critical part of Supply Chain integration.
An international transporter process involves multiple
ground pickup and delivery operations, package sorting
and palletizing, airport operations and air transport. This
paper describes a successful two-machine implementation
of a distributed simulation model for an international
transportation system in a supply chain network operation
using Run Time Infrastructure of High Level Architecture
software developed by the Defense Modeling and
Simulation Office, the Distributed Manufacturing
Simulation Adapter developed by the National Institute of
Standards and Technology, and ARENA simulation tool.
By incorporating the capabilities provided by these tools, it
was successful to establish the information flow exchange
between the machines where one machine houses
transporter while the other has suppliers, customers, and
distribution centers located in different parts of world.
This research tool attempts to facilitate the development of
distributed simulations so they can be used to analyze and
solve manufacturing related problems.

1 INTRODUCTION

An effective Supply Chain Management (SCM) means in-
tegration of all functions such as sourcing, procurement,
production scheduling, warehousing, and transportation, so
that the material and information flow continuously from
firms to firms. The SCM integration must be done through
the information. The idea is to have information trail that
follows the product’s physical trail so that the planning,
tracking, and lead-time estimation, etc. can be done on real
time data. Any party who has the need to know where the
product is should be able to access the data.

A firm involved in a supply chain will always have an
up-stream supplier network and downstream distribution
network. For the distribution network of manufacturer, dif-

ferent entities are involved: customers (buyers), distribu-
tors/retailers, and transporters. Manufacturer may ship
through a transporter to distributors first. Then retailer will
receive his supply from the distributor. Multi-mode trans-
ports, such as land/sea or land/air, are often employed be-
tween the two entities. This is particularly true if interna-
tional supply chain is involved. Multi-mode transport
involves multiple operations such as freight forwarders,
trucking companies, terminal operators and carriers (ocean-
liner, airlines). An effective integration of all these opera-
tors requires a carefully planned strategy. To model such
SCM operation, the distributed simulation modeling that
connects through Internet multiple simulation models resid-
ing on different machines at a distance has been proposed.

This project is to develop a transporter simulation
model that can be easily integrated with other simulators
through Internet using the readily developed Distributed
Manufacturing System Adaptor (DMS Adaptor) from Na-
tional Institute of Standards and Technology. The ob-
jective of this report is to describe the development of a
distributed simulation model for a transportation system
that includes multiple transporters. DMS Adapter is
imbedded to establish information flow exchange between
simulation models.

2 SUPPLY CHAIN PROCESS

The modeling of the supply chain system simulates a SCM
process of four international locations. These are the opera-
tions located in Miami, Lima, Honduras, and Venezuela.
The general process are described here.

2.1 Local Operation

1. In any of the four locations, customers place pur-
chase orders to their local Distribution Center
(DC). The order information includes:
a. Type of order,

Linn, Chen, and Lozan

b. Order amount,
c. Due date,
d. Customer’s preferred supplier location (if

necessary),
e. Customer’s current city, and
f. Customer’s zone of residence.

2. DC receives the order and proceeds to check if in-
ventory is available. If there is, DC prepares ship-
ment to fill the order from its inventory and
creates a shipping order to the transporter whose
trucks will come to pick up. Otherwise, the pur-
chase order is placed on hold until inventory re-
plenishment arrives again.

3. DC inventory’s internal system verifies whether a
reorder point is reached. At every purchase order,
the internal system decides whether or not to trig-
ger the automatic reorder process to their corre-
spondent supplier.

4. All shipments are held until 8:00 pm until trans-
porter’s pickup takes place.

5. During the pickup, the items are checked, packing
list is attached, shipments are loaded and pickup is
confirmed with the shipper. The package is now
officially in the transportation system. The trans-
portation method will be local because shipment
is going to local customers.

6. Through the local transportation (trucking) sys-
tem, packages are delivered to customers. Cus-
tomers are partitioned into zones according to
their local addresses. A truck will handle both
pickups and deliveries and is assigned to a zone
only. Currently, each city is divided into three ma-
jor zones.

2.2 International Operation

1. When DC reaches its re-order point, a purchase
order is placed to its supplier, which may be lo-
cated in a different country. The supplier receives
the purchase order from the DC and proceeds to
verify its inventory. If inventory is available, Sup-
plier fills the order from its inventory by creating
the shipment for the purchase order and a ship-
ping order to the transporter. Otherwise, the pur-
chase order is placed on hold until the replenish-
ment arrives.

2. Supplier inventory’s internal system verifies
whether a reorder point has been reached. When-
ever a purchase order is received, the internal sys-
tem decides whether or not to trigger the produc-
tion for inventory replenishment.

3. Shipments are held up until 8:00pm every night
until transporter’s pickup takes place.

4. At pickup, shipments are checked whether or not
they are local or international. The supplier location
may not necessarily have the same location as the
distribution center. For instance, a customer that
lives in Lima wishes to buy a pair of snickers
manufactured in Miami. However, DC’s inventory
located in Lima does not have that product in stock.
Thus, they will contact the supplier in Miami to
complete the customer order. Hence, the transpor-
tation system checks if the shipments will be trans-
ported to a local DC or sent overseas. Upon exiting
the transportation system, packages are delivered to
the distribution centers accordingly.

3 TRANSPORTER OPERATION

International logistics involves local SCM operations in
different countries and international carriers connecting
them. Figure 1 presents the relationship between the local
SCM operations and the transportation system. Our current
study deals with the following scenario:

1. A customer sends purchase order to a DC. Upon

receipt of the purchase order, the local DC pre-
pares the cargo/package shipment and awaits
pickup service to collect them.

2. The packages collected from a DC are brought to
transporter’s regional or local sorting center. The
packages are processed, scanned, sorted, bagged,
and palletized according to their destinations.

3. If the packages are designated for local address, the
processed packages are delivered through trans-
porter’s local delivery to the customer’s address.

4. Otherwise, the packages are transported to the
airport terminal.

5. At the terminal, the shipments are to clear cus-
toms and placed onto dollies for the ramp service
to load them into the proper carrier.

6. Once reached their destination points, the contain-
ers are unloaded at the terminal, and broken down
into individual shipments for further inspection by
customs.

7. Once cleared, they will be transported by vans to
its regional sorting center for later delivery to dis-
tribution center.

8. From the distribution center, packages follow the
exact same process explained in steps 1 and 3.

CUSTOMER DISTRIBUTION
CENTER SUPPLIERorder order

UPS SORTING
CENTER

shipped
order

AIRPORT
HUB

exports through

shipment

imports
through

Figure 1: SCM and Transporter system flow

Linn, Chen, and Lozan

3.1 Transporter’s Ground Operation and Carrier

Network Development

The entire transportation system includes an air career
network (Figure 2) connecting a ground operation of each
airport in different regions. Carriers transport cargoes and
small packages from airport to airport. Connected to each
airport is a series of ground transporter operations. Each
ground operation is divided into import and export opera-
tions. Everyday, according to the packages to be delivered
in each zone and pickup locations to visit, trucks will be
dispatched from sorting center to deliver and pick up pack-
ages. At the pickup locations, export shipment enter the
transportation system. At the delivery location, import
shipments leave the transportation system. Trucks bring
export shipments back to the sorting center where the col-
lected packages are sorted according to their destination
and flight numbers. For each operation, it is necessary to
determine the information transferred between operations,
the process involved in converting the information from
input to output within each operation, and the capacity at
each operation (Linn and Chen, 2001).

Figure 2: Air carrier network connecting cities/airports

4 HLA/RTI Software and the DMS Adapter

The Run Time Infrastructure (RTI) is based on the High
Level Architecture (HLA) developed by the Defense Mod-
eling and Simulation Office (DMSO) to provide a consis-
tent approach for integrating distributed, defense simula-
tions. An HLA-based distributed simulation is called a
federation. Each simulator or system that is integrated the
federation is called a federate. One common data definition
is created for domain data that is shared across the entire
federation. It is called the federation object model (FOM).
Each federate has a simulation object that defines the ele-
ments of the FOM that it implements.

There is, however, no interoperability across RTI im-
plementations (McLean and Riddick, 2000). Hence, a dis-
tributed simulation running on different computer systems
across a network must use the same RTI software as an in-
tegration infrastructure. The Distributed Manufacturing
Simulation (DMS) Adapter is developed as part of the IMS
Mission Project. The purpose of the adapter is to facilitate
the development of distributed simulations for analyzing
and solving manufacturing related problems (Riddick,
2001). The DMS Adapter is incorporated into each DMS
federate. The adapter will handle the transmission, receipt
and internal updates to all the FOM objects used by a fed-
erate. The DMS adapter provides a simplified time man-
agement interface, automatic storage for local object in-
stances, management of lists of remote object instances of
interest, and management and logging for interactions of
interest. The DMS Adapter is meant to provide mecha-
nisms for distributed simulation similar to those that are
provided by the HLA RTI, but with a level of complexity
that is manageable by the development resources available
in the manufacturing community.

Many objects in the FOM may reference documents
containing more detailed information that are stored in a
file system, PDM system, or database. The Extensible
Markup Language (XML) can be used to define new
document types (Goldfarb and Prescod, 2000). XML al-
lows for the definition data that has semantic information
in addition to the data values. XML data-type-definitions
(DTD) may be used to define new document formats. Even
without the DTD, XML files are often both human and
machine readable because of the semantic information that
is included. Moreover, there are potentially many docu-
ment types that will be stored as distributed manufacturing
simulation data. Examples of these include many kinds of
CAD files, image files, and executables. However, many
manufacturing documents do not have standardized format.
Examples of these are schedules, bills of material, and
process plans. XML presents itself as a mechanism to al-
low the definition of these extensible formats without af-
fecting the DMS architecture or interfaces.

5 Model Development

The distributed simulation model development was divided
into 6 steps:

1. Study SCM process of transporting packages and
cargo in UPS International operation.

2. Develop generalized simulation model of the
transporter operation.

3. Develop detailed information model of the trans-
porter’s ground operation and carrier network.

4. Study DMS Adapter and XML functionality.
5. Place the ground operation and carrier model in

one computer, suppliers and distributors and cus-
tomers (buyers) into second computer. Embed
DMS Adapter in each model to develop Internet
based multi-computer distributed simulation model.

6. Expand the information content of the simulation
model according to the information model.

Linn, Chen, and Lozan

 Steps 1 and 2 are explained in the previous sections.
Thus, the following will be the description of the trans-
porter system and the DMS Adapter.

5.1 Transporter’s Ground Operation and Carrier
Network

The simulation model developed after studying the process
of transporting packages and cargo in UPS International
operation follows this process flow.
 Scenario #1: A supplier in this country ships orders to
distribution center in another country

1. Export process begins when UPS trucks bring or-
ders to local sorting center. The information proc-
essed here includes a package number, package
type, value, weight, number of pieces, pickup
time, and flight number.

2. Packages are then key-entered into the system, in-
spected, scanned, labeled, bagged, sealed, and
placed in containers according to their destinations.

3. At 9:30p, Vans will transport the containers to the
airport terminal.

4. At 10:10p, Vans arrive at the airport. Packages are
unloaded from the vans and palletized based on
the containers’ destinations.

5. At 10:55p, packages are weighted and they will
remain stacked until their flight departure times.

6. In this experiment, each of the four cities pos-
sesses a pre-determined schedule. For instance,
flights from Lima will depart at 00:36a, flights
from Miami at 01:36a, flights from Honduras at
02:36a, and flights from Venezuela at 03:36a.
This is normal since flight, or service, schedule is
often set for a long period of time.

7. During early morning, airplane carriers will reach
their destinations in the various cities in the cur-
rent carrier network. Export process ends.

8. Import process begins: At 7:00a, packages arrived
from the airplanes are loaded onto pallets by
ground operations and transported to Customs.

9. Packages are scanned and checked by Customs.
10. Upon clearing, packages will be sorted by types

and values. For instance, packages whose monetary
value exceeds $100 will require special attention.

11. At 9:00a, Vans pick up the released shipments
from Customs and transport them to local sorting
center (Hub).

12. Packages delivered to the local Hub are scanned
and checked for problems such as repacking, bad
addresses, and heavy traffic delivery or customer
service issues.

13. At 10:00a, UPS truck picks shipments up and de-
livers them to local distribution center. Import
process ends.
 Scenario #2: A supplier in this country ships order to
distribution center in the same country.
 Scenario #3: A distribution center ships order to cus-
tomer (it was already stated that DCs and Customers are in
the same country).

1. UPS trucks deliver shipments to local Hub at ap-
proximately 8:30p.

2. Packages delivered to the local Hub are scanned
and checked for problems such as repacking, bad
addresses, and heavy traffic delivery or customer
service issues.

3. If shipments are to be delivered to customers, they
are palletized according to customer’s zone of
residence.

4. At 10:00a, UPS trucks picks shipments up and
start delivering them to local distribution center
and/or customers

5.2 Install the DMS Adapter

In order to enable the transfer of information flow between
the simulation models, it is necessary to follow these in-
structions:

1. Download and Install the RTI software documen-
tation.

 This version of the DMS Adapter is built to work
with version RTI1.3NG-V3.2. To download, sign
up with the DOD at http://sdc.dmso.mil.
The DMS Adapter has been tested with WinNT
4.0 but it should work with Win98 and Win2000.

2. Set up environment variables for RTI_HOME,
RTI_BUILD_TYPE, and RTI_RID_FILE in the
System properties of the Control Panel.

 RTI_HOME corresponds to the path where the
RTI executable files are located. For example:
“C:\Program Files\ \DMSO\RTI1.3NG-V3.2”

 RTI_BUILD_TYPE corresponds to version name
of the RTI software. For example: “Win2000-
VC6”

 RTI_RID_FILE corresponds to the path of the RID
file. For example: “C:\Distribution\BIN\RTI.rid”

3. Add the following string (without the quotes) to
the end of the Path environment variable:
“;%RTI_HOME%\%RTI_BUILD_TYPE%\bin;”

 NOTE: Test the RTI by opening the command
prompt window and typing “rtiexec”. If you get
messages saying that there are missing DLLs, ex-
tract the file bin\MSdlls.zip and copy the DLLs to
the winnt\system32 directory.

4. Extract the files from the zip files containing the
DMS Adapter.

5. Run RegisterAdapter.bat in the bin directory to
register DMSAdapter.dll. Run RegDebugLog.bat

http://sdc.dmso.mil/

Linn, Chen, and Lozan

in the bin\DebugLog directory to register Debu-
gLog.exe.

 NOTE: If the DMSAdapter will not register, un-
zip the bin\MSdlls.zip and copy the DLLs to the
bin directory.

6. Customize the RTI address in the RID file and
RTIexec.bat

 NOTE: Follow these steps if you attempt to run a
federation on the same computer. Otherwise, refer
to Running RTIexec in a LAN environment.

 In the RTI.rid file there is an address setup for the
MulticastDiscoveryEndpoint. In the RTIexec.bat
file in the bin directory, there is a command line
parameter called “-multicastDiscoveryEndpoint”
which must have the same address. The format of
the address is:

 224.aa.bb.cc:ddddd, where aa, bb, and cc
represent integers between 0 and 99. ddddd
represents a port number.

 NOTE: an RTI process must be started before a
federation can be created and can be only one RTI
process on a network. If more than one person at-
tempts to start a federation on the same network,
change the address in the RID file and
RTIexec.bat so that each person can have their
own RTI.

7. Make sure the FED file (DMSAdapter.fed) is in
the same directory as the RID file.

8. Start the customized version of RTIexec.bat be-
fore attempting to start any federations.

5.2.1 Running RTIexec.bat in a LAN/
WAN/Internet Environment

This approach can be used if all of the federates will be
running on the same LAN, over a WAN or the Internet. It
uses the “endpoint” parameter of the RTIexec and the
RTIExecutiveEndpoint data in the RID file.

1. First, decide which machine to run the RTIexec
on. Determine its real IP address and its complete
hostname. Next, make up a port number. 12345
should work fine. The RTIexec will only need to
be started on one of the computers. For our ex-
periments, the modified RID file had a new line
that looks like this:

 (RtiExecutiveEndpoint 131.94.167.13:12345)
 In the RTIexec.bat, change the endpoint parame-

ter to:Rtiexec.exe –endpoint hunter.eng.fiu.edu:
12345

2. Make sure that all every federates will use the
same RID file containing the new changes. That
is, the RTIExecutiveEndpoint property must be set in
each RID file that is used.
5.2.2 Running Simulations with
the Federation Manager

The Federation Manager provides the capability to specify
how many simulations must have reached the “Ready to
Run” state before any are allowed to transition to the
“Running” state. This basic capability is necessary for
simulations to synchronize so that they all start running at
the same time value, usually time zero. To use this Federa-
tion Manager with a federation, two steps must be done:

1. Start FedMan before any simulations have at-
tempted to initialize. Execute FedMan at the
command prompt and pass the number of feder-
ates that will be in the federation. For instance, if
two federates will be part of the federation, use
the following command:C:\Distribution\bin>
fedman 2

2. Set the Adapter property “WithManager” to “En-
able” on each adapter or federate before calling
the Initialize method.

 If your reference to the Adapter is called
“theAdapter”, setting the proper value can be
done with a VB statement like the following:

 rc = theAdapter.SetProperty(“WithManager”, “Enable”)
 This must be done for all adapters in the federa-

tion.

5.3 Arena Model Integration
using the DMS Adapter

In order for the DMS Adapter to work correctly within a
simulation model developed in Arena, it is necessary to in-
clude a series of blocks that will enable the Adapter logic.
Furthermore, Visual Basic statements are also needed to
reference an instance object to the adapter. The following
guidelines should provide a good start to integrating these
two concepts.

5.3.1 Create the Adapter Logic in Your Model

As shown in Figure 3, start with a Create block, two VBA
blocks, and a Delay block. The Create block will just cre-
ate one single entity used for coordination. The first VBA
block will be used for time advancement. The second VBA
block will read and process the messages. The Delay block
causes the simulation to delay until time needs to be ad-
vanced again. This delay will allow the model to go from 0
to 1 second (assuming the DMSAdapter’s property Simula-
tionStepSize has been set to 1000).

, and Lozan
Linn, Chen

Figure 3: DMSAdapter Logic in SCM model

5.3.2 Create the VB Statements in

the Visual Basic Editor

Depending on the VBA Cookie that Arena assigns to each
VBA block, the VB statements will be as follows:

a. For time advancement:

Private Sub VBA_Block_2_Fire()
‘ Advance Simulation
 rc = theAdapter.AdvanceSimulation()
 ‘wait for the end of communication
 While theAdapter.SimulationAdvanceCompleted() = False
 Wend
 End Sub

b. For message reading:

Private Sub VBA_Block_3_Fire()
‘check the messages one by one
 While theAdapter.AllMessagesReceived() = False
‘receive the message from the adapter
 theStr = theAdapter.GetNextMessage()
 Call ProcessMessages(theStr)
 Call gsiman.EntitySendToBlockLabel(gsiman.ActiveEntity,
nodelay, “EntranceL”)
 Call gsiman.EntitySendToBlockLabel(gsiman.EntityCreate,
nodelay, “GetMessageL”)
 Wend
End Sub

 For our experiments, the calls of sub-procedures were
inserted into this subroutine.

c. Calling SIMAN procedures:

At this point, it is important to notice the two SIMAN pro-
cedures and the logic behind them.
 The first procedure: Call gsiman.EntitySendToBlock
Label(gsiman.ActiveEntity, nodelay, “EntranceL”) is
called right after processing the DMSAdapter messages. It
creates a new entity and sends it to the block labeled “En-
traneceL” with no delay of time. Variable ‘nodelay’ was
defined previously and assigned the value 0.

The second procedure: Call gsiman.EntitySendTo
BlockLabel(gsiman.EntityCreate, nodelay, “GetMes-
sageL”) sends the current entity to the same VBA_3 block
in order to keep reading messages from the rest of the fed-
eration. Coincidently, the VBA_3 block was labeled
“GetMessageL”. So, after all the messages have been read,
the current entity will continue the DMSAdapter logic.

Now, refer to Figure 3. Station block ‘Entrance’ is la-
beled “EntranceL” wherein the new created entity will be
sent. The reason why there is a Choose block is that during
the simulation run, the DMSAdapter may sent messages that
are not relevant to the study of this project. For instance,
every time a federate joins the federation, a notification type
message is sent automatically. If my simulation model re-
ceives that message and processes it, a new entity will be
created with no attributes at all since their XML nodes did
not include any data concerning the SCM process. Thus, by
setting a condition ‘If comingfrom>0’ the SCM model will
know for certain that an entity that checks true for that con-
ditions has an attribute called ‘comingfrom’.

Now, refer to Figure 4. This logic corresponds to the
transporter model. It follows the exact same logic of the
SCM model. It disposes irrelevant entities before they en-
ter the system. However, it is necessary to distinguish the
entities that come from the Supplier and Distribution Cen-
ter nodes and redirect them to their proper station blocks.
Some may go to the Export process wherein they are sent
to a local sorting center and then transported to the airport
terminal. Some may go to a regional hub center, sorted and
placed for later delivery by the UPS trucks. The attribute
‘ticket’ takes care of that issue. Ticket value 1 means that
the entities pertain to the distribution center and must be
routed to the local hub. Ticket value 2 means that the enti-
ties come from the supplier node. Special attention must be
given at this point now because it is necessary to differen-
tiate whether the supplier and distribution center are lo-
cated in the same country. The condition ‘If coming-
from==mysupplier’ determines whether they both are in
the same city. If so, those entities are routed to the local
hub. Otherwise, they must follow the Export process and
be transported through the carrier network to their destina-
tion point.

Figure 4: DMS Adapter logic in Transporter model

Linn, Chen, and Lozan

d. For message processing:

Public Sub ProcessMessages(theMsg As String)
Dim myDoc As New MSXML.DOMDocument
Dim anode
Dim elemlist, i, myticket, mycomingfrom, myduedate, mysup-
plier, myzone, myorderamount, myordertype, mytoa
‘ Load XML
myDoc.loadXML (theMsg)
‘ Retrieve attributes from messages
Set elemlist = my-
Doc.getElementsByTagName(“ComingFrom”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 mycomingfrom = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“DueDate”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 myduedate = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“Supplier”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 mysupplier = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“Zone”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 myzone = anode.Text
 Next
Set elemlist = my-
Doc.getElementsByTagName(“OrderAmount”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 myorderamount = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“OrderType”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 myordertype = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“Ticket”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 myticket = anode.Text
 Next
Set elemlist = myDoc.getElementsByTagName(“TOA”)
 For i = 0 To (elemlist.length - 1)
 Set anode = elemlist.Item(i)
 mytoa = anode.Text
 Next
‘ Assigning attributes to entity obtained from XML
gsiman.EntityAttribute(gsiman.ActiveEntity, gcomingfrom) =
mycomingfrom
gsiman.EntityAttribute(gsiman.ActiveEntity, gduedate) = my-
duedate
gsiman.EntityAttribute(gsiman.ActiveEntity, gmysupplier) =
mysupplier
gsiman.EntityAttribute(gsiman.ActiveEntity, gmyzone) = my-
zone
gsiman.EntityAttribute(gsiman.ActiveEntity, gorderamount) =
myorderamount
gsiman.EntityAttribute(gsiman.ActiveEntity, gordertype) =
myordertype
gsiman.EntityAttribute(gsiman.ActiveEntity, gtoa) = mytoa
gsiman.EntityAttribute(gsiman.ActiveEntity, gticket) =
myticket
End Sub
 So far, this explanation ensures effective one-way
communication. However, a two-way communication is
imperative for this type of simulation study. In order to en-
force this, it is only necessary to insert a VBA block right
before the entity is disposed from the system. For instance,
in the transporter model a VBA block was inserted right
after the UPS trucks deliver the shipments to their corre-
sponding end nodes and before the entity reaches the Dis-
pose block. The following VBA statements convert all the
relevant attributes that the entity owns into XML data and
concatenate a XML message that it is sent to the other fed-
erates. Keep in mind that additional SIMAN methods are
included and used in previous sub-procedures of the model
logic. Moreover, all the variables used must be put in the
declarations section and all the object instances referencing
the MSXML and DMSAdapter library must be created.

e. For message sending:

Private Sub VBA_Block_4_Fire()
Dim miticket, micomingfrom, miduedate, mimysupplier, mi-
myzone, miorderamount, miordertype, mitoa As Double
Dim theMsgType
Dim theMsgData
micomingfrom = gsiman.EntityAttribute(gsiman.ActiveEntity,
gcomingfrom)
miduedate = gsiman.EntityAttribute(gsiman.ActiveEntity,
gduedate)
mimysupplier = gsiman.EntityAttribute(gsiman.ActiveEntity,
gmysupplier)
mimyzone = gsiman.EntityAttribute(gsiman.ActiveEntity,
gmyzone)
miorderamount = gsiman.EntityAttribute(gsiman.ActiveEntity,
gorderamount)
miordertype = gsiman.EntityAttribute(gsiman.ActiveEntity,
gordertype)
mitoa = gsiman.EntityAttribute(gsiman.ActiveEntity, gtoa)
miticket = gsiman.EntityAttribute(gsiman.ActiveEntity,
gticket)
theMsgType = “ProcessOrder_SUPPLIER”
theMsgData = “<ComingFrom>“ + Str(micomingfrom) +
“</ComingFrom><DueDate>“ _
+ Str(miduedate) + “</DueDate><Supplier>“ +
Str(mimysupplier) + _
“</Supplier><Zone>“ + Str(mimyzone) +
“</Zone><OrderAmount>“ _
+ Str(miorderamount) + “</OrderAmount><OrderType>“ +
Str(miordertype) + _
“</OrderType><TOA>“ + Str(mitoa) + “</TOA><Ticket>“ +
Str(miticket) + “</Ticket>“
rc = theAdapter.SendMessage(theMsgType, theMsgData)
End Sub

6 CONCLUSIONS

To model an integrated SCM operation, he distributed
simulation modeling that connects through Internet multi-
ple simulation models residing on different machines at a
distance has been proposed. The first phase of the research
emphasized primarily with the proper integration of the
Arena simulation models using the DMS Adapter. A UPS
International package delivery scenario was chosen to test

Linn, Chen, and Lozan

the functionality and behavior of the DMS Adapter. Two
computers were used to test this tool. Thus, one computer
simulated the behavior of the supply chain network and the
second computer dealt with the transportation system.
Based on the initial specifications of the supply chain net-
work, the DMS Adapter was used effectively to communi-
cate to the second simulation model in the federation net-
work. Upon receipt of these messages by the second
machine, several operations occurred according to the
fixed schedule of the transportation system. Basically,
these messages contained specific instructions that trig-
gered the initiation of the transportation model such as or-
der types, order amounts, due dates, city and airport desti-
nations, etc. It is important to mention that the use of the
XML language in the messages facilitated the creation and
format of those messages and thanks to Microsoft’s XML
Object Model compatible with Arena, it was possible to
access and retrieve the data. The two-way communication
finalized when a confirmation message was sent to the first
computer notifying that the shipments were ready to be de-
livered. This implementation has successfully utilized the
DMS Adaptor’s capability of providing distributed simula-
tion integration through the Internet.

7 FUTURE DIRECTIONS

At this point, the connectivity of the distributed simulation
can be achieved through the DMS Adaptor. The scope of
the second stage of the research agenda will be as follows:

1. Expand the supply chain models into multiple

machines so that The transporter model will actu-
ally interacting with multiple supply chain entity
models.

2. Create basic simulation blocks and elements that
can be used to build transporter instances in a
supply chain for different applications.

3. Explore the configuration strategy over the Inter-
net to allow the use of distributed simulation as a
configuration tool for logistics service integration,
or more recently fourth party logistics.

ACKNOWLEDGMENT

The work is supported by the Intelligent Manufacturing
Systems Group, National Institute of Standards and Tech-
nology, and United Parcel Service, Miami, Caribbean and
Latin America operation.

REFERENCES

Goldfrab & Prescod, 2000, The XML Handbook, Prentice

Hall: Upper Saddle River, NJ
Linn, Richard and Chen, Chin-Sheng, 2001, Development

of Distributed Simulation Model for a Transport Sys-
tem in a Supply Chain Process, a report submitted to
the National Institute of Standards and Technology,
Department of Industrial and Systems Engineering,
Florida International University.

McLean, Charles and Riddick, Frank, 2000, “The IMS
Mission Architecture For Distributed Manufacturing
Simulation,” Proceedings of the Winter Simula-
tion Conference 2000, Orlando, FL.

Microsoft XML 3.0 – XML Tutorial and XML Reference
http://msdn.microsoft.com/library/en-
us/xmlsdk30/htm, accessed on July 15, 2001.

Riddick, Frank, 2001, The Distributed Manufacturing
Simulation Adapter Reference Guide, National Insti-
tute of Standards and Technology.

AUTHOR BIOGRAPHIES

RICHARD LINN is an associate professor of Industrial
and Systems Engineering at Florida International Univer-
sity. He received his PhD from Penn State in 1987. His ar-
eas of interest are logistics, transportation management and
production planning.

CHIN-SHING CHEN is a professor of Industrial and Sys-
tems Engineering at the Florida International University.
He received his Ph.D. from Virginia Tech in 1985. His ar-
eas of interest are Concurrent Engineering, CAD/CAM,
Automation, and Applied Operations Research.

JORGE LOZAN is an MS student of Industrial and Sys-
tems Department at Florida International University. His
focus is on the simulation and information systems.

http://msdn.microsoft.com/library/en-us/xmlsdk30/htm
http://msdn.microsoft.com/library/en-us/xmlsdk30/htm

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1319
	02: 1320
	03: 1321
	04: 1322
	05: 1323
	06: 1324
	07: 1325
	08: 1326

