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ABSTRACT 

This paper describes the application of distributed discrete 
event simulation in the study of an automated container 
terminal. The new model was developed to continue the 
study of large and complex logistic systems. In a previous 
study, a stand-alone model of the terminal was used that 
included all the characteristics of container handling be-
tween the ships and the container stack. A new distributed 
simulation model was developed by decomposing the 
original model into a distributed structure of communicat-
ing, small sub models. It is shown that with relative little 
effort and hardly any programming overhead, a complex 
stand-alone model can be decomposed into small, easy to 
understand sub models. The new distributed structure im-
proves the transparency and maintainability of the simula-
tion model, while guaranteeing the original benefits of the 
stand-alone model and the required reproducibility of the 
experiments. 

1 INTRODUCTION 

1.1 General 

Discrete event simulation has proven to be an effective tool 
to study the performance of logistic systems and to aid in 
their design. Today, the scale and complexity of these sys-
tems is growing tremendously. The study of large and 
complex logistic systems needs to be performed by more 
than one expert because of the amount of modeling work 
and the mostly limited time frame available for the study. 
Stand-alone simulation models are therefore becoming too 
limited to sufficiently support the design of these systems. 
For this reason distributed simulation models have been 
developed. The development of these models was sup-
ported by the need to combine separately developed simu-
lation models and to extend the use of developed control 

 

algorithms from simulation environments to prototyping or 
even real production and transportation systems. The de-
velopment of distributed simulation models was possible 
since most hardware today, like computers, is connected in 
networks and since most programming environments sup-
port communication between hardware on various levels.  

Distributed simulation is presented as a tool to enable 
the effective study of large and complex logistic systems 
and to enable the application of  control algorithms that 
were developed within a simulation environment in a real 
control systems. Today, worldwide efforts are made to 
develop a general concept for distributed modeling and 
simulation (Fujii et al. 1999). At this moment  HLA is be-
coming the standard (Page and Smith 1998). However, 
HLA is relatively difficult and inflexible to use in educa-
tional and research environments. In those environments a 
simple, open, flexible and free tool like TOMAS is re-
quired (Veeke and Ottjes 2001). TOMAS is used in the 
study presented in this paper. 
 TOMAS is based on the process interaction approach 
for discrete event simulation (Zeigler et al. 2000, Ottjes et 
al. 2001). A more elaborate discussion on this simulation 
tool can be found in (Veeke and Ottjes 2000, Veeke and 
Ottjes 2001).  Within TOMAS, new methods are devel-
oped to support distributed modeling and simulation. 
Communication is established with string based messaging 
using sockets. Due to the open structure of TOMAS, a 
minimum programming effort  is required to restructure a 
stand-alone model to a distributed set of models. 
  Running a distributed simulation however is not the 
same as parallel computing (Fujimoto 2001). Although a 
distributed simulation model can be run on more than one 
processor and therefore be faster, the main purpose is not 
to gain computational speed but to enable the study of 
large and complex logistic systems. In a stand-alone simu-
lation model only one process can be current. In a distrib-
uted simulation only one member model can be active. The 
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conservative synchronization of time guarantees the repro-
ducibility of simulation results in both a stand-alone and a 
distributed version of the same model. In general, commu-
nication between hardware slows down the simulation 
speed. Therefore, the option to switch between the stand-
alone and the distributed mode, back and forth, at any 
phase of a project is a major advantage. This aspect is also 
discussed in this paper. 

1.2 Approach 

Section 2 of this paper describes the development of dis-
tributed simulation in the discrete event simulation pack-
age TOMAS. Section 2 in particular describes the applica-
tion of distributed simulation models, their conservative 
synchronization of time, and the communication aspects 
within the model.  

The equipment used on a typical container terminal is 
described in section 3. A stand-alone model of this system 
is used for the study of automated container terminals. 
More information on this  study can be found in (Du-
inkerken et al. 1999, Duinkerken and Ottjes 2000). This 
stand-alone model is used as a test case for developing a 
distributed simulation model, described in section 4. Fol-
lowing a few relative easy steps, the stand-alone model is 
split up into five member models. Each member model has 
its own controller that is responsible for the communica-
tion between the models. The communication from and to 
a member model is centralized in the controller. The inter-
face of each member model therefore needs to be clearly 
defined. This allows easier development of alternative 
models with the same functionality. 
 Finally, section 5 describes the result of the study, the 
conclusions that can be drawn from them, and some future 
developments. 

2 DISTRIBUTED SIMULATION MODELS 

2.1 Application of Distributed Simulation Models  

Today, simulation is used in the design of complex sys-
tems, including the design of logistic systems. Several de-
velopments changed the demands on the traditional simula-
tion approach.  
 Firstly the size of the projects, in which simulation is 
being used, increased. A complex simulation study with 
limited time span is too large to be performed by only one 
expert. The ability to do concurrent engineering is re-
quired, so that more experts could cooperate in parallel. 
This demands a different model architecture.  
 Secondly the complexity of the design problems in-
creased, which led to a design approach where simulation 
is needed during different  design phases. A model cannot 
be specified immediately in all of its details. Some kind of 
aggregation facility is needed.  
 Thirdly the investments in programming efforts in-
creased dramatically because of the growing degree of 
automation in real systems. There is a need to reuse the 
planning and control programming code from simulation 
models in the real environment.  
 Finally, because of the common use of simulation, it 
became a real topic to reuse some of the elements devel-
oped in earlier design projects. Object orientation has 
proven to be a real answer to this last aspect.  

2.2 Conservative Synchronization 

The synchronization to a common time-axis is essential for 
distributed simulation. Often the term “parallel simulation” 
is used, but “parallel” is more than just distributed. This 
paper is restricted to discrete process simulation as an 
expansion of discrete event simulation (Veeke and Ottjes 
2000). A process is defined as an ordered sequence of time 
intervals that connect all the events of one element (class). 
This means that all state changes are performed at discrete 
moments in time and at any moment there is one and only 
one process “current”.  
 If only one element can be current at one moment, in a 
distributed model only one member model can be current at 
any moment or even better: only one element of any mem-
ber model can be current. The following rules are used: 

 
• The first event generated for a specific moment 

will be the first event handled at that moment   
• In case of state events, the state of the system will 

be checked after each event and not only when 
simulation time proceeds 

• In a distributed model environment the member 
model with the smallest event time receives con-
trol. If two member models have the same event 
time, the member model with the event first gen-
erated will receive control, unless specifically re-
quested by the modeler.  

 
Note the word “generated” instead of “scheduled”. The 
moment of event-generation is essential in preserving the 
reproducibility of the simulation runs. From the above can 
be concluded that a distributed model synchronizes events 
to a common time-axis by sequencing the first events of 
member models. Member models are assumed to sequence 
their events to their own local time-axis. 
 According to these rules distributed simulation still is 
quasi-parallel instead of parallel, because nothing is run-
ning in parallel; so distributed simulation in this sense 
doesn’t result in faster models (as a consequence of dis-
tributing the member models over different PC’s).  
 Finally distributed  simulation should not be confused 
with real-time simulation. These definitions lead in fact to 
the conclusion that a combination of distributed and paral-
lel simulation is needed to make it real-time. 
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2.3 Communication  

As discussed in the previous paragraph, the events of all 
member models must be scheduled by one central server, 
the so-called timeserver. The timeserver receives all event-
related messages from the member models, schedules the 
events in the correct sequence, and grants control to the 
first-scheduled member model. Beside the event-related 
messages, distribution leads to model-to-model communi-
cation. Because all member models are known to the time-
server, the timeserver will also act as a central “post-
office” for all messages. The member models do not need 
to be aware of the location of all other member models, it 
is sufficient that each member model will connect to the 
timeserver. 

3 THE AUTOMATED CONTAINER TERMINAL 

3.1 Case Description 

Figure 1 shows a typical container terminal. Containers are 
stacked in a large stacking area. Fully automated stacking 
cranes service this stack. The transport of containers is 
provided by Automated Guided Vehicles (AGVs), using 
fixed routes. Quay cranes load and unload the container 
vessels. 

 

 

Figure 1:  Overview of a Container Terminal 
 
 A simulation model for this system has been devel-
oped (Duinkerken et al. 1999, Duinkerken and Ottjes 2000) 
using the process interaction method. The main objects in 
our simulation model correspond with the physical objects: 
containers and containerships, quay cranes, AGVs and 
route-layout, stack and stacking cranes. One of the most 
important elements of our model however is virtual, 
namely the control system, the planning and control mod-
ule. The control system is responsible for the scheduling of 
all operations on the terminal. The elements within this 
container terminal are discussed in more detail in the fol-
lowing paragraphs. 
3.2 Stack System 

The stack system consists of a number of stacking lanes. A 
stacking lane is specified by its width and length. Each 
stacking lane uses its own stacking crane. The stacking 
lane is connected with the quay infrastructure by 4 AGV 
transfer points per stacking lane. Each stacking lane is di-
vided in an export-area and an import-area. All containers 
for loading will be placed in the export-area; all containers 
that are unloaded from a ship are placed in the import-area. 
The physical sizes of stacking lanes are user-defined.  
 Each stacking lane is equipped with one Automated 
Stacking Crane (ASC). The stacking crane provides for 
both the stacking of incoming load containers and the re-
moval of outgoing ones. The stacking has priority, because 
this move will free an AGV. The sequencing of jobs is 
determined by the control system.  
 The performance of the stack is called the stack re-
sponse time. This is the average time the stack will handle 
a container request. The performance can be subdivided in 
average move time inbound and average move time out-
bound. 

3.3 Quay System 

The quay system consists of quay cranes along the quay 
where ships can dock. The quay cranes stand in fixed posi-
tions on the quay so the traveling of the quay cranes along 
the quay is not simulated. This leads to a fixed length of 
the maximum waiting queue for the cranes. Quay cranes 
are loading and unloading AGVs. Most important during 
loading is the sequence in which the containers arrive. 
Usually, a ship is loaded with a strict loading sequence.  
 The performance of the quay system is characterized 
by the quay crane utilization. This is defined as the per-
centage of time that the quay crane is active, and thus 
complementary to the time the quay crane is waiting for 
AGVs. Because quay cranes are the most expensive 
equipment on the terminal, the objective of the control sys-
tem is maximization of the quay crane utilization. 

3.4 Transport System 

The purpose of the quay transport system is to transport 
unloaded containers from the ship to the stack, and to bring 
load containers from the stack to the quay cranes. The 
AGVs are driving along fixed paths. The layout of the ter-
minal in Figure 1 is shown in Figure 2. It includes 7 quay-
cranes, 32 automatic stacking cranes, a stack for empty 
containers, and the current routing of the AGVs. On this 
terminal a maximum of 50 AGVs is in operation. 
 The traffic between stack and quay follows a circular 
pattern. Typically, the vehicles travel along the entire 
length of the ship and turn back along the stack. In the 
quay area a fixed traffic lane is reserved for each quay 
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crane. In the stack-area the traffic for two quay-cranes is 
combined to form a single traffic lane.  
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Figure 2:  Layout of the DSL Terminal at the Maasvlakte 
Rotterdam 

 
 Quay transport uses Automated Guided Vehicles 
(AGVs) for the pick-up and delivery of containers at the 
quay cranes. The quay transport system is described com-
prehensively in (Duinkerken et al. 1999). In this work a 
method for the design of multi-AGV systems and control 
of their operation is presented. 

3.5 Container System 

The container system keeps track of all containers at the 
container terminal. Two types of containers are distin-
guished. Unload containers are containers on a ship that are 
unloaded by the quay crane and stacked in the import 
stack. Load containers are defined as the containers that 
start in the stack, and are loaded onto a ship. The model de-
fines a shipload as a set of holds. Each hold defines a set of 
unload-containers and a set of load containers. For each 
hold the quay crane that will handle the loading and 
unloading is pre-defined. 

3.6 Control System 

The control system is responsible for the scheduling of all 
operations on the terminal. Main principle in the control 
system is to make decisions local instead of central, and as 
late as possible. The main driver of all scheduling is 
formed by the load plans of the container ships. Within a 
ship hold, the loading sequence for the load containers is 
determined by the load plan. This plan takes into account 
the destination of a container and various other properties 
including size, and weight. The possibility of relaxing the 
load plan by introducing “load categories” has been inves-
tigated. Instead of a fixed sequence of individual contain-
ers, the containers are grouped in categories, and a fixed 
sequence remains only between the categories. We expect 
that the resulting freedom of sequence within a category 
will improve both the quay transport and the stack re-
sponse times. 

4 IMPLEMENTATION 

4.1 The Distributed Architecture 

The simulation model of the container terminal, presented in 
the previous section, has evolved in the last years from a tiny 
simulation model to a complex system, modeling all quay-
side terminal operations. Although this stand-alone model 
was originally not built to be decomposed for distribution, 
the member models can be distinguished. The description in 
the previous section strongly suggests an architecture of the 
distributed model as is given in Figure 3. 
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Figure 3:  The Five Member Models with Some Important 
Object-Classes 
 
 While the architecture is obvious, the method to trans-
form the model from standalone to distributed is not. The 
standalone model is object oriented. Each physical object 
in the system has its simulation counterpart. This results in 
a flat structure where every object can “see” other objects 
and access its methods and properties because they are in 
the same “memory-space”.  
 The distributed model consists of separated member 
models in different memory-spaces. Within a member 
model, objects can still “see” and access each other, but for 
interaction with objects in other member models, commu-
nication must be defined. So by distributing a stand-alone 
model, a hierarchy is re-introduced. 

4.2 Restructuring the Model 

Most objects in the stand-alone model are defined in sepa-
rate units. In case an object needs to access another object, 
the unit of that object must be “included” during compila-
tion time. Thus by studying the include statements of each 
unit, the relationships between all objects of the stand-
alone model can be found. 
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 To obtain a distributed architecture the following steps 
were taken: 

 
• Combine the units that form a member model and 

add a controller. Every unit of the member model 
may only include its controller unit. Only the con-
troller-unit may include other controller units. 
Communication between objects of different mem-
ber models will now only be possible through the 
controllers. Controllers can only access the proper-
ties and methods of other controllers 

• Detach the member models one by one by compil-
ing them as independent simulation models. The 
separated controller can now only send messages 
to the controllers of other member models. On the 
receiving side, these messages are translated to 
the original method-calls. 

 
The major difficulty in restructuring the model was caused 
by the units used in more than one subsystem. For exam-
ple, the stack system, the quay system and the transport 
system all used the object “container”, which in the new 
architecture is only existing in the container system. This 
can only be solved by giving each system its own imple-
mentation of the object container, containing only the 
properties which are relevant for that system. 
 It can be concluded that the process interaction 
method, used for the original standalone model, resulted in 
a model which was easily transformed to a distributed ar-
chitecture. 

4.3 Communication 

In the distributed architecture, the method calls from control-
lers are replaced by string based messages. On receiving a 
message from another member model, the received text 
string must result in the proper method call. Also, if a 
method call contains parameters, these parameters must be 
translated to a string by the sending model, and be inter-
preted by the receiving model. A special kind of parameter 
is the pointer to an object. It is natural that objects are known 
by name. Each member model contains a method that will 
translate the name of an object into a pointer to that object. 
 Implementing a controller for each member model rein-
troduces a hierarchy, which was lost by building the stand-
alone model object oriented! However, there is a strong ar-
gument in favor of this hierarchy. It forces the model builder 
to define a clear communication set between subsystems. 
This set must contain all the needed method calls between 
the member models. By carefully studying the communica-
tion set, the model-to-model communication can be stream-
lined, and reduced to the minimum needed. Also, a clear 
communication set is in fact the interface-definition of a 
member model, which allows the development of alternative 
models with the same functionality. 
 The types of messages in model-to-model communica-
tion are: 

 
• Send information 
• Request for information. The sending model must 

wait for a reply message containing the answer 
string 

• Process-related message. The process of the send-
ing model requires an object in another model to 
cancel or resume its process. The receiving model 
updates its events at the timeserver, before the 
sending model continues. 

 
From the previous follows the need for synchronized com-
munication. The model which sends a messages waits for 
confirmation before continuing its process. As mentioned 
before, the models will not run parallel. At each moment 
only one system can be current. However, this is done to 
guarantee the reproducibility of the simulation results. 

5 RESULTS AND CONCLUSIONS 

5.1 Results 

The implementation of the distributed architecture using 
the proposed approach was successful. In Figure 4 a screen 
dump of the timeserver is presented. Because the time-
server is also responsible for the model-to-model commu-
nication, all the messages send during simulation can be 
counted. A table with the counted messages is available at 
the timeserver.  
 There are two kinds of communication: server-model 
and model-model. The server-model communication is re-
lated to the synchronization of the processes. The event-
related messages are generated by the TOMAS environ-
ment and hidden for the user, but counted in the table. The 
effect of synchronized model-model communication can be 
seen in the figure: because each message is replied, this 
part of the matrix is symmetric. 

5.2 Conclusions 

It is shown that with relative little effort, the complex 
model could be decomposed into small, easy to understand 
member models. The new structure improves the transpar-
ency and maintainability of the simulation, while guaran-
teeing the original benefits of the model and the required 
reproducibility of the experiments. Because of  the process 
interaction method for simulation, the standalone model 
was easily transformed to a distributed architecture. It is 
expected that in the future a reversed approach, building a 
complex model by implementing small member models, 
will be successful.  
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Figure 4:  Screen Dump of the TOMAS Timeserver 
5.3 Future Developments 

The main task for improvement of this model lies in reduc-
ing the size of the communication set, and the frequency of 
the messages. By logging the messages, the model builder 
gains insight in the amount of communication. Where in 
the standalone model accessing another object was conven-
ient, in the distributed model it results in communication 
which slows down the simulation speed. Therefore, by 
making the communication more efficient, the total num-
ber of calls can be reduced significantly. This will result in 
higher simulation speed. 
 It is not uncommon that a simulation project starts 
relatively small, evolves and gets more complex over time. 
In fact, the terminal model presented here started as a study 
concerning AGV traffic on two crossing roads. When it is 
expected that a project will become complex, one should 
anticipate concurrent engineering by designing a distrib-
uted architecture. The main advantage of a stand-alone 
model is simulation speed. The ideal situation is therefore 
when the same project can be compiled both in stand-alone 
and distributed mode. The approach presented in this paper 
allows such mode-switching. 
 The next step is the development of a distributed 
simulation architecture to support the design of operations 
and control for container handling in a new part of the Port 
of Rotterdam. In this project, researchers from different 
faculties at the Delft University of Technology and the 
Erasmus University in Rotterdam cooperate.  The 
architecture, called the “Backbone” will connect and 
synchronize several discrete simulation models during 
research and prototyping of different design phases. Com-
typing of different design phases. Common tasks for the 
support of a distributed simulation study like run control, 
scenario management, logging and animation, are imple-
mented in the architecture itself. 
 Further work will include a laboratory of scaled AGVs 
(1:25) to cooperate within the architecture. At that mo-
ment, the paradigm of reproducibility must be relaxed, and 
parallel computing must be introduced, to allow real-time 
control of the AGVs. 
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