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ABSTRACT 

Sandia’s Umbra modular simulation framework was de-
signed to enable the modeling of robots for manufacturing, 
military, and security system concept evaluation.  Umbra 
generalizes data-flow-based simulation to enable modeling 
of heterogeneous interaction phenomena via a multiple 
worlds abstraction.  This and other features make Umbra 
particularly suitable for developing simulation federates.  
Umbra’s HLA interface library utilizes DMSO’s HLA Run 
Time Infrastructure 1.3-Next Generation (RTI 1.3-NG) 
software library to federate Umbra-based models into HLA 
environments.  Examples draw on a first application that 
provides component technologies for the US Army JPSD’s 
Joint Virtual Battlespace (JVB) simulation environment for 
Objective Force concept analysis.  

1 INTRODUCTION 

The Umbra simulation framework was designed to enable 
the modeling of robots for manufacturing, military, and se-
curity system concept evaluation.  Many robots in these 
applications are embodied agents, which are entities having 
behavior, control, geometry, sensing, physics, communica-
tions, etc., and that are affected by and interact with their 
environment and its inhabitant entities.   

Umbra generalizes certain aspects of modular data-
flow-based simulation in a way that also enables linking 
together heterogeneous modeling tools.  Users can quickly 
build models and 3D interactive simulations for system de-
velopment, analysis, experimentation, and control.  Model 
components can be built with varying levels of fidelity and 
readily switched; models built for conceptual analysis can 
be gradually converted to high fidelity models for detailed 
analysis. Umbra has been used in modeling robots ranging 
from manipulators to swarms of autonomous mobile robots 
with sensors and radio communications.   

 

Several of the features and software abstractions—

particularly, multiple worlds for heterogeneous interac-
tions—that enable the Umbra framework to flexibly sup-
port embodied agent simulation also make it ideal for de-
veloping simulation federates for High-Level Architecture 
(HLA) federation.  The Defense Modeling and Simulation 
Office (DMSO) has developed and supports a software li-
brary called the Run Time Infrastructure, or RTI, which 
implements the HLA interface specification and facilitates 
building HLA-compliant codes.  The RTI manages all in-
ter-process communications, such as data exchanges be-
tween federates, in an HLA federation.  We have devel-
oped Umbra’s HLA interface library to interact with 
DMSO’s RTI 1.3-NG library (DMSO 2001) to enable 
Umbra models to be federated into HLA environments.  

The US Army JPSD tasked Sandia with developing 
robot models that operate within its Joint Virtual Battle-
space (JVB) simulation framework for Objective Force 
concept analysis.  Unmanned Air Vehicle (UAV) and Un-
manned Ground Vehicle (UGV) models and others we de-
veloped in the first year of effort provide examples of Um-
bra simulation and our HLA interface implementation.   

2 UMBRA   

2.1 Background 

Umbra’s development was driven by a need to analyze a 
wide range of robot systems in stages of development from 
conceptual design to hardware-in-the-loop experimenta-
tion.  There are extensive modeling and simulation tech-
nologies for many domains.  For example, LabView (Na-
tional Instruments 2002), Simulink (Mathworks 2002), 
SMART (Anderson 1997), and Chimera (Stewart et al. 
1997) enable modular control system simulation and/or 
development via various port-based composition abstrac-
tions.  Commercial software such as ADAMS (Mechanical 
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Dynamics 2002) can be applied to certain mechatronic and 
physical systems, while modular, composable architectures 
such as that of Diaz-Calderon et al. (1998) and modeling 
languages such as ModelicaTM (Otter et al. 1999) attempt 
to cover them more generally.  AVS (AVS 2002) offers a 
modular framework for combining simulations, and many 
other specialized simulators exist.  None of these technolo-
gies met our needs, although some of them proved the util-
ity of certain abstractions and features.  Furthermore, spe-
cific simulation needs for future robot system exploration 
and development are unpredictable. 

2.2 Basic Umbra Overview 

Instead of attempting to be an all-encompassing architec-
ture for simulation, Umbra is a simple modular, compos-
able simulation framework that is conducive to both writ-
ing simulation components from scratch and to leveraging 
existing external simulation capabilities.   

Umbra builds on continuous-time (timestepped) data-
flow-based simulation.  The basic component unit of Um-
bra simulation is a module, which encapsulates a state and 
a computational model.  A module also may have input 
ports from which it can read data and output ports at which 
it can present data.  An output port can be connected to in-
put ports, making the output port data readable there.   A 
dynamic module has a virtual update (work) function that 
is automatically called once each time through the simula-
tion loop, which is known as the Umbra update cycle.    
Ports and connections are typed and can present interfaces.  
Specific model classes are derived from the base module 
classes. Non-native model libraries and legacy codes are 
integrated by writing encapsulating module libraries. 

The Umbra framework is implemented in C++, and 
Umbra module libraries are usually written in C++.  Um-
bra integrates Tcl for an interactive shell and scripting lan-
guage.  Modules are typically named upon creation and are 
addressable via these names in Tcl.  Furthermore, data 
ports on named modules are automatically accessible in 
Tcl via their labels, as are designated member functions.  
Tk is optionally used for constructing GUIs.  Umbra also 
includes mechanisms that support event-driven simulation, 
such as C++ and Tcl callback objects.  A scene graph and 
an interactive, OpenGL-based viewer are integrated op-
tionally into Umbra and are used by configuring kinemat-
ics and geometry modules appropriately.   

A start-up Tcl script is typically used to first load the 
Umbra libraries containing the desired module classes and 
then to call C++ code to create the desired modules and 
connect their ports as required.    Umbra enables extensive 
computational steering, allowing users, for example, to add 
obstacles to terrain models to examine dynamic control re-
sponse, to add/delete modeled entities, and to interrupt 
simulations and swap in different component models.   A 
significant departure from the usual data-flow paradigm is 
discussed in Section 2.4. 

2.3 General Robot Modeling Issues  

The Umbra framework naturally supports modular system-
level models that mimic system structures.  Figure 1 shows 
(simplified) the typical modular organization of a model of 
a robot with a classical control system.  The individual 
modules are connected into a meta-module – a module 
network connected in the same way as the real robot com-
ponents.   The model includes a collection of sensor mod-
ules (shown as a shadowed box), a behavior/controls algo-
rithm module, and a physical plant or physics module.  The 
update function of a continuous-process module computes 
its transfer function.  For example, an aircraft physics 
module might take, as input, a set of control surface angles 
and engine thrust and output position (and orientation).  
The sensor module might use the aircraft’s state values to 
compute a set of sensed values, which the control module 
would use to compute the new flight control values.  
Command input, not shown, is typically introduced to the 
behavior and control modules as an asynchronous event.   

Non-linear components of robots are readily modeled in 
Umbra.  For example, vehicle physics models can be made 
responsive to the geometry of the environment.  Sophisti-
cated behavior, planning, etc., components can be modeled 
by Umbra modules as long as there are incremental models 
of their computations and adequate resources.  A simulator 
clock module (not shown) provides the current time and step 
size to other modules via its output ports. 

To prevent causality violations due to fortuitous up-
date order, the update functions of modules must be com-
puted in a constrained order.  In the simple application of 
the Umbra framework, each component model is a dy-
namic module.  Their update order is computed from the 
directed graph whose nodes are modules and whose edges 
are connections.  This graph is made acyclic (enforced as 
connectors are added) by specifying feedback connections 
and therefore determines a partial order. Other constraint 
mechanisms, including dummy connectors, exist. 

2.4 A Worlds Abstraction for  
Simulating Interactions  

It is necessary to model robots whose state evolutions are 
dependent on their environments and the other entities in 
them.  For example, concurrent incoming RF communica-
tions signals may interfere with each other, resulting in 
message loss or corruption.  A meta-module as shown in 
Figure 1 might be used to model a single robot in a static 
environment; however, without a mechanism for sharing 
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data across meta-module boundaries, a set of such meta-
modules would be limited to modeling multiple robots that 
never interact and that cannot sense each other. 

While enabling the modeling of interactions, Umbra’s 
Worlds abstraction preserves the ability of meta-modules 
to follow the system structure of the entities they model.  
We model each interaction phenomenon with a specific 
world module that computes the coupled part of the update 
of the modules participating in the interaction.  The world 
module governs the world of interactions that are its do-
main.  We have found it convenient for the world module 
for a phenomenon to also serve as the factory (Gamma 
1994) for the participant modules and sometimes to man-
age their updating. 
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Figure 1: Conceptual Umbra Robotic Meta-Module.  Geometry model module is used in visualization. 
Figure 2 illustrates the relationship between meta-
modules and worlds.   The world module that governs the 
Communications World is responsible for computing the 
“signal” at each of the Communications In modules due to 
the transmissions of the Communications Out modules.   
Since this computation is done by that world module’s up-
date function, it is atomic with respect to other modules’ 
updates and prevents violations of causality.  Except for 
connections to the simulation clock (not shown), the 
Communications World module and each of the vehicle 
meta-modules are separate components of the data-flow 
graph.  The modules outside the Communications World 
do not even know it exists. 
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Figure 2: Umbra Robotic Vehicle Example Showing Relationship between Meta-Modules and Multiple Worlds.  
Simulation clock module and related ports and connectors are omitted. 
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Because signal reception is dependent on the positions 
of the senders and receivers within the environment, the 
position of each Communications Out and Communica-
tions In module is determined from the position output of 
the VehiclePhysics module of the meta-module to which it 
belongs.   It is the world module’s responsibility to model 
the effects of position and environment, which it may do 
using its own geometric model or using a shared one, for 
example, provided by a Geometry World (not shown).   

While robots often carry only one communications 
device, they typically use several sensors (for example, 
Figure 3).  The shadowed Sensors World box and shad-
owed boxes for associated modules represent this plurality.  
In practice, there are usually multiple Sensor Worlds.  For 
each sensor type, the sensor world needs adequate informa-
tion to simulate each sensor’s response to its environment, 
including dynamic inhabitant entities such as robots.  In 
each sensor world, for every dynamic entity that can be 
sensed, this data is provided by a sensor signature proxy 
module that is a part of the meta-module for that entity.   

3 UMBRA AND HLA 

3.1 Overview 

The natural level of modularity in Umbra models makes it 
well suited for both the entity-level and component-level 
composable integration found in federated simulations.  
The HLA paradigm allows various aspects of the models to 

 
Figure 3: Umbra Simulation of Robots Collaboratively 
Exploring, with Sensor Response Regions Shown 
be distributed among separate federates at a component 
level.  For example, Behavior Services might generate 
commands, status and high-level reports.  Other elements 
of the HLA simulation environment might transfer task and 
report data to and from the Behavior Services while propa-
gating this C4ISR data through the environment.  Plat-
forms, sensors, and other objects might be attached, either 
temporarily or permanently, to one another to represent 
systems with combined functionality. 

The Umbra HLA Interface Library (Gottlieb et al. 
2002a) enables models to be composed conforming to an 
HLA federation’s interface as defined through its Federa-
tion Object Model (FOM).  For example, robotic system 
models for the JVB are implemented in accordance with 
the JVB-FOM with separate Behavior and Platform Ser-
vices.  Where important (e.g., for efficiency), behavior 
may be tightly coupled to sensor input or platform motions 
within Umbra.  At the same time, HLA Objects separately 
representing Platform and Behavior Services are presented 
to the HLA as separate services.  This internal coupling is 
transparent to the FOM to allow maximum flexibility. 

Figure 4 shows a conceptual diagram of how Umbra 
robot vehicle meta-modules may be integrated via HLA for 
federation.  Here, Umbra publishes behavior and platform 
data through separate HLA objects, while Umbra sensors 
and physics models subscribe to HLA sensor, environment, 
and Mobility Services.  Published services thus may de-
pend both on internal (Umbra) models and, for loosely 
coupled systems, on external ones through subscribed ser-
vices. For example, robotic tanks might model mobility 
and battle damage within Umbra or externally by having 
Umbra subscribe to services. 

Through the HLA interface, other systems instantiate, 
command, and monitor individual as well as integrated col-
lections of platforms. In addition, Umbra can monitor HLA 
objects that it does not control. This monitoring is impor-
tant for allowing Umbra to interact with the entire HLA 
simulation environment.  

3.2 Umbra HLA Ambassador and Proxy Modules 

The Umbra HLA library is built on DMSO’s HLA Run 
Time Infrastructure 1.3-Next Generation (RTI 1.3-NG) li-
brary.  DMSO’s RTI provides an abstract class, called 
FederateAmbassador, that identifies the callback functions 
that each federate is obliged to provide.  The Umbra HLA 
library provides an Ambassador class that implements 
these functions and that is also a subclass of UmbDynamic 
(dynamic module).  For example, Ambassador implements 
create/destroy, join/leave, and object and interaction sub-
scription and publication.  

The Umbra HLA implementation builds on the Worlds 
abstraction to achieve a close matching of Umbra modules 
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Figure 4:  Conceptual Diagram Showing Umbra-to-HLA Integration for a Robot Vehicle 
to HLA components.  An Ambassador module establishes 
conceptually and governs an HLA World.  Umbra simula-
tions publish and subscribe to RTI interaction parameter 
and object attribute data, and subsequent updating and re-
flecting is done through proxy modules.  For each federa-
tion an Umbra simulation joins, a separate Ambassador 
module manages communications between the RTI and the 
associated proxy modules.  Each HLA Interaction Class or 
Object Class that an Umbra simulation publishes or sub-
scribes to is represented within Umbra with an application-
specific interface proxy module class.  These modules 
proxy the HLA by maintaining local state data concerning 
the attributes and parameters and by providing mechanisms 
for moving HLA state and interaction data between other 
Umbra modules and the HLA environment.  Interface 
proxy modules do not typically provide modeling services 
computationally, except for dead-reckoning.  Rather, they 
communicate with other modules within the Umbra envi-
ronment that in turn provide modeling services. 

For example, recall that a robot is typically modeled 
within Umbra by various connected modules.  Elements of 
this model may have counterpart HLA objects.  Umbra 
HLA proxy modules, such as the HlaRobotModel module 
described later, are connected to these elements to transfer 

 

state (attribute) data between the corresponding Umbra 
modules and the HLA world. 

The HlaModule class, derived from UmbDynamic, is 
the base or virtual proxy class for handling interactions.  
HlaClassModule, derived from HlaModule, adds the ability 
to proxy instances of HLA Object Classes. Application-
specific classes are derived from these module classes; in 
particular, instances of HlaClassModule subclasses are in-
corporated into meta-modules to implement reflection and 
updating of HLA object attributes.  Figure 5 shows the 
class hierarchy of these modules in relation to module 
classes developed for particular applications.  HlaModule 
modules can be programmed to send or receive any inter-
action allowed by federation management.  More than one 
module can be programmed to receive the same interac-
tion. Here, the Ambassador module provides a copy of the 
interaction data to each module so that it can perform its 
separate processing function. 

In addition to its other roles Ambassador also provides 
HLA module factory and scheduling services, as well as 
time-management services.  The Ambassador module is a 
factory for all HLA object and interaction proxy modules, 
while a specific interaction proxy module serves as the fac-
tory that constructs meta-modules as needed to support re-
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mote creation of HLA object instances.  Use of callbacks 
to Tcl-procedures that construct these modules and meta-
modules enables these factories to be application inde-
pendent.  The Worlds abstraction is used to provide an 
added level of control between the Ambassador and the in-
teraction and object proxy modules. 

3.3 Data and Interaction Exchanges  
and Time Management 

We now describe the Umbra HLA library’s mechanisms 
for data exchange, interaction processing, and time man-
agement, which exploit the Umbra framework.  See 
Gottlieb et al. (2002a) for descriptions of mechanisms for 
object class and interaction class publication and subscrip-
tion – i.e., “signing up” to produce or receive object attrib-
ute updates or interactions. 

The Ambassador coordinates all data exchanges and 
interaction exchanges between an Umbra simulation and 
its associated HLA federation.  At a user-adjustable fre-
quency no greater than Umbra’s main update frequency, 
the Ambassador walks its HLA proxy module list and 
sends each an Ambassador Update message.  Within the 
call, each of these modules can make calls to the RTI, e.g., 
to update HLA object attributes or request updated HLA 
object attributes. 

After the last proxy module has been updated, the 
Ambassador does an RTI tick.  The tick allows the RTI to 
make its callbacks to the Ambassador.  The most typical is 
a call to process an interaction or reflect attributes.  Within 
each RTI-invoked callback, the Ambassador maps the ob-
ject handle provided by the RTI to the appropriate proxy 
module, calls its standard callback method and passes ap-
propriate data.  Some modules cache the exchange request 
and finish processing it later.  For example, attribute data 
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Figure 5: Typical Class Hierarchy for Application-Specific 
HLA Objects 
 

to be reflected is simply processed, for presentation to 
other modules, during that proxy module’s subsequent 
Umbra update.  Other requests might result in a (C++) 
callback object being stored for invocation during the next 
Ambassador update cycle.  In other cases, the proxy mod-
ule forms a Tcl callback and posts it, possibly with some 
delay, in the Tcl event loop.  Later, the Tcl event loop 
processes the function (outside the RTI callback). 

HLA time-management services must be supported to 
control time disparity among federates.  The Umbra HLA 
Ambassador implements a scheme that allows the HLA 
federates to take large time steps (e.g., greater than 1 sec-
ond) while the Umbra environment uses small internal time 
steps (e.g., less than 100 milliseconds).  In the limiting 
case, the design allows Umbra to operate with arbitrarily 
large federation time steps.  Our solution implements a 
time base that interpolates federation time to derive a local 
(interpolated) time that can be used by timestep size sensi-
tive modules such as physics. Supported are: non-
regulating, unconstrained time management; regulating and 
constrained time management; and non-regulating, con-
strained time management.  The Ambassador serves as the 
Umbra simulator clock module for the Umbra models in its 
federation, providing a connector-based interface to its lo-
cal interpolated time and timestep size dt that simulation 
modules can use for computation. 

4 EXAMPLES IN JVB AND  
JVB DEVELOPMENT 

4.1 Umbra Robotic Vehicle Simulation for JVB 

Sandia’s involvement in JVB provides examples of how 
the above can be used in HLA federated simulation and to 
support federated simulation development. Within an Um-
bra federate, tasks and sensor-readings interactions are 
treated as communications and data received through Um-
bra communications and sensor modules.  Robotic ground 
truth state information (vehicle positions, velocity, etc.) is 
computed by Umbra Vehicle Physics modules and reported 
back to the HLA layer as Platform Services.  Communica-
tions, including status reports, are generated by Umbra and 
reported through the HLA layer to Behavior and Commu-
nications Services.  Robot models might also command 
and exchange data with other automated devices, such as 
sensors or other robots, during their normal operation. 
These interactions are coordinated as Behavior Services 
that are invoked by the control, command, and 
communications (C3) grid. Other functions and state 
changes, including damage states, are propagated to the 
sensor and physics modules as appropriate. 

Robotic platforms types include UGVs, UAVs, and ex-
otics.  Platforms transmit state data and changes according to 
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the JVB FOM. Position, speed, acceleration (both Cartesian 
and angular) are reported in JVB required formats at re-
quired frequencies. Umbra Platform Services support instan-
tiation and destruction operations. Instantiation calls include 
data that describe specific platform features. 

A number of specific Umbra models and libraries have 
been developed for the JVB project (Gottlieb et al. 2002b).  
A central task for Sandia has been notional UGV and 
UAVs models and their HLA interfaces.  In order for vehi-
cles published by other federates to be tracked and ren-
dered in Umbra, “stealth” models were developed.  An 
HLA proxy module class represents platform state of both 
UAVs and UGVs.  HLA interaction interface modules re-
ceive remote_create commands from the HLA control 
layer and various movement commands from the C2 Grid.   

Umbra models in JVB use Compact Terrain Database 
(CTDB) data via the Umbra CTDB Terrain (UCT) library 
interface to DMSO’s LIBCTDB library from MODSAF 
and ONESAF Testbed.  Umbra interface modules that util-
ize CTDB terrains form a key part of the UCT library.  
These modules include terrain lookup modules as well as 
physics, sensor and communications models.  The CTDB 
interface modules exploit Umbra’s Worlds technology. A 
Terrain world module is a factory module that also sup-
ports a variety of CTDB initialization and lookup func-
tions. The Terrain world module is also the factory for 
physics modules, including the Constrainer and RoadSen-
sor module mentioned below. 

4.2 Notional Robotic Vehicle Models 

The UGV meta-module in Figure 6 shows the module con-
figuration for the notional UGV developed for JVB’s No-
vember 2001 experiments. Each robot model includes 
WayQueue, CarWayPoint, SCMachine, CarPhysics, Con-
strainer, Model(-in-Scene), RoadSensor, and HlaRobot-
Model modules.  The Ambassador is shared. 

The WayQueue module generically feeds a list of po-
sitions and times to the WayPoint module. WayQueue 
takes its input from a Tcl command with a list of positions 
and outputs them in an ordered way on its wayPoint con-
nector. Typically, input comes from HlaOrder modules de-
scribed later, and an arrived connector is used to pulse the 
wayPoints generation.  WayQueue modules generate way-
points for one-way, bi-directional, and cyclic paths.  The 
CarWayPoint module outputs a vehicle steering and speed 
command that attempts to drive the vehicle toward the goal 
and arrive at the specified time.  It updates this command 
with respect to the time output by the Ambassador module 
and the position reported by the Constrainer module.  The 
RoadSensor module contains a list of configurable sensors 
that monitor the state of pre-determined ground conditions. 
For example, sensors can be programmed to sense whether 
the terrain at a given point is part of a road. 

The SCMachine module takes an input control vector  
(steering and speed) and overrides or offsets it on the basis 
of sensor input. The module is programmed via Tcl with a 
list of offset operators that correspond to each state gener-
ated by a sensor module. In the notional model, the 
SCMachine uses inputs from RoadSensor in overriding the 
input driving commands, up to a point, to try to keep the 
vehicle on the road; it drives more slowly off-road.  The 
CarPhysics and Constrainer modules together compute the 
motion of the vehicle. The CarPhysics module computes 
the vehicle’s instantaneous velocity (including rotational) 
based on either an Ackerman steering or a skid-steering 
model.  The Constrainer module corrects the velocity 
based on the terrain geometry and mobility values and in-
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Figure 6: Notional UGV Model.  Circled ‘F’ explicitly denotes feedback connector. 
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tegrates the adjusted velocity to compute the vehicle’s new 
position on the terrain.  The optional Model-in-Scene 
module (Model) is a generic module provided by the Um-
bra core library.  It is created by the 3D visualization mod-
ule (Scene, not shown), which renders the vehicle’s 
geometry in the 3D viewing window.   

The HlaRobotModel module is a generic HLA proxy 
module that represents the platform state to the JVB fed-
eration.  It is created by the Ambassador module as part of 
an HLA world.  In a JVB simulation, Umbra generates in-
dividual proxy modules for each Platform Object Class in-
stance in the simulation.  When Umbra creates a platform, 
it creates a proxy publisher module that publishes the Ob-
ject Class instance and updates its object attribute data.  
When Umbra discovers a platform (i.e., a platform pub-
lished by another federate), it creates a proxy subscriber 
module that reflects the externally updated attribute data.  
A single module can even play both roles, dynamically re-
linquish ownership of some individual object attributes, 
and request and gain ownership of others.   

For convenience, HlaRobotModel modules are used to 
proxy all Platform Object Class Instances.  HlaRobot-
Model performs dead reckoning using algorithms similar 
to those in Singal & Zyda (1990), both as subscriber and 
publisher (to estimate error).  Since module updates in 
Umbra federates are computed 10 to 1000 times more fre-
quently than time requests are made, Umbra can accurately 
integrate behaviors over the relatively large time steps used 
in the JVB federation.   A high-frequency filter is used to 
remove noise due to terrain-induced accelerations. 

The notional UAV model developed for JVB’s No-
vember 2001 experiments leverages the WayQueue, 
HlaRobotModel, and Model-in-Scene (configured appro-
priately) modules from the UGV model, and interacts with 
HLA via the same Ambassador.  A UavController module 
takes wayPoint output directly from the WayQueue mod-
ule and produces control outputs to fly to the current way-
point; if the WayQueue runs out of waypoints, UavControl 
flies a figure-eight about the last one.  Control outputs are 
fed directly to UavPhysics, a flight model.  

4.3 Stealth Models 

In a variety of situations it is important to track and render 
vehicles entirely published by other federates.  Stealth ve-
hicle meta-modules, typically consisting of an HlaRobot-
Model module connected to a Model-in-Scene module, 
were developed to serve this purpose.  Stealth models are 
subscriber models. Unlike the UAVs and UGVs described 
earlier, Stealth models are created upon object discovery.  
The Tcl command used to request that Umbra’s Ambassa-
dor module subscribe to an object contains the script name 
for creating the stealth vehicle in its arguments.  When the 
Ambassador discovers (via an RTI callback) that an object 
of the given class has been created, it calls this function 
with the name of the new object in its parameters. The 
callback script then calls the necessary functions for creat-
ing the stealth vehicle.  Because object attribute data asso-
ciated with platform instances is provided in separate call-
backs from the discovery callback, the stealth model 
creation script is broken into two Tcl procedures.  The first 
instantiates the HlaRobotModel and scene model modules 
and schedules a call to the second procedure with the Tcl 
after function.  Instantiating the HlaRobotModel module 
provides a mechanism to parse and store attribute data re-
ceived by the Ambassador.  The second procedure (incre-
mentally) fleshes out the HlaRobotModel module if data is 
available; if it is not, the procedure schedules itself to be 
called again later or requests new attribute data if there has 
been too much delay. 

4.4 HLA Interaction Interface Modules 

Two modules were developed to handle JVB-related inter-
actions that Umbra responds to. The first, the HlaOrder 
module, handles command and control-related interactions. 
These interactions typically originate in C3 federates and 
contain commands for robots. The second, the HlaRe-
moteCreate module, supports JVB’s remote_create simula-
tion control function. These interactions typically originate 
in federation control tools (like HLA Control) and com-
mand simulation federates to dynamically create robot in-
stances. While designed to receive interactions, these mod-
ules can also be used to send interactions, for example, to 
support Umbra and small federation testing. 

Only one HlaOrder and one HlaRemoteCreate object 
are created in a typical Umbra application.  During initializa-
tion, the Ambassador subscribes to the interactions of inter-
est through the RTI. This ensures that the RTI listens for and 
passes on interactions to the Ambassador. (At this time, the 
Ambassador may also be commanded to request permission 
to publish the interactions.)  Next, the modules are com-
manded to subscribe to the particular interactions through 
the Ambassador.  This ensures that the Ambassador passes 
interactions to the individual modules. 

Callback script names are provided to the interaction 
modules in their interaction subscription.  Later, when an 
appropriate interaction is received, the modules call the 
named Tcl functions while also providing interaction data 
in a parsed form to the script. These scripts then typically 
execute the requisite function.  The callback script pro-
vided to the HlaRemoteCreate module uses the data from 
the remote_create interaction to construct an entire robot 
meta-module.  This includes creating, naming and initializ-
ing each module and connecting the modules into a net-
work. Callback scripts provided to the HlaOrder module 
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typically use the data from the interaction to program the 
control modules of the indicated robot to execute particular 
commands. For example, Move orders include the name of 
the entity being commanded and route information. The 
callback script for Move orders uses the Tcl interface on 
the WayQueue module to load and execute the desired 
path. In addition, the script performs various error check-
ing, error recovery, reporting, and bookkeeping functions.  

5 CONCLUSION 

Umbra is a highly modular framework for interactive simu-
lation.  It enables execution in C++ and scripting, simula-
tion configuration, and interaction in Tcl/Tk with OpenGL-
based visualization.  Umbra naturally supports models that 
follow system structure through their organization into 
module networks known as meta-modules.  Umbra’s Mul-
tiple Worlds abstraction conceptually cuts across meta-
module boundaries to enable modeling multiple interaction 
phenomena.   

The Umbra framework and associated technologies 
are convenient for building HLA support.  We developed 
the Umbra HLA interface library to integrate HLA federa-
tion capability into Umbra simulations supporting the US 
Army JPSD’s JVB simulation framework for Objective 
Force concept analysis. 

Future work should increase scale and broaden do-
mains.  Specifically, we would like to explore multiproces-
sing, cluster-based Umbra simulations, and apply Umbra to 
more complex systems, such as ones including embodied 
agents having human cognitive and perceptual models. 
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