
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

THE APPLICATION OF DISTRIBUTED SIMULATION IN TOMAS:
 REDESIGNING A COMPLEX TRANSPORTATION MODEL

Mark B. Duinkerken
Jaap A. Ottjes

Gabriel Lodewijks

Faculty of OCP, Department of Mechanical Engineering and Marine Technology
Delft University of Technology

Mekelweg 2
2628 CD Delft, THE NETHERLANDS

ABSTRACT

This paper describes the application of distributed discrete
event simulation in the study of an automated container
terminal. The new model was developed to continue the
study of large and complex logistic systems. In a previous
study, a stand-alone model of the terminal was used that
included all the characteristics of container handling be-
tween the ships and the container stack. A new distributed
simulation model was developed by decomposing the
original model into a distributed structure of communicat-
ing, small sub models. It is shown that with relative little
effort and hardly any programming overhead, a complex
stand-alone model can be decomposed into small, easy to
understand sub models. The new distributed structure im-
proves the transparency and maintainability of the simula-
tion model, while guaranteeing the original benefits of the
stand-alone model and the required reproducibility of the
experiments.

1 INTRODUCTION

1.1 General

Discrete event simulation has proven to be an effective tool
to study the performance of logistic systems and to aid in
their design. Today, the scale and complexity of these sys-
tems is growing tremendously. The study of large and
complex logistic systems needs to be performed by more
than one expert because of the amount of modeling work
and the mostly limited time frame available for the study.
Stand-alone simulation models are therefore becoming too
limited to sufficiently support the design of these systems.
For this reason distributed simulation models have been
developed. The development of these models was sup-
ported by the need to combine separately developed simu-
lation models and to extend the use of developed control

algorithms from simulation environments to prototyping or
even real production and transportation systems. The de-
velopment of distributed simulation models was possible
since most hardware today, like computers, is connected in
networks and since most programming environments sup-
port communication between hardware on various levels.

Distributed simulation is presented as a tool to enable
the effective study of large and complex logistic systems
and to enable the application of control algorithms that
were developed within a simulation environment in a real
control systems. Today, worldwide efforts are made to
develop a general concept for distributed modeling and
simulation (Fujii et al. 1999). At this moment HLA is be-
coming the standard (Page and Smith 1998). However,
HLA is relatively difficult and inflexible to use in educa-
tional and research environments. In those environments a
simple, open, flexible and free tool like TOMAS is re-
quired (Veeke and Ottjes 2001). TOMAS is used in the
study presented in this paper.
 TOMAS is based on the process interaction approach
for discrete event simulation (Zeigler et al. 2000, Ottjes et
al. 2001). A more elaborate discussion on this simulation
tool can be found in (Veeke and Ottjes 2000, Veeke and
Ottjes 2001). Within TOMAS, new methods are devel-
oped to support distributed modeling and simulation.
Communication is established with string based messaging
using sockets. Due to the open structure of TOMAS, a
minimum programming effort is required to restructure a
stand-alone model to a distributed set of models.
 Running a distributed simulation however is not the
same as parallel computing (Fujimoto 2001). Although a
distributed simulation model can be run on more than one
processor and therefore be faster, the main purpose is not
to gain computational speed but to enable the study of
large and complex logistic systems. In a stand-alone simu-
lation model only one process can be current. In a distrib-
uted simulation only one member model can be active. The

Duinkerken, Ottjes, and Lodewijks

conservative synchronization of time guarantees the repro-
ducibility of simulation results in both a stand-alone and a
distributed version of the same model. In general, commu-
nication between hardware slows down the simulation
speed. Therefore, the option to switch between the stand-
alone and the distributed mode, back and forth, at any
phase of a project is a major advantage. This aspect is also
discussed in this paper.

1.2 Approach

Section 2 of this paper describes the development of dis-
tributed simulation in the discrete event simulation pack-
age TOMAS. Section 2 in particular describes the applica-
tion of distributed simulation models, their conservative
synchronization of time, and the communication aspects
within the model.

The equipment used on a typical container terminal is
described in section 3. A stand-alone model of this system
is used for the study of automated container terminals.
More information on this study can be found in (Du-
inkerken et al. 1999, Duinkerken and Ottjes 2000). This
stand-alone model is used as a test case for developing a
distributed simulation model, described in section 4. Fol-
lowing a few relative easy steps, the stand-alone model is
split up into five member models. Each member model has
its own controller that is responsible for the communica-
tion between the models. The communication from and to
a member model is centralized in the controller. The inter-
face of each member model therefore needs to be clearly
defined. This allows easier development of alternative
models with the same functionality.
 Finally, section 5 describes the result of the study, the
conclusions that can be drawn from them, and some future
developments.

2 DISTRIBUTED SIMULATION MODELS

2.1 Application of Distributed Simulation Models

Today, simulation is used in the design of complex sys-
tems, including the design of logistic systems. Several de-
velopments changed the demands on the traditional simula-
tion approach.
 Firstly the size of the projects, in which simulation is
being used, increased. A complex simulation study with
limited time span is too large to be performed by only one
expert. The ability to do concurrent engineering is re-
quired, so that more experts could cooperate in parallel.
This demands a different model architecture.
 Secondly the complexity of the design problems in-
creased, which led to a design approach where simulation
is needed during different design phases. A model cannot
be specified immediately in all of its details. Some kind of
aggregation facility is needed.
 Thirdly the investments in programming efforts in-
creased dramatically because of the growing degree of
automation in real systems. There is a need to reuse the
planning and control programming code from simulation
models in the real environment.
 Finally, because of the common use of simulation, it
became a real topic to reuse some of the elements devel-
oped in earlier design projects. Object orientation has
proven to be a real answer to this last aspect.

2.2 Conservative Synchronization

The synchronization to a common time-axis is essential for
distributed simulation. Often the term “parallel simulation”
is used, but “parallel” is more than just distributed. This
paper is restricted to discrete process simulation as an
expansion of discrete event simulation (Veeke and Ottjes
2000). A process is defined as an ordered sequence of time
intervals that connect all the events of one element (class).
This means that all state changes are performed at discrete
moments in time and at any moment there is one and only
one process “current”.
 If only one element can be current at one moment, in a
distributed model only one member model can be current at
any moment or even better: only one element of any mem-
ber model can be current. The following rules are used:

• The first event generated for a specific moment

will be the first event handled at that moment
• In case of state events, the state of the system will

be checked after each event and not only when
simulation time proceeds

• In a distributed model environment the member
model with the smallest event time receives con-
trol. If two member models have the same event
time, the member model with the event first gen-
erated will receive control, unless specifically re-
quested by the modeler.

Note the word “generated” instead of “scheduled”. The
moment of event-generation is essential in preserving the
reproducibility of the simulation runs. From the above can
be concluded that a distributed model synchronizes events
to a common time-axis by sequencing the first events of
member models. Member models are assumed to sequence
their events to their own local time-axis.
 According to these rules distributed simulation still is
quasi-parallel instead of parallel, because nothing is run-
ning in parallel; so distributed simulation in this sense
doesn’t result in faster models (as a consequence of dis-
tributing the member models over different PC’s).
 Finally distributed simulation should not be confused
with real-time simulation. These definitions lead in fact to
the conclusion that a combination of distributed and paral-
lel simulation is needed to make it real-time.

Duinkerken, Ottjes, and Lodewijks

2.3 Communication

As discussed in the previous paragraph, the events of all
member models must be scheduled by one central server,
the so-called timeserver. The timeserver receives all event-
related messages from the member models, schedules the
events in the correct sequence, and grants control to the
first-scheduled member model. Beside the event-related
messages, distribution leads to model-to-model communi-
cation. Because all member models are known to the time-
server, the timeserver will also act as a central “post-
office” for all messages. The member models do not need
to be aware of the location of all other member models, it
is sufficient that each member model will connect to the
timeserver.

3 THE AUTOMATED CONTAINER TERMINAL

3.1 Case Description

Figure 1 shows a typical container terminal. Containers are
stacked in a large stacking area. Fully automated stacking
cranes service this stack. The transport of containers is
provided by Automated Guided Vehicles (AGVs), using
fixed routes. Quay cranes load and unload the container
vessels.

Figure 1: Overview of a Container Terminal

 A simulation model for this system has been devel-
oped (Duinkerken et al. 1999, Duinkerken and Ottjes 2000)
using the process interaction method. The main objects in
our simulation model correspond with the physical objects:
containers and containerships, quay cranes, AGVs and
route-layout, stack and stacking cranes. One of the most
important elements of our model however is virtual,
namely the control system, the planning and control mod-
ule. The control system is responsible for the scheduling of
all operations on the terminal. The elements within this
container terminal are discussed in more detail in the fol-
lowing paragraphs.
3.2 Stack System

The stack system consists of a number of stacking lanes. A
stacking lane is specified by its width and length. Each
stacking lane uses its own stacking crane. The stacking
lane is connected with the quay infrastructure by 4 AGV
transfer points per stacking lane. Each stacking lane is di-
vided in an export-area and an import-area. All containers
for loading will be placed in the export-area; all containers
that are unloaded from a ship are placed in the import-area.
The physical sizes of stacking lanes are user-defined.
 Each stacking lane is equipped with one Automated
Stacking Crane (ASC). The stacking crane provides for
both the stacking of incoming load containers and the re-
moval of outgoing ones. The stacking has priority, because
this move will free an AGV. The sequencing of jobs is
determined by the control system.
 The performance of the stack is called the stack re-
sponse time. This is the average time the stack will handle
a container request. The performance can be subdivided in
average move time inbound and average move time out-
bound.

3.3 Quay System

The quay system consists of quay cranes along the quay
where ships can dock. The quay cranes stand in fixed posi-
tions on the quay so the traveling of the quay cranes along
the quay is not simulated. This leads to a fixed length of
the maximum waiting queue for the cranes. Quay cranes
are loading and unloading AGVs. Most important during
loading is the sequence in which the containers arrive.
Usually, a ship is loaded with a strict loading sequence.
 The performance of the quay system is characterized
by the quay crane utilization. This is defined as the per-
centage of time that the quay crane is active, and thus
complementary to the time the quay crane is waiting for
AGVs. Because quay cranes are the most expensive
equipment on the terminal, the objective of the control sys-
tem is maximization of the quay crane utilization.

3.4 Transport System

The purpose of the quay transport system is to transport
unloaded containers from the ship to the stack, and to bring
load containers from the stack to the quay cranes. The
AGVs are driving along fixed paths. The layout of the ter-
minal in Figure 1 is shown in Figure 2. It includes 7 quay-
cranes, 32 automatic stacking cranes, a stack for empty
containers, and the current routing of the AGVs. On this
terminal a maximum of 50 AGVs is in operation.
 The traffic between stack and quay follows a circular
pattern. Typically, the vehicles travel along the entire
length of the ship and turn back along the stack. In the
quay area a fixed traffic lane is reserved for each quay

Duinkerken, Ottjes, and Lodewijks

crane. In the stack-area the traffic for two quay-cranes is
combined to form a single traffic lane.

X

Y

1240

28 9 8 7 6 5 4 29 27 26 25 24 23 21 22 16 17 19 20 18 14 15 13 12 11 10 3 2 1 30 31

14
30 13

30

4
3
2
1

6
9
10
11
12

1
2

3 4 63
40 98

90 10
90 6

7 5

maintenance

MT-stack

afvoe

afvoe

afvoe
afvoer + ASC-

ASC-ASC + MT-ASC + MAINT-

ASC-ASC + ASC-MT +

32

B1
B2 B3

B4
suppl y_neg_y_pos_x
suppl y_pos_y_pos_x suppl y_neg_y_neg_x

suppl y_pos_y_neg_x
1120

Figure 2: Layout of the DSL Terminal at the Maasvlakte
Rotterdam

 Quay transport uses Automated Guided Vehicles
(AGVs) for the pick-up and delivery of containers at the
quay cranes. The quay transport system is described com-
prehensively in (Duinkerken et al. 1999). In this work a
method for the design of multi-AGV systems and control
of their operation is presented.

3.5 Container System

The container system keeps track of all containers at the
container terminal. Two types of containers are distin-
guished. Unload containers are containers on a ship that are
unloaded by the quay crane and stacked in the import
stack. Load containers are defined as the containers that
start in the stack, and are loaded onto a ship. The model de-
fines a shipload as a set of holds. Each hold defines a set of
unload-containers and a set of load containers. For each
hold the quay crane that will handle the loading and
unloading is pre-defined.

3.6 Control System

The control system is responsible for the scheduling of all
operations on the terminal. Main principle in the control
system is to make decisions local instead of central, and as
late as possible. The main driver of all scheduling is
formed by the load plans of the container ships. Within a
ship hold, the loading sequence for the load containers is
determined by the load plan. This plan takes into account
the destination of a container and various other properties
including size, and weight. The possibility of relaxing the
load plan by introducing “load categories” has been inves-
tigated. Instead of a fixed sequence of individual contain-
ers, the containers are grouped in categories, and a fixed
sequence remains only between the categories. We expect
that the resulting freedom of sequence within a category
will improve both the quay transport and the stack re-
sponse times.

4 IMPLEMENTATION

4.1 The Distributed Architecture

The simulation model of the container terminal, presented in
the previous section, has evolved in the last years from a tiny
simulation model to a complex system, modeling all quay-
side terminal operations. Although this stand-alone model
was originally not built to be decomposed for distribution,
the member models can be distinguished. The description in
the previous section strongly suggests an architecture of the
distributed model as is given in Figure 3.

Quay
System

Container
System

Stack
System

Transport
System

Control
System

! AGV
! layout
!

! stack lane
! stack crane
!

! container
! ship
!

! quay crane
!
!

Figure 3: The Five Member Models with Some Important
Object-Classes

 While the architecture is obvious, the method to trans-
form the model from standalone to distributed is not. The
standalone model is object oriented. Each physical object
in the system has its simulation counterpart. This results in
a flat structure where every object can “see” other objects
and access its methods and properties because they are in
the same “memory-space”.
 The distributed model consists of separated member
models in different memory-spaces. Within a member
model, objects can still “see” and access each other, but for
interaction with objects in other member models, commu-
nication must be defined. So by distributing a stand-alone
model, a hierarchy is re-introduced.

4.2 Restructuring the Model

Most objects in the stand-alone model are defined in sepa-
rate units. In case an object needs to access another object,
the unit of that object must be “included” during compila-
tion time. Thus by studying the include statements of each
unit, the relationships between all objects of the stand-
alone model can be found.

Duinkerken, Ottjes, and Lodewijks

 To obtain a distributed architecture the following steps
were taken:

• Combine the units that form a member model and

add a controller. Every unit of the member model
may only include its controller unit. Only the con-
troller-unit may include other controller units.
Communication between objects of different mem-
ber models will now only be possible through the
controllers. Controllers can only access the proper-
ties and methods of other controllers

• Detach the member models one by one by compil-
ing them as independent simulation models. The
separated controller can now only send messages
to the controllers of other member models. On the
receiving side, these messages are translated to
the original method-calls.

The major difficulty in restructuring the model was caused
by the units used in more than one subsystem. For exam-
ple, the stack system, the quay system and the transport
system all used the object “container”, which in the new
architecture is only existing in the container system. This
can only be solved by giving each system its own imple-
mentation of the object container, containing only the
properties which are relevant for that system.
 It can be concluded that the process interaction
method, used for the original standalone model, resulted in
a model which was easily transformed to a distributed ar-
chitecture.

4.3 Communication

In the distributed architecture, the method calls from control-
lers are replaced by string based messages. On receiving a
message from another member model, the received text
string must result in the proper method call. Also, if a
method call contains parameters, these parameters must be
translated to a string by the sending model, and be inter-
preted by the receiving model. A special kind of parameter
is the pointer to an object. It is natural that objects are known
by name. Each member model contains a method that will
translate the name of an object into a pointer to that object.
 Implementing a controller for each member model rein-
troduces a hierarchy, which was lost by building the stand-
alone model object oriented! However, there is a strong ar-
gument in favor of this hierarchy. It forces the model builder
to define a clear communication set between subsystems.
This set must contain all the needed method calls between
the member models. By carefully studying the communica-
tion set, the model-to-model communication can be stream-
lined, and reduced to the minimum needed. Also, a clear
communication set is in fact the interface-definition of a
member model, which allows the development of alternative
models with the same functionality.
 The types of messages in model-to-model communica-
tion are:

• Send information
• Request for information. The sending model must

wait for a reply message containing the answer
string

• Process-related message. The process of the send-
ing model requires an object in another model to
cancel or resume its process. The receiving model
updates its events at the timeserver, before the
sending model continues.

From the previous follows the need for synchronized com-
munication. The model which sends a messages waits for
confirmation before continuing its process. As mentioned
before, the models will not run parallel. At each moment
only one system can be current. However, this is done to
guarantee the reproducibility of the simulation results.

5 RESULTS AND CONCLUSIONS

5.1 Results

The implementation of the distributed architecture using
the proposed approach was successful. In Figure 4 a screen
dump of the timeserver is presented. Because the time-
server is also responsible for the model-to-model commu-
nication, all the messages send during simulation can be
counted. A table with the counted messages is available at
the timeserver.
 There are two kinds of communication: server-model
and model-model. The server-model communication is re-
lated to the synchronization of the processes. The event-
related messages are generated by the TOMAS environ-
ment and hidden for the user, but counted in the table. The
effect of synchronized model-model communication can be
seen in the figure: because each message is replied, this
part of the matrix is symmetric.

5.2 Conclusions

It is shown that with relative little effort, the complex
model could be decomposed into small, easy to understand
member models. The new structure improves the transpar-
ency and maintainability of the simulation, while guaran-
teeing the original benefits of the model and the required
reproducibility of the experiments. Because of the process
interaction method for simulation, the standalone model
was easily transformed to a distributed architecture. It is
expected that in the future a reversed approach, building a
complex model by implementing small member models,
will be successful.

Duinkerken, Ottjes, and Lodewijks

Figure 4: Screen Dump of the TOMAS Timeserver
5.3 Future Developments

The main task for improvement of this model lies in reduc-
ing the size of the communication set, and the frequency of
the messages. By logging the messages, the model builder
gains insight in the amount of communication. Where in
the standalone model accessing another object was conven-
ient, in the distributed model it results in communication
which slows down the simulation speed. Therefore, by
making the communication more efficient, the total num-
ber of calls can be reduced significantly. This will result in
higher simulation speed.
 It is not uncommon that a simulation project starts
relatively small, evolves and gets more complex over time.
In fact, the terminal model presented here started as a study
concerning AGV traffic on two crossing roads. When it is
expected that a project will become complex, one should
anticipate concurrent engineering by designing a distrib-
uted architecture. The main advantage of a stand-alone
model is simulation speed. The ideal situation is therefore
when the same project can be compiled both in stand-alone
and distributed mode. The approach presented in this paper
allows such mode-switching.
 The next step is the development of a distributed
simulation architecture to support the design of operations
and control for container handling in a new part of the Port
of Rotterdam. In this project, researchers from different
faculties at the Delft University of Technology and the
Erasmus University in Rotterdam cooperate. The
architecture, called the “Backbone” will connect and
synchronize several discrete simulation models during
research and prototyping of different design phases. Com-
typing of different design phases. Common tasks for the
support of a distributed simulation study like run control,
scenario management, logging and animation, are imple-
mented in the architecture itself.
 Further work will include a laboratory of scaled AGVs
(1:25) to cooperate within the architecture. At that mo-
ment, the paradigm of reproducibility must be relaxed, and
parallel computing must be introduced, to allow real-time
control of the AGVs.

REFERENCES

Duinkerken, M.B.; J.J.M. Evers; J.A. Ottjes. 1999.
TRACES : Traffic Control Engineering System. Pro-
ceedings 31st Summer Computer Simulation Confer-
ence. Chicago [SCS] pp 461-465.

Duinkerken, M.B.; J.A. Ottjes. 2000. A simulation model
for automated container terminals. Proceedings of the
Business and Industry Simulation Symposium. Wash-
ington D.C. [SCS] pp 134-139.

Duinkerken, M.B.; J.J.M. Evers; J.A. Ottjes. 2001. A simu-
lation model integrating quay transport and stacking
policies on automated container terminals. Proceed-
ings of the 15th European Simulation Multiconference.
Prague [SCS] pp 909-916.

Fujii, S.; A. Ogita, Y. Kidani, T. Kaihara. 1999. Synchro-
nization Mechanisms for Integration of Distributed
Manufacturing Simulation Systems. Simulation 72:3,
pp.187-197.

Duinkerken, Ottjes, and Lodewijks

Fujimoto, R.M. 2001. Parallel and distributed simulation

systems. Proceedings of the 2001 Winter Simulation
Conference. Arlington, VA.

Ottjes, J.A.; H.P.M. Veeke; A.A. Buizer. 2001. Experiment-
ing with distributed modeling and simulation using the
internet. Proceedings of the 15th European Simulation
Multiconference. Prague [SCS] pp 571-577.

Page, E. H.; R. Smith. 1998. Introduction to military train-
ing simulation: a guide for discrete event simulation-
ists, Proceedings of the 1998 Winter Simulation Con-
ference (WSC 98). Washington, DC pp. 53-60.

Veeke, H.P.M.; J.A. Ottjes. 2000. TOMAS: Tool for Ob-
ject-Oriented Modelling and Simulation. Proceedings
of the Business and Industry Simulation Symposium.
Washington D.C. [SCS] pp 76-81.

Veeke, H.P.M.; J.A. Ottjes. 2001. Applied distributed dis-
crete process simulation. Proceedings of the 15th
European Simulation Multiconference. Prague [SCS]
pp 641-648.

Zeigler, B.P.; H. Praehofer, T.G. Kim. 2000. Theory of
Modeling and Simulation. 2 ed. Academic Press, New
York.

AUTHOR BIOGRAPHIES

MARK B. DUINKERKEN obtained his Master degree in
Applied Mathematics at the Delft University of Technol-
ogy (1991). He is currently an Assistant Professor in Lo-
gistic Engineering at the faculty of Design, Engineering
and Production, section Transport and Logistic Technol-
ogy, of Delft University of Technology.
 His specialization is modeling and simulation of logis-
tic processes and optimizing the planning and control of
logistic processes with OR-techniques. He participates in
several public-private research projects aimed at the design
of high capacity container terminals. Other work includes
research concerning City Logistics, the development of an
AGV-laboratory, student courses in computer simulation
and the development of simulation tools. His e-mail ad-
dress is <m.b.duinkerken@wbmt.tudelft.nl>.

JAAP A. OTTJES studied Physics at the Delft University
of Technology and obtained his Master degree in 1970. He
obtained his Ph.D. degree at Delft University of Technol-
ogy on pneumatic transport. Jaap Ottjes is Associate Pro-
fessor at the faculty of Design, Engineering and Produc-
tion, section Transport and Logistic Technology, of Delft
University of Technology.
 He specialized in the logistic modeling and simulation
of transportation and production systems. In this field, he
worked as consultant on the modeling and control of the
bottling process at Heineken. Currently, he is involved in
several research projects concerning the design and model-
ing of automated harbors.

GABRIEL LODEWIJKS studied mechanical engineering
at Twente University and Delft University of Technology,
The Netherlands, from which he obtained a Master degree
(cum laude) in 1992. He specialized in transport technol-
ogy, material engineering and dynamics, and obtained his
Ph.D. degree at Delft University of Technology on the dy-
namics of belt systems in 1996.
 In November 2000 he was appointed Professor of
Transport Technology and Logistic Technology at the fac-
ulty of Design, Engineering and Production, section Trans-
port and Logistic Technology, of Delft University of Tech-
nology. His main interest is in belt conveyor technology,
DEM applications in transport technology, automation of
transport systems, material engineering and dynamics.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1207
	02: 1208
	03: 1209
	04: 1210
	05: 1211
	06: 1212
	07: 1213

