
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SIMULATION ANYWHERE ANY TIME: WEB-BASED SIMULATION IMPLEMENTATION FOR
EVALUATING ORDER-TO-DELIVERY SYSTEMS AND PROCESSES

Soundar R.T. Kumara
Yong-Han Lee

Kaizhi Tang
Chad Dodd

Dept. of Industrial and Manufacturing Engineering

The Pennsylvania State University
310 Leonhard Building

University Park, PA 16802, U.S.A.

 Jeffrey Tew
Shang-Tae Yee

Enterprise Systems Laboratory

GM Research and Development Center
Warren, MI 48088, U.S.A.

ABSTRACT

GM Enterprise Systems Laboratory (GMESL) has devel-
oped a stand-alone single user simulation program for
evaluating and predicting Order-to-Delivery (OTD) sys-
tems and processes. In order for more people to be able to
access this simulator, to share the simulation results, and to
analyze simulation collaboratively, we have designed, de-
veloped and implemented an Internet-based three-tiered
client/server framework, which consists of the three tiers:
database, execution and user interface. The corresponding
components are: database server, execution server, and
web based user interface. The relational database server
enables users to interact with the persistent data sets for
simulation study and maintains data integrity. The multi-
agent based execution server guarantees stable user re-
sponsiveness by virtue of multi-agent’s flexible architec-
ture, accordingly achieving a high level of processing scal-
ability. Finally the web-based graphical user interface
helps users to easily conduct the simulation study from
anywhere at any time, and the visual simulation analysis
tool helps users to make decisions effectively.

1 INTRODUCTION

Due to the complexity of the modern supply chain net-
works, simulation studies often help support the decision-
making processes in the supply chain management prob-
lems. Especially when analysts are interested in the dy-
namics of the system and the system performance for a
given design, simulation-based supply chain analysis is the
right approach (Simchi-Levi et. al. 2000). GM Enterprise
System Laboratory (GMESL) has developed a discrete
event driven simulation model for evaluating and predict-
ing Order-to-Delivery (OTD) systems and processes,
which is implemented in a single-user stand-alone C++

program. This program generates huge amount of simula-
tion result to be analyzed, such as the individual vehicle’s
status transition history. The simulation model and the
governing algorithms were successfully validated using the
implemented program and the sample simulation data sets.
However, the OTD simulator was not widely used due to
the following drawbacks: (a) lack of data management (the
inputs and outputs are in the form of huge flat text files),
(b) low usability of user interface (users have to edit the
whole input text files using a text editor, and have no tools
to analyze the huge output files), (c) lack of scalability
(this is basically single user program), (d) lack of informa-
tion sharing (simulation data sets can be managed by indi-
vidual users in their local storage). The objective of this
research and development reported is to enable the GM
personnel to conduct the simulation study anywhere at any
time through the Internet, and yet maintain simulation
study models and results in a central database system for
achieving higher level of information sharing among users.
In order to enable simulating and analysis anywhere at any
time via the Internet, our research problems are focused on:

• Implementing the simulation study through the

Internet
• Supporting multiple users with multiple simula-

tion data sets (inputs) for each user
• Implementing graphical user interfaces for sup-

porting simulation result analysis
• Achieving flexibility and scalability of the system

In the following two sections, we present overview of

our approach and the system architecture. Then we mainly
introduce the design of the centralized database, multi-
agent execution server and user interface in the subsequent
sections, followed by the conclusion in section 7.

Kumara, Lee, Tang, Dodd, Tew, and Yee

2 GENERAL APPROACH

Our approach is based on the current available information
technology. We use web-based three-tiered client/server
architecture as the framework of the system. The main
server components are the relational database system and
the multi-agent based virtual execution server. Our general
approach can be summarized as follows:

1. Internet based client/server architecture: We
have employed the client/server paradigm (Ask-
ren 1996)(Stevens 1996) as the basic architecture.
The client side is responsible for providing user
interfaces, which helps the users to interact with
the system through the Internet. The client-side
functionalities include user registration, user
login, job creation, job management, data entry
for the simulation input data set and the result
analysis. The server side holds all the data on us-
ers and simulation jobs including user profiles,
job descriptions and simulation input and result
data sets. The server side software needs to
schedule the simulation orders, execute the simu-
lation jobs, and save the simulation outputs in a
database for further analysis.

2. Relational database model: The relational data-
base management system gives a compact and
well-organized description of all the information
that is used in the system and in that sense it is the
backbone of the scalable simulation system. Logi-
cally, the information in the database is organized
hierarchically into three layers: user information at
the top, job information in the middle, and simula-
tion information at the bottom layer. The system
supports multiple users; a user possesses multiple
jobs; and a job holds a set of simulation data. Thus,
the relational database enables different users to
conduct different simulations.

3. Multi-agent based execution server: In order to
achieve a high degree of user responsiveness and
system scalability, we have built a multi-agent
based execution server. The execution server
consists of a broker agent and multiple execution
agents. The broker agent is in charge of adaptive
job dispatching among multiple execution agents,
so that simultaneous multiple job requests can be
scheduled and executed within a reasonable re-
sponse time.

3 OVERALL SYSTEM ARCHITECTURE

As stated in section 2, the overall system architecture is a
three-tiered client/server architecture, which separates the
functions of data management, analysis and presentation
(Hoffer 2002). These three functions are carried out by
separate computational components – the relational data-
base server, multi-agent based execution server, and web-
based user interface respectively. The general three-tiered
client/server model can be customized into various archi-
tectures thanks to the flexibility of placing the three func-
tions (data management, analysis and presentation) on
separate multiple machines. In our client/server architec-
ture, not only the data management and analysis functions
but also a large portion of the data presentation function
are carried out on the server side in order to minimize the
computation on the client side. This thin client approach
enables the anywhere-anytime simulation. Figure 1 shows
an overview of the physical system.

Figure 1: Three-Tiered Architecture

There are three primary reasons for creating the three-
tiered client/server architecture in general. First, applica-
tions can be partitioned in a way that best fits the organiza-
tional computing needs. Second, in a three-tiered architec-
ture, data analysis can reside on a powerful application
server, resulting in substantially faster response times for
users. Third, a three-tiered architecture provides greater
flexibility by allowing the partitioning of applications in
different ways for different users in order to optimize per-
formance (Stevens 1996).

Figure 2 shows how these three components of the in-
formation system are integrated through out the whole
workflow – simulation job request, simulation execution,
result analysis, and visualization of the analysis results.
Users create the simulation input data sets and request the
simulation job through the web interfaces. The input data
set and the job information are stored in the central data-
base. The Broker Agent (BA) in the execution server
checks the new job arrival, maintains the job requests in
the job queue, and dispatches the jobs to the Executive
Agents (EAs) under her control. Each EA retrieves the
simulation input data set from the central database, exe-
cutes the GM OTD simulator, uploads the simulation out-
puts, and finally runs the batch analysis module. EAs keep
reporting the job status to the BA whenever it changes, so

Web Server

Data
bases

DBMS

Broker

Executors

Database Server

WWW Clients

Virtual Executor Server

Kumara, Lee, Tang, Dodd, Tew, and Yee

Output/Analysis Data

Virtual Execution Server DB / Web Server WWW (Users)

queue

DBs

Data Input / Job Request

Job Allocation
Status

Report

agents
status

Analysis Result Browse

Job Status Browse

DB / Web server

Executor Agent

Broker Agent

Web browser

Notice with Job Number

Job Status Update

Input Data

Figure 2: Workflow Through Out the Three-Tiered Architecture
that BA can update the job status in the central database
and judiciously allocate new jobs to the EAs based on this
information. Users can check the job status through the
web browser and investigate the simulation analysis re-
sults, which are presented graphically.

4 CENTRAL SIMULATION DATABASE

4.1 Requirement Analysis

In the multi-tier client/server architecture, the design of a
database system plays an important role in the overall per-
formance of the system. The database system does not
only provide the persistent workspace for the data entry
driven by users, but also conducts data fusion between dif-
ferent tiers of the servers. In our development, the data-
base system aims at the following objectives:

1. Providing a persistent storage for the simula-
tion data: The database system does not only
statically store the user profiles, simulation con-
figurations, simulation results, and analysis results
persistently on the server, but also dynamically
keeps tracks of the parameter modifications of the
simulation data set. This is a strong support for
“simulating anywhere at any time”.

2. Enabling web access in the client/server archi-
tecture: The effects of all users’ activities such as
browsing, insertion, deletion and modification
will be reflected instantly on the database server
via the Internet.
3. Enabling the monitoring of the system: Status
of the system stored on the database can be dis-
played as requested by users.

4. Providing the interfaces of the programs on the
server side: Through the sharing of information
in the database, the simulation program can obtain
the inputs from the users and the batch analysis
program can obtain the simulation results gener-
ated by the simulation program.

In order to realize the objectives requested in the

multi-tier architecture, the database acts as the intermedi-
ary between the client and the execution server. Figure 3
shows the roles of database system in our three-tiered ar-
chitecture. The central database server manages different
parts of information, these parts are respectively called: (1)
user profile database, (2) simulation job database, (3) simu-
lation input data set database, (4) simulation output data-
base, and (5) analysis result database. From the point of
view of functionalities, these five databases support the
software blocks in the client and execution server sides in
the following ways:

1. User profile database: The user database is ac-

cessed by the user profile administration.
2. Simulation job database: Users manage jobs

through the job database, and the commands to
control the jobs are submitted to and accessed by
the execution server from the job database.

3. Simulation input data set database: The simula-
tion models and configurations are stored in the
input data set database, and from the database, the
execution server extract the whole set of informa-
tion as the input of the simulation program.

Kumara, Lee, Tang, Dodd, Tew, and Yee

Client

DB/Web Server

Simulation
Modeling

Job Man-
agement

User Profile
Administra-

tion

Analysis Result
Visualization

User DB Output DB

Input
files

Simulator Output
files

Insert, Up-
date, Delete,

Insert, Update,
Delete, Copy,
Query, Submit

Insert, Up-
date, Delete,

Query, Visu-
alization, Data
mining

Query Extract

Rea
d

Delete,
Insert

Execution Server

Analysis
DB

Cre-
ate

Write

Figure 3: Database-Centered View of Three-Tiered Architecture

Job DB Input DB

Order Check Schedule Execute Analysis Upload
4. Simulation output database: The outputs of the
simulation program are stored in the output data-
base and the analysis program in the client side
can access these results.

5. Analysis result database: The execution server
generates the preliminary analysis tables in order
for the analysis program in the client side to con-
duct query, visualization or data mining.

4.2 Design Approach

Design of a database system is a standard process and de-
signers can reduce the redundancy of data by normaliza-
tion. However, the work of design is an art when different
requirements and restrictions are considered. In this sec-
tion, we discuss four methods to translate the administra-
tion hierarchies, industrial objects, or the restrictions on the
speed and storage into relational tables in a relational data-
base system. These four methods are: (1) translate the en-
tity-relationship model into the relational tables, (2) trans-
late the hierarchical model into the relational tables, (3)
translate the network model into the relational tables, and
(4) fragment long tables into shorter tables horizontally.

1. Translate the entity-relationship model into the
relational tables: The entity-relationship can be
one-to-one, one-to-many and many-to-many. The
first two relationships can be translated into rela-
tional tables directly, but the third relationship
needs more work. Besides two tables represent-
ing the two entities in the many-to-many relation-
ship, we need to define another table called bridge
table, in which each record is a relationship in the
many-to-many relationship. For example, in or-
der to monitor the status of the execution agents,
we need to have the information on which job is
executed in which agent. In this case, their
relationship is many-to-many and we need to
define a table called simulation history as the
bridge table between the table agent and job.

2. Translate the hierarchical model into the rela-
tional tables: As discussed in section 1, the in-
formation in our database is organized into three
hierarchies logically. We need to translate the hi-
erarchical relationship into relationship tables. In
a simple way, the sub-hierarchy tables take a for-
eign key from the parent-hierarchy so that the re-
cords in the sub-hierarchy can be divided by this
foreign key. For example, if we set the customer
identification as the primary key in the table cus-
tomer (user) and the foreign key in the table job,
then the hierarchical relationship between users
and jobs is presented in the relational tables.

3. Translate the network model into the relational
tables: In the supply chain OTD simulation, the
supply chain network is the basic configuration for

Kumara, Lee, Tang, Dodd, Tew, and Yee

the simulation task. We can use the same method
to deal with the many-to-many entity-relationship.
The example will be given in section 4.3.

4. Fragment long tables into shorter tables hori-
zontally: The output tables are usually very long
because they record many details of the simula-
tion history. The performance of querying, data
mining and visualization on these tables is low
and it is not handy to export these tables to other
analysis software if we store the output results of
all the jobs into the same table taking the job iden-
tification as the foreign key. Therefore, we frag-
ment the long output tables into short ones by
storing the output results belonging to a single job
into individual tables. This is called fragmenta-
tion horizontally in the literature of database de-
sign. This horizontal fragmentation technique can
easily extend the central database to distributed
database in order to satisfy the requirements of
high volumes of simulation data.

4.3 Implementation

We applied the approaches in section 4.2 to design the re-
lational tables in SQL server. Figure 4 shows the overall
structure of the relational tables. There are accessory ta-
bles, input tables, output tables and monitoring tables, de-
scribed as follows:

1. Accessory tables: Two tables called customer and
job are designed to enable multiple users to gen-
erate multiple simulation jobs.

2. Input tables: These tables hold the user inputs,
which describe the simulation models including
product configurations, supply chain configuration
network, demand profile and production schedule.

3. Output tables: These tables hold the simulation
outputs, which include simulation results for indi-
vidual vehicles, simulation event records in a
chronological order, production history, and de-
tails on each vehicle order (or demand).

Monitoring Tables

Accessory Tables

Input
Tables

Output
tables

Customer

Agent Sim_history

Job

Figure 4: The Layout of Relational Tables in the Cen-
tral Simulation Database (Solid arrow: one-to-many re-
lationship; Dotted arrow: fragmentation horizontally)
4. Monitoring tables: These tables are used by an
administrator to monitor the status of agents (bro-
ker and executors). In the table called simulation
history, one entry is pointed to the table job and
another entry is pointed to the table agent. So the
configuration history between agents and jobs can
be presented in this table.

In the overall structure of relational tables (see Figure

4), the input tables and output tables are compressed. The
translation of the output tables is straightforward, but part
of the translation of the input tables is difficult. As intro-
duced in section 4.2 about translating a network model into
relational tables, we need to translate the many-to-many
relationship into two one-to-many relationships. Figure 5
gives an example. There are three kinds of entities: system
nodes (sysNodes), system links (sysLinks) and paths. A
system link defines a relationship between a system node
with another. A path defined with a starting system node
and a destination system node can contain multiple system
links and a system link can be related to multiple paths.
Therefore, a system link is a bridge between two system
nodes; a path is a bridge between two system nodes; a path
link is the bridge between a path and a system link.

5 MULTI-AGENT BASED
EXECUTION SERVER

5.1 Requirement Analysis

Scalability is one of the most important design require-
ments identified in the analysis phase of this project. Scal-

sysNodes 1, 2, 3, 4
sysLinks [1,2], [2,3], [2,4]

[1][2] SysLinks: [1,2]
[1][3] SysLinks: [1,2]! [2,3]
[1][4] SysLinks: [1,2]! [2,4]
[2][3] SysLinks: [2,3]

paths

[2][4] SysLinks: [2,4]

sysNode

path sysLink pathLink

(a) Network Definition

1 2

3

4

(b) Relational Model (The head and tail of an arrow
mark a primary key and foreign key, respectively)

Figure 5. Transforming a Network Model to the Corre-
sponding Relational Model

Kumara, Lee, Tang, Dodd, Tew, and Yee

ability issues are difficult to be fully envisaged due to: (a)
at the design stage we could hardly estimate the future de-
mand for accessing the system, and more importantly, (b)
the access request patterns will be very ‘uneven’, meaning
that there might be a big variation between the peak and
lowest access demands over time. We redefine the scal-
ability of our client/server Internet system using the
following two metrics:

1. Scaling Flexibility: The system must be flexible
enough to accommodate the future requirement
for increasing processing capability.

2. Guaranteed Responsiveness: The system must
be able to guarantee a high level of responsive-
ness irrespective of the fluctuation of the service
demand.

5.2 Design Approach

On the basis of the requirements analysis we propose a
multi-agent based execution server (called MASE) archi-
tecture. MASE consists of three software components:
multi-agent platform, broker agent (BA), and multiple exe-
cution agents (EAs). The main roles of the three compo-
nents are as follows:

1. The platform serves as a run time environment,
helping communication between agents. Hence
the platform must be started first, and other agents
could be started after this, by registering them-
selves with the platform.

2. The broker agent is in charge of: (a) checking
new simulation job orders, (b) monitoring EAs
and job status, (c) allocating jobs to executor
agents, and (d) updating the current status of
agents and jobs in the central database.

3. Each executor agent is in charge of executing in-
dividual simulation jobs. In order to accomplish
this, an EA: (a) receives simulation job order from
the BA, (b) carries out the multiple steps of simu-
lation work, and (c) reports current status of
agents and jobs to the BA.

The workflow among the agents and the database

server is shown in Figure 6. In the figure, the numbers
within parentheses represent that the general sequence.
The notation (*) represents this message passing is done
asynchronously with other sequential processes.

The advantages of using the multi-agent based virtual
execution server architecture include:

1. Response Time: By using multiple processors

(EAs) we can compress the response time. Figure
7 shows the effect of the number of executor
agents on the average response time. As shown in

200

400

600

800

1000

1200

1400

1 2 3 4 5
of simulation jobs requested

av
er

ag
e

ru
n

tim
e

pe
r

jo
b

(s
ec

)

Simultaneous run
Sequential run
MAS (2 exec servers)
MAS (3 exec servers)

Figure 7: Effect of the Number of Executor
Agents on the Average Response Time

the graph, adding just a few execution agents re-
duces the response time drastically.

2. Reliability: Another benefit of using multiple ex-
ecutor agents is its higher level of reliability. In
effect, MASE system can be thought of as a single
machine with multiple parallel processors doing
the same job, meaning that the reliability of the

whole system will be: n
ERSR)1(1 −−= , where

n is the number of executor agents and ER is the

reliability of each executor agent.
3. Flexibility: By installing EAs on existing com-

puters and registering them with the BA, we can
easily increase the capability of the information
system. The computers having the agent installed
can still be used for other purposes while they
serve as a part of execution server. Only when
the BA decides to use the CPU time of the ma-
chine, the computer serves as an EA. Further-
more, installation of a new EA is easy.

4. Cost: The EAs are small and light enough, so they
can be installed virtually in every PC and work-

 Execution Server

queue

Database (2) Job Allo-
cation

(*) Status
Report

Agents
Status

(1) New Job(s)

(*) Job Status Update

(5) Output/Analysis Data

(3) Input Data

Broker

(4)
Execution

DB Server

Executors

Figure 6: Workflow Among Agents and the Databases

Kumara, Lee, Tang, Dodd, Tew, and Yee

station having Java Runtime Environment (JRE)
and connected in the same LAN environment.
Without purchasing powerful but expensive serv-
ers, the capability of the information system can
easily be increased.

5. Controllability: By using autonomous software
agents, higher level of coordination is possible, es-
pecially for job scheduling and exception control.

5.3 Individual Agent Model

Our design of the individual agents is according to the
behavior-based model, where agents interact with each
other reactively rather than deliberatively based on
symbolic reasoning. As the best-known behavioral
architecture, the subsumption architecture is explained by
two defining characteristics: (a) an agent’s decision-
making is realized by a set of task specific behaviors, and
(b) multiple behaviors can be triggered simultaneously
(Brooks 1986, 1991). This decision of adopting behavior-
based (reactive) architecture is realistic in the sense that the
agent coordination mechanism including the definition of
the role(s) and corresponding processes of each agent is
well situated in our virtual execution server environment.

In a single agent, each individual behavior receives in-
coming messages and sends outgoing messages independ-
ently. For minimum level of coordination between behav-
iors within an agent, internal messages are sent and
received. The behavior’s role is governed by a finite state
machine. The details on the behavior-based agent model
can be found in Lee and Kumara (2000). A transition be-
tween states is fired by an incoming message and/or a
completion of its sub-processes. The behaviors imple-
mented in our system are as follows:

1. Job Allocation Behavior: This BA behavior allo-
cates the first job in the job queue to one of the
available EAs, whose status is ‘IDLE’.

2. Monitoring Behavior: This BA behavior moni-
tors the status changes of executor agents. The
possible status of an EA includes
‘UNAVAILABLE’, ‘IDLE’, ‘DBACCESS’,
‘SIMULATION’, ‘DBUPLOAD’, ‘ANALYSIS’,
‘WRAPUP’, ‘IDLE_LOCKED’ and ‘FAILED’.

3. Order Checking Behavior: This BA behavior
checks new job order(s) arrival from ‘JOB’ table
in the central database. When BA finds new
job(s) arrival, the internal job queue is updated by
adding the new job(s) to it.

4. Job Receiving Behavior: This EA behavior re-
ceives job requests from the BA. Because the BA
allocates a job to an EA only when the EA is
IDLE, the Executing Behavior of the EA is started
immediately.
5. Executing Behavior: This EA behavior carries out
the steps of a simulation job including: (1) retriev-
ing the simulation input data and save them in a lo-
cal directory as a set of text files, (2) running the
GM OTD simulator, which takes the text files as
the input and generates a set of output text files, (3)
uploading the output text files to the database, (4)
running a preliminary analysis (batch) program,
which generates fundamental statistics of the simu-
lation results, and (5) reporting the current status to
the BA every time a step is completed.

5.4 Implementation

The execution server is implemented in Java. The multi-
agent system is developed using JADE (Java Agent Devel-
opment Environment) APIs, which is FIPA (Foundation of
Intelligent Physical Agent) Agent Management Specifica-
tion compliant. In order for agents to access to the data-
base, JDBC-ODBC bridging method is applied. Details on
this development environment can be found in CSELT
(2001). The implemented agents (both BA and EA) are
totally network transparent, so they can locate in any com-
puters connected through a LAN.

6 USER INTERFACE: DATA ENTRY, RESULT
ANALYSIS & VISUALIZATION

6.1 Requirements and Design Approach

Convenient and integrated data manipulation is the objec-
tive of designing the user interface for the data entry,
which requires a lot of manual operations by customers.
Quick response and flexible visualization are the major re-
quirements identified in designing simulation result analy-
sis and presentation modules. In order to fulfill these re-
quirements, we choose the following approaches:

1. Button and Hyperlink driven graphical inter-
face with integration: Since we need to provide
the full-fledged data entry functionality for a
whole simulation data set, we need to integrate in
one page all the possible connections between re-
cords belonging to different tables. We use the
universal user interface and operations on all the
input tables. When a customer is browsing the
content of a table, it is possible for him/her to dig
into the details of the associated tables via hyper-
links and of the un-associated tables via the uni-
versal buttons in the same page.

2. Batch Analysis with Interactive Presentation:
Due to the huge amount of the simulation data,
analysis-on-request is not a good approach. We
separate the time-consuming analysis as a batch
process conducted by EAs. The result of analysis

Kumara, Lee, Tang, Dodd, Tew, and Yee

is stored in the database so that the interactive
presentation can be possible using this pre-
processed analysis data. Figure 8 shows our two-
step approach.

3. Graphics User Interface for Presentation: In
order to support users’ comprehensive decision
making, the analysis results are displayed in the
form of graphs along with numeric values.

6.2 Analysis & Visualization Functions

The identified and implemented analysis and presentation
items include:

1. Time Series Analysis: This item visualizes the
time series of number of vehicles (1) in sequenc-
ing (in other words, being planned to be pro-
duced), (2) in production inventory, (3) tagged,
and (4) delivered. The time ranges that are viewed
can also be altered from day, month, week, and
year to a customized range.

2. Frequency Analysis: This item visualizes the dis-
tributions (or frequencies) of the order-to-delivery
times for each vehicle configuration. The fre-
quencies are visualized using histograms.

3. Statistical Analysis: This item lists out and visu-
alizes some critical statistics including (1) average
time durations between sequencing and produc-
tion, between production and tagging, and be-
tween tagging and delivery, (2) counts of vehi-
cles, which were ‘delivered’, ‘grounded’,
‘tagged’, and ‘waiting’ in each distribution center.

4. Output Data Browse: This item view all the out-
put tables of a specific simulation instance. The
files are (1) production history, (2) simulation his-
tory, (3) vehicle, and (4) vehicle order.

6.3 Implementation

The batch analysis module is written in Java. Following
are our implementation approach for data entry and analy-
sis result visualization.

1. Drawing Graphs on the Web Pages: In order to
show graphs through the web browsers, we used
Java Servlet"HTML"Java Applet approach.
The Java Servlet talks with the database system to
extract the correct data as the request of a user,

Analysis Analysis

Output

Visualization Simulation

Output

Figure 8: Simulation Output Analysis / Visualization
Approach
and then the Servlet passes the data as parameters
to the Java Applet through printing the data in the
html tags. Figure 9 shows how the graphs can be
drawn on the top of web pages.

2. Separating Content and Display: For the effi-
cient maintenance of the web pages, separating
content from display style is essential. We used
Cascading Style Sheet (CSS), which is a set of
style rules that tells a Web browser how to present
a document. The CSS definition can be applied
(or ‘glued’) to multiple html files, so that they can
have exactly same style. (Hoffer 2002)

3. Navigation Aids: By placing side bar for naviga-
tion, users can easily access to any destinations
within 2 clicks.

7 CONCLUSION

We have designed and implemented a flexible and scalable
information system framework with the ability for multiple
simulation users concurrently to conduct multiple order-to-
delivery simulation studies. The implemented system was
successfully demonstrated and delivered. Some of the ma-
jor outputs of this research are:

1. An Internet-based three-tiered client/server archi-
tecture, which consists of centralized simulation
database server, multi-agent based virtual execu-
tion server, and web-based user interface on the
client side.

2. Web based user interfaces for user profile man-
agement, input data entry, job status browsing,
and simulation results visualization (developed
using Java Servlet and Java graphics program-
ming which enables users to access the simulation
analysis virtually anywhere using web browsers).

3. A multi-agent based execution server to check the
new job arrivals, schedule the jobs, execute the
actual simulation, and update the database accord-
ing to the simulation results. This approach
maximizes the scalability of the information sys-
tem by virtue of the flexibility offered by the
multi-agent system model.

Java Servlet HTML with the
tags calling

Applets

Java Applets
for drawing

graphs

User ‘s
menu se-

lection

Call Servlet

print()

HTML with Applets

Display on
the Web
browser

code=

Figure 9: Drawing Graphs on the Web Pages: Java
Servlets along with Applets

Kumara, Lee, Tang, Dodd, Tew, and Yee

4. Fundamental simulation result analysis based on
graphical user interfaces, which enable the users
to extract valuable information for decision mak-
ing from the simulation results.

The design, development and implementation through

this research make the GM ESL-developed order-to-
delivery simulator available to anybody at any place
through web browsers. Simulation anywhere at any time is
made possible through these research efforts.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of the GM
ESL members including Drs. Krishnan and Takasaki of
GM. The authors wish to thank GM for making this work
possible through their research contract No. TCS82111.

REFERENCES

Askren, S. 1996. Building Mult-Tier Apps Is About To Get
Easier, Client/Server Computing, April, pp.61-64.

Brooks, R.A. (1986), A robust layered control system for a
mobile robot, IEEE Journal of Robotics and Automa-
tion, Vol. 2, No. 1, pp.14-23.

Brooks, R.A. 1991. Intelligence without reason, In pro-
ceedings of the Twelfth International Joint Conference
on Artificial Intelligence (IJCAI-91), pp.569-595,
Syndey, Australia.

CSELT S.p.A 2001. Jade homepage, Available online via
<http://sharon.cselt.it/projects/jad
e/> [accessed July 17, 2001]

Hoffer, J. A., et al 2002. Modern Systems Analysis & Design
– 3rd edition, Prentice Hall, Upper Saddle River, NJ.

Lee, Y.-H. and Kumara, S.R.T 2000. Market-based col-
laborative control of distributed multiple product de-
velopment projects, in Network Intelligent: Internet-
based Manufacturing, Nina M. Berry Editor, Proceed-
ings of SPIE Vol. 4208, pp.73-83.

Simchi-Levi D., Kaminsky, P. and Simchi-Levi, E. 2000.
Designing and Managing the Supply Chain – Con-
cepts, Strategies, and Case Studies, Irwin McGraw-
Hill.

Stevens, L. 1996. Consider three-tier client/server, Data-
mation, February, pp.61-64.

AUTHOR BIOGRAPHIES

SOUNDAR R.T. KUMARA is a Professor of Industrial
and Manufacturing Engineering at the Pennsylvania State
University. He also holds joint appointments with the de-
partment of Computer Science and Engineering, and
School of Information Sciences and Technology. His inter-
ests are in sensor based monitoring, intelligent manufactur-

ing and complexity theory. His e-mail address is
<skumara@psu.edu>.

YONG-HAN LEE is a Post Doctorial Research Fellow in
the Laboratory of Intelligent Systems and Quality at the
Pennsylvania State University. His interest is in distributed
artificial intelligent, especially multiagent-based system
modeling and market-based mechanism design. He is a
member of AAAI, IIE, and INFORMS. His e-mail address
is <yonghan@psu.edu>.

KAIZHI TANG is KAIZHI TANG is a Ph.D. candidate in
the department of Industrial and Manufacturing Engineer-
ing at the Pennsylvania State University. His interests are
in distributed artificial intelligence, especially multi-agent
information system combined with game theory and ma-
chine learning applied in the area of the e-manufacturing
and e-business. He is a member of IIE. His e-mail address
is <kxt179@psu.edu>.

CHAD DODD is an employee of General Electric Medical
Systems, Waukesha, WI. He is specialized in the area of
multi-agent based value chain implementation. He received
his M.S. from the Pennsylvania State University in 2001.
His e-mail address is <chaddodd@hotmail.com>.

JEFFREY TEW is Group Manager of the e-Commerce
and Supply Chain Analysis group in the Enterprise Sys-
tems Laboratory at General Motor's Research and
Development Center in Warren, MI. He received his Ph.D.
in industrial engineering from Purdue University in 1986.
He is a member of Alpha Pi Mu, The Association for
Computing Machinery, The American Statistical Associa-
tion, The Institute of Industrial Engineers, The
Institute for Mathematical Statistics, INFORMS, The Soci-
ety of Computer Simulation, and Sigma Xi. His email ad-
dress is <jeffrey.tew@gm.com>.

SHANG-TAE YEE is Research Engineer at the General
Motor's Research and Development Center in War-
ren, Michigan in the US. He received his Ph.D. from the
Pennsylvania State University in 1998. His research inter-
ests are in supply chain simulation modeling and e-
supply chain management. He is a member of INFORMS.
His email address is <shang-tae.yee@gm.com>.

http://sharon.cselt.it/projects/jade/
http://sharon.cselt.it/projects/jade/
mailto:kxt179@psu.edu
mailto:jeffrey.tew@gm.com
mailto:shang-tae.yee@gm.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1251
	02: 1252
	03: 1253
	04: 1254
	05: 1255
	06: 1256
	07: 1257
	08: 1258
	09: 1259

