
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

TECHNIQUES TO ENHANCE PERFORMANCE OF AN EXISTING AVIATION SIMULATION

David Carnes
Frederick Wieland

The MITRE Corporation

7515 Colshire Drive
McLean, VA 22102-7508, U.S.A.

ABSTRACT

Facing a need to run large scenarios on aviation models
more quickly than the one to two days currently required,
the MITRE Corporation undertook an effort to reduce the
execution time of one such simulation. Time and cost con-
straints prohibited a major rewrite of the almost one mil-
lion existing lines of code, so only solutions requiring
minimal changes to the code base were considered. This
paper describes the approaches taken to increase the speed
of the original sequential simulation by employing more
efficient algorithms and parallel processing technology.
Specifically, an implementation of a new technique for
parallel proximity detection provided an 80% reduction in
the time spent checking for conflicts. In addition, imple-
mentation of a thread pool that enables the movement of
multiple aircraft in parallel resulted in a 10%-15% reduc-
tion in the overall execution time of the simulation. In this
paper we report on the design of these techniques and how
they were implemented in the simulation.

1 INTRODUCTION

The MITRE Corporation’s Center for Advanced Aviation
Systems Development (CAASD) is streamlining a sequen-
tial air traffic control simulation containing nearly one mil-
lion lines of code. The main constraint in speeding up this
simulation is to minimize changes to its architecture.

One of its main bottleneck algorithms is determining
whether and when two aircraft are within a specific dis-
tance. If the model detects a conflict between aircraft
pairs, then the model can, using built-in conflict resolution
strategies, vector the aircraft away from one another.
When conflict detection is enabled by the analyst, it can
consume up to 50% of the total run time in some scenarios.
Updating aircraft state and position data dominates the run
time when conflict detection is not enabled.

Another major bottleneck in the simulation is aircraft
navigation, or movement. During the movement cycle, the
current position of each aircraft is updated. The simulation

also maintains a list of future aircraft positions for use with
conflict detection and resolution that is also updated at this
time. All sectors and airports that the aircraft may interact
with during its flight are notified of these changes. Those
sectors and airports may then reschedule the arrival of
other aircraft that are affected by the original update in or-
der to optimize flow. This can consume up to 70% of the
simulation run time when conflict detection and resolution
are not enabled.

Regarding proximity detection, most of the existing
algorithms require extensive changes to the system, and
cannot be used. The main concern of any proximity detec-
tion algorithm is efficient filtering of pairs of moving ob-
jects. We have devised a more efficient filter to reduce the
number of aircraft that need to be checked during each cy-
cle. This method also allows us to parallelize the remain-
ing conflict checks in a manner that requires virtually no
change to the underlying software architecture.

Our method is grid-based, employing a quad tree data
structure that is normally found in the context of computer
graphics (Samet 1990), and in conflict-free route planning
in the field of robotics (Hamada and Hori 1996). The geo-
metric calculations determining proximity should only be
performed on pairs most likely to be in conflict. In the ex-
isting simulation, these filters are applied using bounding
boxes around the aircraft’s intended flight plan. We have
replaced that process with a quad tree based algorithm that
geographically filters the flight pairs in a manner unrelated
to the aviation logic or flight dynamics in the simulation.
 Regarding the movement algorithm, the story for par-
allelization resembles that of the conflict detection algo-
rithm. In fact, much of the implementation of the quad tree
parallelization was reused for this work. In general, the
system works by queuing requests to update a specific air-
craft, and separately allowing a set of worker threads to
work independently on each aircraft.

Carnes and Wieland

2 PRIOR WORK

Parallel proximity detection has been extensively studied
and reported in open literature. The available algorithms
fall into two different categories. The first category en-
compasses the so-called grid based algorithms, which rely
on dividing a simulated space into cells that “tile” the
space. The grid based algorithms require sophisticated
protocols for keeping track of objects that are near grid
boundaries and for controlling the hand off of the objects
as they move. The second category of algorithms encom-
pass region based algorithms, which define a region in
which an object declares an interest. The region based al-
gorithms require common definitions of regions across ob-
jects sharing the same region, and require sophisticated
geometric calculations in the simulation engine that, if
done in full generality, can add much overhead to the sys-
tem. Recently, hybrid algorithms that dynamically size the
grids or combine the region and grid based approaches
have emerged (Boukerche, Roy, and Thomas 2000).

Other variations are possible. Tan, Zhang, and Ayani
(2000) present a hybrid algorithm that combines the best ap-
proached of both the grid and region based filtering in the
context of the DOD’s HLA. Steinman and Wieland (1994)
describe a grid-based algorithm where the grid boundaries
are extended and overlapped to help minimize problems
along grid boundaries. A later version of the algorithm
(Steinman et.al. 1999) describes a spherical virtual space
tiled with grid cells of approximately equal size. Within
each cell, a 3-way tree is produced to act as an index into the
x, y, and z positions of an object. Thus the three-way tree
serves as a fast indexing mechanism for position.

Quad trees themselves are not new data structures.
Prior work that used quad trees for parallelization primarily
focused upon efficiently scheduling ready processes to
available hardware; Srisawat and Alexandridis (2000) pre-
sent a good example. Quad trees have also been used as a
basis for communication topologies in parallel processors,
such as quad tree based hypercube communication inter-
connects (Omri 2000). Collision detection of moving ob-
jects using quad trees, and their three dimensional exten-
sion to oct trees, has also been studied (Kitamura et.al.
1994) (Tzafestas and Coifffet 1996). Basch, Guibas, and
Zhang (1997) describe the problem of using trees in their
generality for geometric proximity problems. An overview
of the general problem of conflict detection and resolution
in the context of aviation simulation is presented by Vink
and Kauppinen (1997).

Automatic parallelization of sequential simulations
also has a long history of study. Some researchers have
focused upon changing the underlying simulation engine to
add constructs that allow modelers to exploit parallelism; a
good example of this can be found in Nicol and Heidelber-
ger (1995) and Nicol and Heidelberger (1996). Others
have focused on the tasks required to explicitly parallelize
a sequential simulation model (Bajaj, Bagrodia, and Meyer
1999). A good introduction to the concept of thread pools
can be found in Nichols, Buttlar, and Farrell (1996).

The work described above differs from previous stud-
ies in a number of respects. First, the quad tree approach
uses a quad tree as the basis for spatially decomposing the
virtual world into unequal-sized grid cells. The basis for
sizing is to maintain a high degree of filtering for potential
conflicts. Furthermore, the sizes of the cells dynamically
change with time as the simulation evolves, and as the spa-
tial density of objects change. Finally, load balancing in
both the conflict detection and movement phases is pro-
vided by queuing the work to be performed for processing
by a separate set of “worker” threads.

Finer grained locking may also be a valid approach to
reducing lock contention, but size of the simulation makes
this approach difficult. That approach also conflicts with
the goal of leaving the existing sequential simulation
model and architecture undisturbed. The overhead and
benefit of this approach would be difficult to judge until it
is attempted.

3 CONFLICT DETECTION
IN THE SIMULATION

We began by examining the largest bottleneck in the simu-
lation, conflict detection. A conflict occurs when the geo-
metric distance between any two aircraft in the simulation
falls below the specified lateral and vertical separation
thresholds. These thresholds are set by the analyst, and can
vary by the air traffic control sector in which the aircraft is
currently flying.

The simulation commences execution with the earliest
scheduled event provided by the scenario’s itineraries. It
then steps through time by discrete intervals. The analyst
can vary this interval but it is typically one to six seconds.
Conflict detection begins at the time an aircraft is introduced
in the simulation and becomes active. At that time, the flight
envelope is computed for that aircraft, and the path of a
ghost aircraft is projected along the predicted flight track one
half hour into the future. The flight envelope is a box that
encloses all waypoints from its present position to its desti-
nation, including requirements for lateral separation. That
flight envelope is compared to the flight envelope of every
other active aircraft in the simulation. If two flight enve-
lopes overlap, it is possible that pair of aircraft may come
into conflict at some time, and the pair is recorded in a can-
didate pairs list for more detailed investigation. During each
cycle the list of such aircraft pairs is examined by comparing
the recorded flight paths of the ghost aircraft to see if they
actually come into conflict.

At the end of each interval, the simulation updates the
current flight envelope for each aircraft to reflect its new
current position. As a flight progresses towards its destina-
tion, its flight envelope will shrink, reducing the possibil-

Carnes and Wieland

ity of conflict with another aircraft. Existing aircraft pairs
whose flight envelopes no longer intersect are removed
from the candidate pairs list, as they will not approach each
other closely enough to ever be in conflict. This reduces
the amount of conflict checking computation to be done.

In effect, the process just described acts as a filter to
reduce the number of computationally expensive conflict
checks that need to be performed. The calculations that
determine flight envelope intersection occupy a substantial
part of the simulation run time. Several attempts were
made to reduce this time, including an attempt in which the
bounding boxes were precomputed at each leg of the flight
plan and compared to current aircraft positions to deter-
mine potential conflicts. These earlier optimizations had
only a minor effect on reducing run time.

4 QUAD TREE ALGORITHM

The quad tree software library was designed with two ob-
jectives to decrease run time. The first is to provide a more
efficient geographical filter to further reduce the number
of candidate aircraft pairs that need detailed examination.
The second objective is to provide a mechanism to perform
conflict detection on multiple aircraft pairs in parallel.

The quad tree is a hierarchical structure that provides
spatial decomposition of data such as points, lines, or poly-
gons. In this case, aircraft positions are treated as points in
three-dimensional space. The quad tree allows us to recur-
sively divide that space into smaller regions. In this manner,
aircraft separated by a significant distance are removed from
conflict comparison in a less computationally intensive
manner. The basic quad tree algorithm defines a rectangular
region that encompasses the entire region in which the simu-
lation takes place. That area then can be divided into four
equal quadrants. This process can recurse indefinitely for
each quadrant. An extension of the quad tree concept, oct
trees, can take into account all three dimensions.

This technique is most useful if we limit how far this
space is divided. We would like to limit the recursive pro-
cess so that we obtain the smallest area where it is likely
that all the aircraft contained within are in conflict with one
another. If no node’s x or y dimension falls below the
smallest minimum lateral separation distance the that the
analyst has specified for the entire simulation, then all
aircraft in that area will be in conflict, unless they have
sufficient vertical separation or are located in the extreme
opposite corners of the region.

It is possible, however, that two aircraft may be quite
close to one another and yet be placed into two adjacent,
but separate nodes in the quad tree. In order to account for
this possibility, we introduce the use of exterior regions for
each node. Until now, no leaf nodes overlapped one an-
other in space, and the interior regions described so far will
continue to posses this trait. Exterior regions are areas that
are within the largest minimum lateral separation that the
analyst has specified for this scenario from the borders of
the interior region. Each leaf node possess two lists of air-
craft – one for aircraft present in the interior region corre-
sponding to that node, and one for aircraft present in the
exterior region for that node. Note that a given aircraft can
only exist on one interior region, but can be present in mul-
tiple exterior regions.

The root node encompasses the entire space in which
it is possible that an aircraft will occupy in a given sce-
nario. No aircraft should ever be added into the exterior
list of the root node; if this occurs, then the size of the root
node is not sufficiently large and should be extended to in-
clude the offending object. An object is inserted into the
quad tree by passing it to the insert method of the root
node. The root node first checks to determine whether the
object falls within its extended boundary, and if so, it will
pass the object on to its four children. If no children exist,
and the division of this node would not result in a node
smaller than the minimum size established, then the chil-
dren of the node will be created. If no children exist, and
the boundary conditions for the quad tree are met, then that
node is also a leaf node of the tree; otherwise the dividing
process will repeat until the boundary conditions are met.
Note that only parts of the tree that contain aircraft are split
in this manner. The efficiency of the quad tree comes from
the fact that large areas without aircraft in them can be
quickly skipped, while areas that contain aircraft are small
and thus remove a vast majority of aircraft from conflict
consideration. If another aircraft is in the same node, then
it is highly likely that it is close enough to be in conflict.

If the node is a leaf node, and the object falls within its
inner rectangle, then the object is added to its interior list.
If the object is not contained in the inner rectangle, then it
is added to the exterior list. No aircraft is ever passed to a
node if it does not fall within the area defined by its exte-
rior node.

Typically, every six time steps a conflict detection cy-
cle occurs. At this time, a new quad tree is created con-
sisting of an empty root node with no children. The list of
all active aircraft is traversed, and all aircraft actually in the
air are inserted into the quad tree. Then the tree is trav-
ersed to generate candidate aircraft pairs for conflict detec-
tion. Each leaf node traversed will generate a candidate
aircraft pair by comparing each aircraft in its interior list
with all the aircraft subsequent to it on that list. This pre-
vents each aircraft pair from being nominated twice for
checking, as an aircraft can only exist in one interior list in
the entire tree. Then each aircraft on the interior list is
paired with the aircraft contained in the exterior list, and
nominated for conflict detection. In order to prevent dupli-
cate checking in this case, each aircraft can be given a
unique number upon insertion into the quad tree. Only if
the first aircraft’s number is greater than the second one’s
should the pair be nominated for conflict detection. If they
are not, then when the node containing the second aircraft

Carnes and Wieland

on its the interior list is encountered, the pair will be nomi-
nated. Each unique pair of aircraft so identified are the pa-
rameters for the existing conflict detection algorithm.

As potential conflict pairs are nominated above, they
are placed in a statically sized circular queue to avoid the
overhead of repeated allocation and deallocation of a dy-
namic list. A specified number of worker threads are cre-
ated during simulation initialization, usually one per proc-
essor, and then block until work (the aircraft parameters
generated above) arrive in the queue. When work is in-
serted into the queue, the threads are signaled that the
queue is no longer empty. The threads then wake and take
the next aircraft pair off the queue and invoke the existing
conflict detection function. The work queue is locked in
order to prevent race conditions in obtaining work, and in-
sures that no two threads process the same work unit. The
main thread of execution continues in parallel with this ac-
tivity until all work units (aircraft pairs) have been gener-
ated from the traversal of the quad tree. At this point, the
main thread of execution blocks until all work in the queue
has been processed. Should the circular work queue fill
up, then the main thread will block until the worker threads
have opened up space in the circular queue by processing
some work units. The use of a queue as an intermediary be-
tween the traversal of the quad tree and the invocation of
the conflict detection allows a form of load balancing be-
tween the threads by preventing worker threads from be-
coming idle while work still is in the queue.

If the user only enables conflict detection, then the
current position of the aircraft is used to determine where
the aircraft will be inserted into the quad tree. The simula-
tion discussed here also offers the user a chance to perform
automatic conflict resolution. In that case, the position of
the ghost aircraft previously mentioned is used as the posi-
tion of an aircraft in the quad tree in order to implement
look-ahead capability to the simulation. This provides the
simulation with the opportunity to detect conflicts early
enough to invoke automatic conflict avoidance.

5 QUAD TREE PERFORMANCE

Two test scenarios were selected for use with this project.
The first scenario, referred to here as the one-fifth scenario,
contains approximately 7,000 flights lasting for one-fifth of
a day. The second scenario, or whole day scenario, con-
tains approximately 34,000 flights and models an entire
day of traffic. Both scenarios are airspace-intensive and
are a good stress test for the simulation.

The work described here was performed on a four
processor, 550 MHz Pentium III Xeon computer using ver-
sion 2.6 of Solaris for Intel. Profiling the code revealed
that the two greatest consumers of time in these scenarios
were conflict detection between aircraft and movement of
those aircraft. When conflict detection is enabled in the
simulation, it can consume almost 50% of the simulation
time in large simulations. Updates to the position and state
of the aircraft in the simulation consumes the majority of
the remaining time.

Figures 1 and 2 show the performance of the algorithm
for the one-fifth and whole day scenario. In both figures,
the upper dashed line represents the performance of the
simulation with the original conflict detection algorithm
enabled. The lower dashed line represents the simulation
performance with conflict detection disabled. The differ-
ence between the two lines is the actual processing time the
simulation consumes while performing conflict detection;
this time does not vary against the x axis because it reflects
the performance of the original sequential simulation.

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5

Number of Threads

E
xe

cu
ti

on
 T

im
e

(S
ec

on
ds

)

Figure 1: Performance for the one-fifth scenario. The
upper dashed line is the run time of the baseline case
with conflict detection enabled; the bottom dashed line
is the baseline with conflict detection disabled.

30000
35000
40000
45000
50000
55000
60000
65000
70000

1 2 3 4 5

Number of Threads

E
xe

cu
ti

on
 T

im
e

(S
ec

on
ds

)

Figure 2: Performance for the whole day scenario. The
upper dashed line is the run time of the baseline case
with conflict detection enabled; the bottom dashed line
is the baseline with conflict detection disabled.

The solid line in both figures represents the measured

processing time of the simulation when utilizing the quad
tree algorithm. The x axis depicts the number of worker
threads available to process the conflict pairs. For the one-
fifth scenario, the single threaded quad tree algorithm re-
duces the run time to 46% of the original run time (a

nd Wieland
Carnes a

speedup factor of 2.8), and the whole day scenario reduces
run time to 64% of the original (a speedup factor of 1.56).
The time savings reflects the more efficient filtering pro-
vided by the quad tree algorithm as compared to the origi-
nal envelope based technique. Because of the improved
filtering, time was saved because fewer non-conflicting
aircraft pairs were passed to the conflict detection code as
possible conflicts.

The improvement due to parallel processing of conflict
pairs seems less impressive in figures 1 and 2 in part be-
cause of the large vertical scale. Figures 3 and 4 better il-
lustrate the parallel speedup obtained. In these figures, run
time as reduced via parallelization is displayed as a per-
centage of the theoretical maximum speedup possible. The
results show that we are obtaining up to 30% of the maxi-
mum possible speedup available to us. It is encouraging
that the larger scenario has slightly greater parallel effi-
ciency (27.8% versus 26.9%), indicating that this algorithm
scales well and the overhead for this technique does not
markedly increase relative to the problem set size, even in
a simulation that was not designed from the ground up with
parallel processing in mind.

Overall, we see a speedup factor of 2.4 for the one-
fifth scenario and 1.6 for the whole-day scenario. Compar-
ing our total run time reduction to the maximum we could
have achieved, the one-fifth scenario achieved 75% of the

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5

Number of Threads

P
ar

al
le

l E
ff

ic
ie

nc
y

Figure 3: Parallel Efficiency for the One-Fifth
Scenario

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5

Number of Threads

P
ar

al
le

l E
ff

ic
ie

nc
y

Figure 4: Parallel Efficiency for the Whole Day Sce-
nario
maximum speedup while the whole day scenario achieved
nearly 80% of the maximum.

6 AIRCRAFT MOVEMENT
IN THE SIMULATION

In the context of the simulation, aircraft movement is the
calculation of an updated aircraft position and state as a
function of time. The simulation maintains a list of all air-
craft that are active in the simulation at a given instant.
This list is traversed and each aircraft is processed one at a
time. Each aircraft is not independent of the others, how-
ever. The simulation takes into account the location of air-
craft around the current one, expected congestion in the
airspace and airports in its flight plan, as well as other fac-
tors, when performing aircraft movement.

Unfortunately, much of the information described
above is shared among all the aircraft in the simulation.
Updating an aircraft position necessarily updates the in-
formation about the scenario environment, so that the next
plane to be updated reflects the most recent information.
Race conditions can arise when a single data item, not di-
rectly related to the aircraft itself, is needed to process mul-
tiple aircraft. Only when all aircraft have been updated,
the simulation clock can advance to the next time step.

7 MOVEMENT PARALLELIZATION

The goal of this project phase is to speed up the simula-
tion’s execution time by performing the processing of these
aircraft in parallel for a given time step. The approach
taken parallelizes the calls that perform the movement and
state updates for each aircraft. This was accomplished by
extending the work queue described above to record re-
quests to update each aircraft. Then multiple worker
threads would take the parameters from this queue and per-
form the updates in parallel.

Unfortunately, the simulation architecture does not
permit updating each aircraft independently. The simula-
tion must take into account the environment in which the
aircraft is flying. An example might be an aircraft that
needs to slow down in order to avoid a congested sector
ahead. Likewise, in order for the model to accurately
simulate the approach to an airport, that airport needs an
updated prediction of the time in which aircraft will reach
it, in order to more efficiently schedule all incoming traf-
fic. Since this data is used by all aircraft approaching a
given airport, any parallelization will require simultaneous
access and updates to this shared data. To mitigate these
race conditions, a means to regulate this interaction needed
to be devised, however care was exercised so as not to add
excessive overhead when implementing this protection.
Every airport has a lock added to protect airport data, in-
cluding information about all aircraft that are on the
ground at each airport. Locks were also needed to protect

Carnes and Wieland

memory allocation, the list library, fuel burn and cost ac-
cumulations, sectors, and waypoints. Some global vari-
ables, such as the time step, that were temporarily changed
during an aircraft update, were “deglobalized” so that each
thread had its own copy while executing.

8 MOVEMENT PERFORMANCE

Many movement cycles only involved updating one or
fewer aircraft. These cycles present no opportunity for par-
allel processing, since synchronization must occur at the
end of each movement cycle and that prevents us from
processing the next aircraft in parallel with the current one.
However, measurements made by inserting timing code
utilizing the Solaris high-resolution clock showed that
most of the time spent in the movement cycle was still
available for parallelization.

The initial implementation of the thread pool paralleli-
zation spent a large time waiting to acquire the airport
lock. Before an aircraft can be processed, the lock for the
airport that may be affected must be obtained in order to
prevent corruption of this data. However, not only did the
large delays encountered while waiting to obtain locks take
time that could be spent processing aircraft in parallel,
waiting for these locks serialized the processing and
robbed the simulation of the benefit of parallelism.
 In order to prevent this loss of parallelism, we as-
signed the processing of all aircraft that needed a particular
airport lock to the same thread. For the vast majority of its
flight, an aircraft only needs to access data at its arrival
airport. Before it takes off, it predominately uses data from
its departure airport. However we could not remove the
airport lock at this time even though predominately one
thread would be handling aircraft needing the data at a
given airport. At several points during a flight, such as
when it lifts off, an aircraft needs to remove itself from the
departure airport data structures and update its information
at the arrival airport.
 Grouping processing involving an specific airport to a
particular thread greatly reduced the waiting for the airport
lock, in one typical case the time each thread spent waiting
to acquire the airport lock dropped from an average of 294
seconds per thread to 52 seconds per thread. However, a
few airports have a disproportionate amount of activity at
them (such as JFK Airport in New York), and this unbal-
ances the distribution of work units. Certain threads must
handle significantly greater amounts of work, and some
threads are left idle while those threads finish handling their
flights. This effect can be mitigated, but not eliminated, by
insuring that the busiest airports are distributed across the
threads and that one thread is not processing most of the
busiest airports. The particular airports that require such at-
tention will differ from scenario to scenario. We took no
specific steps to insure that one thread would not be exces-
sively unbalanced for the result presented here. An analysis
of the execution of these scenarios revealed, however, that
the load was already distributed fairly evenly.

9 CONCLUSION

We have shown that it is possible to speed up an existing
sequential simulation via a combination of more efficient
algorithms as well as parallel processing techniques. We
have also demonstrated that this can be accomplished with
minimal changes to the underlying simulation architecture.
The quad tree algorithm provides a means to more effi-
ciently prevent unnecessary conflict checking, and pro-
vides a basis for further speed gains through the use of par-
allel processing.

The key to parallel speedup is to call the sequential
function in separate threads, provided that the work that it
does is independent of the work being done by other
threads. In the simulation discussed here, it was important
to identify functions that could be geographically sepa-
rated. This allowed parallel evaluation of the operations,
while minimizing the amount of locking that was needed to
ensure a correct result. Improper or absent locking can
lead to system instabilities and crashes. Excessive locking
leads to serialization of the system and little, if any, reduc-
tion in execution time. Striking the proper balance can re-
sult in notable speed increases.

ACKNOWLEDGMENTS

We would like to thank Dr. Paul Wang for his assistance in
performing some of the performance measurements. His
help is greatly appreciated. We would like to thank The
MITRE Corporation Center for Advanced Aviation Sys-
tems Development for sponsoring this work. The contents
of this material reflect the views of the authors. Neither
the Federal Aviation Administration nor the Department of
Defense makes any warranty or guarantee or promise, ex-
press or implied, concerning the content or accuracy of the
views expressed herein.

REFERENCES

Bajaj, L., R. Bagrodia, and R. Meyer. 1999. Case Study:
Parallelizing a Sequential Simulation Model. 13th
Workshop on Parallel and Distributed Simulation, 29-
36. IEEE Computer Society Press.

Basch, J., L. J. Guibas, and L. Zhang. 1997. Proximity
Problems on Moving Points. Computational Geometry
97, 344-351. ACM

Boukerche, A., A. Roy, and N. Thomas. 2000. Dynamic
Grid-Based Multicast Group Assignment in Data Dis-
tribution Management. In Proceedings of the 4th In-
ternational Workshop in Distributed Simulation and
Real-Time Applications, 47-54. IEEE Computer Soci-
ety Press.

Carnes and Wieland

Hamada, K. and Y. Hori. 1996. Octree-Based Approach to

Real-time Collision-free Path Planning for Robot Ma-
nipulator. IEEE.

Kitamura, Y., H. Takemura, N. Ahuja, and F. Kishino.
1994. Efficient Collision Detection Among Objects in
Arbitrary Motion Using Multiple Shape Representa-
tions. IEEE.

Nichols, B., D. Buttlar, and J. P. Farrell. 1996. Pthreads
Programming, 98-107. Sebastopol, CA: O’Reilly &
Associates

Nicol, D. M. and P. Heidelberger. 1995. On Extending
Parallelism to Serial Simulators. In Proceedings of the
9th Workshop on Parallel and Distributed Simulation,
60-67. IEEE Computer Society Press.

Nicol, D., P Heidelberger. 1996. On Extending More Par-
allelism to Serial Simulators. In Proceedings of the
10th Workshop on Parallel and Distributed Simula-
tion, 202-205. IEEE Computer Society Press.

Omri, M. 2000. Routing in Quad Tree-Hypercube Net-
works. 2000 ACM Symposium on Applied Computing,
volume 2, 677-681.

Samet H. 1990. Applications of Spatial Data Structures.
Addison-Wesley.

 Srisawat, J. and N. A. Alexandridis. 2000. A New ‘Quad-
Tree Based’ Sub-System Allocation Technique for
Mesh-connected Parallel Machines. 2nd ACM Interna-
tional Conference on Multimedia, 279-286. Associa-
tion of Computing Machinery.

Steinman J. S. and F. Wieland. 1994. Parallel Proximity
Detection and the Distribution List Algorithm. 1994
Workshop on Parallel and Distributed Simulation, 3-
11, IEEE Computer Society Press.

Steinman, J. S., T. Tran, J. Burckhardt, and J. Brutocao.
1999. Logically Correct Data Distribution Manage-
ment in SPEEDES. 1999 Fall SIW Conference, Paper
99F-SIW-067.

Tan, G., Y. Zhang and R. Ayani. 2000. A Hybrid Ap-
proach to Data Distribution Management. 4th IEEE In-
ternational Workshop in Distributed Simulation and
Real-Time Applications, 55-61. IEEE Computer Soci-
ety Press.

Tzafestas, C. and P. Coiffet. 1996. Real-Time Collision
Detection using Spherical Octrees: Virtual Reality
Application. 5th IEEE International Workshop on Ro-
bot and Human Communication, IEEE.

Vink, A., and S. Kauppinen. 1997. Medium Term Conflict
Detection in EATCHIP Phase III. 16th AIAA/IEEE
Digital Avionics Systems Conference.

AUTHOR BIOGRAPHIES

DAVID CARNES is a Senior Software Systems Engineer
at The MITRE Corporation. He joined MITRE after two
years building flight simulators for Lockheed Martin. He
has a B.S. in Computer Science from Towson State Uni-
versity (1997). His is a member of the ACM, and his inter-
ests include simulation and high performance computing,
including distributed and parallel computing. His email ad-
dress is <dcarnes@mitre.org>.

FREDERICK WIELAND is an employee of The MITRE
Corporation. He holds a BS in Astronomy from Caltech, an
MS in Information Systems from The Claremont Graduate
School, and a PhD in Information Technology/Operations
Research from George Mason University. His research in-
terest is in modeling and simulation techniques, and has
published in the parallel simulation community, in physics-
based simulation, in military modeling communities, and
in aviation modeling and simulation. His email address is
<fwieland@mitre.org>.

mailto:enver.yucesan@insead.edu
mailto:enver.yucesan@insead.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1219
	02: 1220
	03: 1221
	04: 1222
	05: 1223
	06: 1224
	07: 1225

