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ABSTRACT 

In this paper, we model and analyze a type of two-stage 
serial supply chain often found in service sector and make-
to-order manufacturing industries. The chain holds no fin-
ished goods inventory at either stage. Rather, processing 
occurs only after an order is received and backlogs are 
managed solely by adjusting capacity. We model this sup-
ply chain using a tandem queuing model. Our analysis con-
siders the impact of changes in first stage lead-time and 
capacity adjustment time on backlog, waiting time, and ca-
pacity variances at both stages. The results can be used to 
support the argument for better coordination across stages 
in these types of supply chains.   

1 INTRODUCTION 

Supply chains, particularly in service sector industries such 
as insurance, financial services, and health care, and in  
make-to-order manufacturing, can often be modeled using 
queuing models. In this paper, we present and analyze the 
properties of one such model. In particular, we consider a 
two-stage serial supply chain that holds no finished goods 
inventory at either stage. Rather, processing occurs only af-
ter an order is received and backlogs are managed solely by 
adjusting capacity. Capacity in our queuing-based model is 
represented by the number of servers at each stage. 

Although the model is an abstraction of reality, it is 
contains general characteristics that we have observed in 
practice in the aforementioned industries. For example, av-
erage lead-time is often managed to some target. This is 
achieved by adjusting capacity to manage backlog so that 
the target lead-time is maintained. Changes in backlog 
trigger capacity changes but the change in capacity may 
not be instantaneous because, for example, capacity may 
be personnel who may take time to be brought up to speed 
or released.  

Since we are changing the capacity to achieve a target  
average lead-time, the main statistics of interest will be 
variances. More specifically, we will analyze variances in 

 

the waiting times, backlogs (or queue lengths), and capaci-
ties for both stages for different model parameter levels.  In 
service sector industries, consistency tends to be highly 
valued by the end customer (see, for example,  
Fitzsimmons and Fitzsimmons 1998). This is another rea-
son why we focus on the variance metrics.  

Although analytical results exist in the queuing theory 
literature for certain models that are designed to control 
backlog via capacity adjustment (see, for example, Ros-
berg et al. 1982 and Chen et al. 1994), no analytical results 
exist for the model and the metrics that we consider other 
than the related work of Anderson and Morrice (1999, 
2000, 2001). However, even these three reference do not 
contain analytical results for the waiting time variances 
which are of great importance to customer service. For this 
reason, we resort to simulation. We will relate our results 
to the results in these references later in the paper. 

2 DESCRIPTION OF THE  
SIMULATION MODEL 

Figure 1 contains a picture our Arena model. The top flow 
diagram represents the main simulation model of the sup-
ply chain. Jobs arrive, are processed through two stages 
(each with infinite buffer capacity), and then depart from 
the system. The arrival process is intended to represent ag-
gregate demand viewed from a supply chain perspective. 
Thus, jobs arrives in a batch at the beginning of each time 
period where the batch size is normally distributed with 
mean µ and standard deviation σ (the result is rounded to 
the nearest integer).  The additional create nodes at each 
server initially load the queues at each server to a backlog 
level that matches the target lead-time (we will refer to this 
as the target backlog). Note, it is not uncommon, especially 
in service industries, to have a positive target backlog. 
Positive backlogs are viewed as a way to keep workers 
busy and often bolster the financial evaluations of service 
firms because having some backlog can be an indicator of 
future profitability.  
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 The middle flow diagram in Figure 1 is a logical proc-
ess designed to calculate, periodically, the target (or de-
sired) capacity at each stage based on the backlog and the 
target lead-time. More specifically, at time t (≥ 0), the tar-
get capacity at stage i (i.e., the variable Target Capacity i) 
(i=1,2) equals, 

 

 
( ) ( )# in Queue at Stage  + # in Service at Stage 

LeadTime
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i
 (1) 

 
The variable LeadTimei is the target lead-time at stage i. 
 The bottom flow diagram in Figure 1 is a logical proc-
ess that periodically calculates the actual capacity at each 
stage. This is a two-step calculation in which a continuous 
capacity level is calculated at time t for stage i (i.e., the 
variable ConCapi) to equal, 
 

Target Capacity # of Servers at Stage 
ConCap
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Roughly speaking, the variable CapAdjTimei is the aver-
age time it takes to adjust the actual capacity (i.e., the # of 
Servers at Stage i) to the target capacity. Thus, we will re-
fer to this parameter as the capacity adjustment time. More 
precisely, (1/CapAdjTimei) is the amount by which the gap 
between target capacity and actual capacity closes each 
time (2) is evaluated. Expression (2) is designed to model 
 
Figure 1: Arena Simulation Model 
 
the property that the actual capacity lags target capacity. 
Since the capacity change can only be integer, the ALTER 
block alters the # of Servers at Stage i by the difference 

 
 ConCap # of Servers at Stage i i−  

 
rounded to the nearest integer value. 

3 DESIGN OF EXPERIMENTS 

The base time unit used in the simulation model is hours 
but most state changes occur on a daily basis. Again, this is 
sufficient to represent the aggregate behavior from a sup-
ply chain perspective. It is also sufficient to represent sup-
ply chain level decision making. For example, supply chain 
level staffing decisions are not likely to be done more than 
once per day. To mimic such daily decisions, we recalcu-
late capacities (i.e., (1) and (2)) every 24 hours. 

For all simulation scenarios consider, we assume that 
the demand arrives in batches once per day at the begin-
ning of each day. The mean batch size is µ is set at 20 per 
day. Regardless of the value we choose for µ, we manipu-
late capacity in order to match supply with demand and to 
maintain a target lead-time. Thus, the specific value that 
we have chosen for µ is relatively unimportant. What is 
important is the variation about the target levels.  
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We set the variance in the demand so that the coeffi-
cient of variance is 10%. This is a low to moderate value 
that is common in aggregated data. The theoretical results 
in Anderson and Morrice (2001) suggest that variance in 
the demand is a scaling constant in the variances of the 
backlog and capacity. This follows since the system is ap-
proximately linear away from the boundary level of zero 
backlog. Thus, the same general patterns appear in the 
variance results from the simulation for different levels of 
the demand variance. Larger demand variance just masks 
these patterns in more noise. 

The initial capacity, i.e., the initial number of servers, 
is set to 20. Each job takes 24 hours to process (processing 
time is assumed to be deterministic). In other words, sup-
ply is set equal to average demand. 

The two main parameters of interest in this study are the 
target lead time and the capacity adjustment time at stage 1. 
We focus on the first stage parameters only because they 
impact both stages. We use these results to draw conclusions 
about the necessity for coordination of management policies 
across different stages of a supply chain. 
 The base scenario for target lead-time is 10 days of  
backlog at each stage; the base scenario for capacity ad-
justment time is 20 days at each stage. It is more common 
that capacity adjustment is longer than the target lead time 
especially when the capacity resources are people. This is 
reflected in our  base scenario. Holding all other parame-
ters fixed, we will vary target lead-time on stage 1 from 10 
to 30 days in increments of 10 days. We do the same for 
the capacity adjustment time at stage 1, holding all other 
parameters at the base case levels. 
 After initially loading the queue at each service stage 
to a backlog that matches the target lead-time, the pre-
dominant initial effects can be mitigated by collecting ob-
servations after the initially loaded jobs have exited the 
system. For the worst case, with target lead time of 30 days 
at the first station and a target lead-time of 10 days at the 
second station, all initially loaded jobs will have exited the 
system by 960 hours. Thus, we start collecting statistics af-
ter 1000 hours (the truncation point) and run the simulation 
for a total of 20000 hours (i.e., 19000 hours of data are 
used to estimate the variance statistics). Time series plots 
reveal that the data look stable after the truncation point. 
To be able to compare the results statistically, we make 30 
replications of each scenario.   

4 ANALYSIS 

The results from the five different scenarios that we con-
sider are given in Table 1. For each scenario label, “LT” 
stands for target lead-time and the two numbers that follow 
stand for the target lead-times (in days) for stages 1 and 2, 
respectively. The letters “CAT” in the scenario label repre-
sent capacity adjustment time and the two numbers that 
follow this term are the capacity adjustment times (in days) 
for stages 1 and 2, respectively.  For each scenario, we cal-
culate the average of the standard deviations from 30 
replications for the number in queues at stages 1 and 2, the 
waiting time in the queues at stages 1 and 2, and capacity 
at stages 1 and 2. Invoking the central limit theorem, we 
compute the halfwidth (“HW”) for a t-distribution based 
confidence interval for each average in each scenario. 

Table 1 results can be summarized as follows: 
 
1. As the target lead-time at stage 1 increases: 

a. The standard deviation of the number in 
queue 1 increases significantly (confidence 
intervals do not overlap). 

b. The standard deviation of the number in 
queue 2 decreases significantly. 

c. The standard deviation of the waiting time in 
queue 1 increases significantly.  

d. The standard deviation of the waiting time in 
queue 2 decreases significantly. 

e. The standard deviation of capacity at stage 1 
decreases significantly. 

f. The standard deviation of capacity at stage 1 
decreases significantly. 

2. As the capacity adjustment time as stage 1 in-
creases: 
a. The standard deviation of the number in 

queue 1 increases significantly. 
b. The standard deviation of the number in 

queue 2 does not change significantly (over-
lapping confidence intervals). 

c. The standard deviation of the waiting time in 
queue 1 increases significantly. 

d. The standard deviation of the waiting time in 
queue 2 does not change significantly. 

e. The standard deviation of capacity at stage 1 
does not change significantly. 

f. The standard deviation of capacity at stage 2 
does not change significantly. 

 
 The statistically significant cases in 1a, b, e, f and 2 a, 
c match with the analytical results in Anderson and Mor-
rice (2001). In particular, these results show that reducing 
target lead-time at stage 1 reduces queue length (or back-
log) variance at stage 1 but increases capacity variance re-
sulting in a variance trade-off at stage 1. Furthermore, the 
reduction in stage 1 target lead-time increases backlog and 
capacity variance at stage 2 resulting in a variance trade-
off across the two stages. The later trade-off indicates the 
need for coordination across the stages of the supply chain. 
 The significant results in cases 1c, d support a conjec-
ture in Anderson and Morrice (2001) that standard devia-
tions in the queue lengths move in the same direction as 
the standard deviations of the waiting times. While this 
may seem to be an intuitive result since queue lengths and 
waiting times often move in the same direction, it is
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Table 1: Statistics for Stage 1 Target Lead-Times and Capacity Adjustment Times 

 

Scenario Statistics Number in Que 1  Number in Que 2 Wait Time in Que 1 Wait Time in Que 2 Stage 1 Capacity Stage 2 Capacity
LT10_10 CAT20_20 Average of StDev 7.27 7.25 10.61 9.11 0.52 0.56

HW of 95% CI 0.33 0.64 0.22 0.54 0.02 0.03
LT20_10 CAT20_20 Average of StDev 8.61 4.40 11.08 6.11 0.42 0.42

HW of 95% CI 0.34 0.33 0.20 0.36 0.01 0.02
LT30_10 CAT20_20 Average of StDev 9.66 3.52 11.80 5.12 0.38 0.38

HW of 95% CI 0.37 0.28 0.21 0.36 0.02 0.02
LT10_10 CAT10_20 Average of StDev 6.06 6.71 8.89 9.17 0.55 0.52

HW of 95% CI 0.21 0.42 0.10 0.36 0.02 0.02
LT10_10 CAT30_20 Average of StDev 8.30 7.39 11.75 8.91 0.51 0.58

HW of 95% CI 0.45 0.72 0.32 0.56 0.02 0.04
 
not immediately evident because capacity is changing in 
order to maintain a certain target lead-time at each stage. 

5 CONCLUSIONS 

Queuing models and simulation are useful for analyzing 
the complex behavior of certain service and make-to-order 
manufacturing supply chains.  As part of our future re-
search, we plan to consider a number of extensions to this 
work. In particular, we plan to extend these results to more 
complex supply chain networks, include additional sto-
chastic elements in the model, and analyze more complex 
decision rules for controlling the supply chain. 
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