
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

THE UMBRA SIMULATION FRAMEWORK AS APPLIED TO BUILDING HLA FEDERATES

Eric J. Gottlieb

Orion International Technologies, Inc.
2201 Buena Vista Drive, SE, Suite 211

 Michael J. McDonald
Fred J. Oppel

J. Brian Rigdon
Patrick G. Xavier

Albuquerque, NM 87106, U.S.A.
Sandia National Laboratories

P.O. Box 5800, M/S 1004
Albuquerque, NM 87185-1004, U.S.A.

ABSTRACT

Sandia’s Umbra modular simulation framework was de-
signed to enable the modeling of robots for manufacturing,
military, and security system concept evaluation. Umbra
generalizes data-flow-based simulation to enable modeling
of heterogeneous interaction phenomena via a multiple
worlds abstraction. This and other features make Umbra
particularly suitable for developing simulation federates.
Umbra’s HLA interface library utilizes DMSO’s HLA Run
Time Infrastructure 1.3-Next Generation (RTI 1.3-NG)
software library to federate Umbra-based models into HLA
environments. Examples draw on a first application that
provides component technologies for the US Army JPSD’s
Joint Virtual Battlespace (JVB) simulation environment for
Objective Force concept analysis.

1 INTRODUCTION

The Umbra simulation framework was designed to enable
the modeling of robots for manufacturing, military, and se-
curity system concept evaluation. Many robots in these
applications are embodied agents, which are entities having
behavior, control, geometry, sensing, physics, communica-
tions, etc., and that are affected by and interact with their
environment and its inhabitant entities.

Umbra generalizes certain aspects of modular data-
flow-based simulation in a way that also enables linking
together heterogeneous modeling tools. Users can quickly
build models and 3D interactive simulations for system de-
velopment, analysis, experimentation, and control. Model
components can be built with varying levels of fidelity and
readily switched; models built for conceptual analysis can
be gradually converted to high fidelity models for detailed
analysis. Umbra has been used in modeling robots ranging
from manipulators to swarms of autonomous mobile robots
with sensors and radio communications.

Several of the features and software abstractions—

particularly, multiple worlds for heterogeneous interac-
tions—that enable the Umbra framework to flexibly sup-
port embodied agent simulation also make it ideal for de-
veloping simulation federates for High-Level Architecture
(HLA) federation. The Defense Modeling and Simulation
Office (DMSO) has developed and supports a software li-
brary called the Run Time Infrastructure, or RTI, which
implements the HLA interface specification and facilitates
building HLA-compliant codes. The RTI manages all in-
ter-process communications, such as data exchanges be-
tween federates, in an HLA federation. We have devel-
oped Umbra’s HLA interface library to interact with
DMSO’s RTI 1.3-NG library (DMSO 2001) to enable
Umbra models to be federated into HLA environments.

The US Army JPSD tasked Sandia with developing
robot models that operate within its Joint Virtual Battle-
space (JVB) simulation framework for Objective Force
concept analysis. Unmanned Air Vehicle (UAV) and Un-
manned Ground Vehicle (UGV) models and others we de-
veloped in the first year of effort provide examples of Um-
bra simulation and our HLA interface implementation.

2 UMBRA

2.1 Background

Umbra’s development was driven by a need to analyze a
wide range of robot systems in stages of development from
conceptual design to hardware-in-the-loop experimenta-
tion. There are extensive modeling and simulation tech-
nologies for many domains. For example, LabView (Na-
tional Instruments 2002), Simulink (Mathworks 2002),
SMART (Anderson 1997), and Chimera (Stewart et al.
1997) enable modular control system simulation and/or
development via various port-based composition abstrac-
tions. Commercial software such as ADAMS (Mechanical

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

Dynamics 2002) can be applied to certain mechatronic and
physical systems, while modular, composable architectures
such as that of Diaz-Calderon et al. (1998) and modeling
languages such as ModelicaTM (Otter et al. 1999) attempt
to cover them more generally. AVS (AVS 2002) offers a
modular framework for combining simulations, and many
other specialized simulators exist. None of these technolo-
gies met our needs, although some of them proved the util-
ity of certain abstractions and features. Furthermore, spe-
cific simulation needs for future robot system exploration
and development are unpredictable.

2.2 Basic Umbra Overview

Instead of attempting to be an all-encompassing architec-
ture for simulation, Umbra is a simple modular, compos-
able simulation framework that is conducive to both writ-
ing simulation components from scratch and to leveraging
existing external simulation capabilities.

Umbra builds on continuous-time (timestepped) data-
flow-based simulation. The basic component unit of Um-
bra simulation is a module, which encapsulates a state and
a computational model. A module also may have input
ports from which it can read data and output ports at which
it can present data. An output port can be connected to in-
put ports, making the output port data readable there. A
dynamic module has a virtual update (work) function that
is automatically called once each time through the simula-
tion loop, which is known as the Umbra update cycle.
Ports and connections are typed and can present interfaces.
Specific model classes are derived from the base module
classes. Non-native model libraries and legacy codes are
integrated by writing encapsulating module libraries.

The Umbra framework is implemented in C++, and
Umbra module libraries are usually written in C++. Um-
bra integrates Tcl for an interactive shell and scripting lan-
guage. Modules are typically named upon creation and are
addressable via these names in Tcl. Furthermore, data
ports on named modules are automatically accessible in
Tcl via their labels, as are designated member functions.
Tk is optionally used for constructing GUIs. Umbra also
includes mechanisms that support event-driven simulation,
such as C++ and Tcl callback objects. A scene graph and
an interactive, OpenGL-based viewer are integrated op-
tionally into Umbra and are used by configuring kinemat-
ics and geometry modules appropriately.

A start-up Tcl script is typically used to first load the
Umbra libraries containing the desired module classes and
then to call C++ code to create the desired modules and
connect their ports as required. Umbra enables extensive
computational steering, allowing users, for example, to add
obstacles to terrain models to examine dynamic control re-
sponse, to add/delete modeled entities, and to interrupt
simulations and swap in different component models. A
significant departure from the usual data-flow paradigm is
discussed in Section 2.4.

2.3 General Robot Modeling Issues

The Umbra framework naturally supports modular system-
level models that mimic system structures. Figure 1 shows
(simplified) the typical modular organization of a model of
a robot with a classical control system. The individual
modules are connected into a meta-module – a module
network connected in the same way as the real robot com-
ponents. The model includes a collection of sensor mod-
ules (shown as a shadowed box), a behavior/controls algo-
rithm module, and a physical plant or physics module. The
update function of a continuous-process module computes
its transfer function. For example, an aircraft physics
module might take, as input, a set of control surface angles
and engine thrust and output position (and orientation).
The sensor module might use the aircraft’s state values to
compute a set of sensed values, which the control module
would use to compute the new flight control values.
Command input, not shown, is typically introduced to the
behavior and control modules as an asynchronous event.

Non-linear components of robots are readily modeled in
Umbra. For example, vehicle physics models can be made
responsive to the geometry of the environment. Sophisti-
cated behavior, planning, etc., components can be modeled
by Umbra modules as long as there are incremental models
of their computations and adequate resources. A simulator
clock module (not shown) provides the current time and step
size to other modules via its output ports.

To prevent causality violations due to fortuitous up-
date order, the update functions of modules must be com-
puted in a constrained order. In the simple application of
the Umbra framework, each component model is a dy-
namic module. Their update order is computed from the
directed graph whose nodes are modules and whose edges
are connections. This graph is made acyclic (enforced as
connectors are added) by specifying feedback connections
and therefore determines a partial order. Other constraint
mechanisms, including dummy connectors, exist.

2.4 A Worlds Abstraction for
Simulating Interactions

It is necessary to model robots whose state evolutions are
dependent on their environments and the other entities in
them. For example, concurrent incoming RF communica-
tions signals may interfere with each other, resulting in
message loss or corruption. A meta-module as shown in
Figure 1 might be used to model a single robot in a static
environment; however, without a mechanism for sharing

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

data across meta-module boundaries, a set of such meta-
modules would be limited to modeling multiple robots that
never interact and that cannot sense each other.

While enabling the modeling of interactions, Umbra’s
Worlds abstraction preserves the ability of meta-modules
to follow the system structure of the entities they model.
We model each interaction phenomenon with a specific
world module that computes the coupled part of the update
of the modules participating in the interaction. The world
module governs the world of interactions that are its do-
main. We have found it convenient for the world module
for a phenomenon to also serve as the factory (Gamma
1994) for the participant modules and sometimes to man-
age their updating.

Behavior & Contro ls

Inputs Outputs

P lant or Physics Model

Inputs Outputs

Geom etry

Inputs Outputs

Robotic Sensors

Inputs Outputs

U m bra M eta-M odu le

Figure 1: Conceptual Umbra Robotic Meta-Module. Geometry model module is used in visualization.
Figure 2 illustrates the relationship between meta-
modules and worlds. The world module that governs the
Communications World is responsible for computing the
“signal” at each of the Communications In modules due to
the transmissions of the Communications Out modules.
Since this computation is done by that world module’s up-
date function, it is atomic with respect to other modules’
updates and prevents violations of causality. Except for
connections to the simulation clock (not shown), the
Communications World module and each of the vehicle
meta-modules are separate components of the data-flow
graph. The modules outside the Communications World
do not even know it exists.

C om m unications
W orld

Sensors W orld

Sensors S ignature Proxy

Inputs

pos ition

O utputs

 A R obotic V eh ic le M eta-M odule

Another R obotic Veh ic le M eta-M odule

Robotic Sensors

Inputs

pos ition

O utputs

Com m unications O ut

Inputs

pos ition

O utputs

Com m unications In

Inputs

pos ition

O utputs

Behaviors & Contro ls

Inputs O utputs

Vehicle Physics

Inputs O utputs

pos ition

Sensors World Module

Inputs O utputs

Com munications W orld
Module

Inputs O utputs

Figure 2: Umbra Robotic Vehicle Example Showing Relationship between Meta-Modules and Multiple Worlds.
Simulation clock module and related ports and connectors are omitted.

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

Because signal reception is dependent on the positions
of the senders and receivers within the environment, the
position of each Communications Out and Communica-
tions In module is determined from the position output of
the VehiclePhysics module of the meta-module to which it
belongs. It is the world module’s responsibility to model
the effects of position and environment, which it may do
using its own geometric model or using a shared one, for
example, provided by a Geometry World (not shown).

While robots often carry only one communications
device, they typically use several sensors (for example,
Figure 3). The shadowed Sensors World box and shad-
owed boxes for associated modules represent this plurality.
In practice, there are usually multiple Sensor Worlds. For
each sensor type, the sensor world needs adequate informa-
tion to simulate each sensor’s response to its environment,
including dynamic inhabitant entities such as robots. In
each sensor world, for every dynamic entity that can be
sensed, this data is provided by a sensor signature proxy
module that is a part of the meta-module for that entity.

3 UMBRA AND HLA

3.1 Overview

The natural level of modularity in Umbra models makes it
well suited for both the entity-level and component-level
composable integration found in federated simulations.
The HLA paradigm allows various aspects of the models to

Figure 3: Umbra Simulation of Robots Collaboratively
Exploring, with Sensor Response Regions Shown
be distributed among separate federates at a component
level. For example, Behavior Services might generate
commands, status and high-level reports. Other elements
of the HLA simulation environment might transfer task and
report data to and from the Behavior Services while propa-
gating this C4ISR data through the environment. Plat-
forms, sensors, and other objects might be attached, either
temporarily or permanently, to one another to represent
systems with combined functionality.

The Umbra HLA Interface Library (Gottlieb et al.
2002a) enables models to be composed conforming to an
HLA federation’s interface as defined through its Federa-
tion Object Model (FOM). For example, robotic system
models for the JVB are implemented in accordance with
the JVB-FOM with separate Behavior and Platform Ser-
vices. Where important (e.g., for efficiency), behavior
may be tightly coupled to sensor input or platform motions
within Umbra. At the same time, HLA Objects separately
representing Platform and Behavior Services are presented
to the HLA as separate services. This internal coupling is
transparent to the FOM to allow maximum flexibility.

Figure 4 shows a conceptual diagram of how Umbra
robot vehicle meta-modules may be integrated via HLA for
federation. Here, Umbra publishes behavior and platform
data through separate HLA objects, while Umbra sensors
and physics models subscribe to HLA sensor, environment,
and Mobility Services. Published services thus may de-
pend both on internal (Umbra) models and, for loosely
coupled systems, on external ones through subscribed ser-
vices. For example, robotic tanks might model mobility
and battle damage within Umbra or externally by having
Umbra subscribe to services.

Through the HLA interface, other systems instantiate,
command, and monitor individual as well as integrated col-
lections of platforms. In addition, Umbra can monitor HLA
objects that it does not control. This monitoring is impor-
tant for allowing Umbra to interact with the entire HLA
simulation environment.

3.2 Umbra HLA Ambassador and Proxy Modules

The Umbra HLA library is built on DMSO’s HLA Run
Time Infrastructure 1.3-Next Generation (RTI 1.3-NG) li-
brary. DMSO’s RTI provides an abstract class, called
FederateAmbassador, that identifies the callback functions
that each federate is obliged to provide. The Umbra HLA
library provides an Ambassador class that implements
these functions and that is also a subclass of UmbDynamic
(dynamic module). For example, Ambassador implements
create/destroy, join/leave, and object and interaction sub-
scription and publication.

The Umbra HLA implementation builds on the Worlds
abstraction to achieve a close matching of Umbra modules

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

Behavior Services

Vehicle Phys ics

Inputs O utputs

position

Behavior & Controls

inputs O utputs

Robotic Sensors

Inputs O utputs

U m bra R obotic Vehic le M eta-M odule

Platform Services

Inputs
Platform state inputs
(e.g., m otion, dam age)

O utputs
G round truth s tate
(e.g., Position, Velocity, etc .)

Inputs
Tasks (h igh or low level)

O utputs
Com m unications out
(e.g., com m ands &
reports)

Sensor Services

Services w ith D a ta
Published by U m bra

Services U m bra
Subscribes to

M obility-related
Services

Environm ent
Services

(Possible)

Figure 4: Conceptual Diagram Showing Umbra-to-HLA Integration for a Robot Vehicle
to HLA components. An Ambassador module establishes
conceptually and governs an HLA World. Umbra simula-
tions publish and subscribe to RTI interaction parameter
and object attribute data, and subsequent updating and re-
flecting is done through proxy modules. For each federa-
tion an Umbra simulation joins, a separate Ambassador
module manages communications between the RTI and the
associated proxy modules. Each HLA Interaction Class or
Object Class that an Umbra simulation publishes or sub-
scribes to is represented within Umbra with an application-
specific interface proxy module class. These modules
proxy the HLA by maintaining local state data concerning
the attributes and parameters and by providing mechanisms
for moving HLA state and interaction data between other
Umbra modules and the HLA environment. Interface
proxy modules do not typically provide modeling services
computationally, except for dead-reckoning. Rather, they
communicate with other modules within the Umbra envi-
ronment that in turn provide modeling services.

For example, recall that a robot is typically modeled
within Umbra by various connected modules. Elements of
this model may have counterpart HLA objects. Umbra
HLA proxy modules, such as the HlaRobotModel module
described later, are connected to these elements to transfer

state (attribute) data between the corresponding Umbra
modules and the HLA world.

The HlaModule class, derived from UmbDynamic, is
the base or virtual proxy class for handling interactions.
HlaClassModule, derived from HlaModule, adds the ability
to proxy instances of HLA Object Classes. Application-
specific classes are derived from these module classes; in
particular, instances of HlaClassModule subclasses are in-
corporated into meta-modules to implement reflection and
updating of HLA object attributes. Figure 5 shows the
class hierarchy of these modules in relation to module
classes developed for particular applications. HlaModule
modules can be programmed to send or receive any inter-
action allowed by federation management. More than one
module can be programmed to receive the same interac-
tion. Here, the Ambassador module provides a copy of the
interaction data to each module so that it can perform its
separate processing function.

In addition to its other roles Ambassador also provides
HLA module factory and scheduling services, as well as
time-management services. The Ambassador module is a
factory for all HLA object and interaction proxy modules,
while a specific interaction proxy module serves as the fac-
tory that constructs meta-modules as needed to support re-

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

mote creation of HLA object instances. Use of callbacks
to Tcl-procedures that construct these modules and meta-
modules enables these factories to be application inde-
pendent. The Worlds abstraction is used to provide an
added level of control between the Ambassador and the in-
teraction and object proxy modules.

3.3 Data and Interaction Exchanges
and Time Management

We now describe the Umbra HLA library’s mechanisms
for data exchange, interaction processing, and time man-
agement, which exploit the Umbra framework. See
Gottlieb et al. (2002a) for descriptions of mechanisms for
object class and interaction class publication and subscrip-
tion – i.e., “signing up” to produce or receive object attrib-
ute updates or interactions.

The Ambassador coordinates all data exchanges and
interaction exchanges between an Umbra simulation and
its associated HLA federation. At a user-adjustable fre-
quency no greater than Umbra’s main update frequency,
the Ambassador walks its HLA proxy module list and
sends each an Ambassador Update message. Within the
call, each of these modules can make calls to the RTI, e.g.,
to update HLA object attributes or request updated HLA
object attributes.

After the last proxy module has been updated, the
Ambassador does an RTI tick. The tick allows the RTI to
make its callbacks to the Ambassador. The most typical is
a call to process an interaction or reflect attributes. Within
each RTI-invoked callback, the Ambassador maps the ob-
ject handle provided by the RTI to the appropriate proxy
module, calls its standard callback method and passes ap-
propriate data. Some modules cache the exchange request
and finish processing it later. For example, attribute data

User HLA modules
that publish and/or

subscribe to
interactions

Um bDynam ic

HlaModule (virtual)

User HLA modules
that ghost instances

of HLA classes
(publish or
subscribe

Every subscribed and
published object in the
HLA world will have a
corresponding object
in the Um bra world.

Has all the methods to
handle HLA interactions

from the Um bra
Am bassador

HlaClassModule
(virtual)

Has all the methods to
handle HLA class

attribute updates sent
through the Um bra

Am bassador

Useful for building Um bra
m odules that send

interactions but don't have
corresponding class

instances. For exam ple, c2
or behavior modules.

Figure 5: Typical Class Hierarchy for Application-Specific
HLA Objects

to be reflected is simply processed, for presentation to
other modules, during that proxy module’s subsequent
Umbra update. Other requests might result in a (C++)
callback object being stored for invocation during the next
Ambassador update cycle. In other cases, the proxy mod-
ule forms a Tcl callback and posts it, possibly with some
delay, in the Tcl event loop. Later, the Tcl event loop
processes the function (outside the RTI callback).

HLA time-management services must be supported to
control time disparity among federates. The Umbra HLA
Ambassador implements a scheme that allows the HLA
federates to take large time steps (e.g., greater than 1 sec-
ond) while the Umbra environment uses small internal time
steps (e.g., less than 100 milliseconds). In the limiting
case, the design allows Umbra to operate with arbitrarily
large federation time steps. Our solution implements a
time base that interpolates federation time to derive a local
(interpolated) time that can be used by timestep size sensi-
tive modules such as physics. Supported are: non-
regulating, unconstrained time management; regulating and
constrained time management; and non-regulating, con-
strained time management. The Ambassador serves as the
Umbra simulator clock module for the Umbra models in its
federation, providing a connector-based interface to its lo-
cal interpolated time and timestep size dt that simulation
modules can use for computation.

4 EXAMPLES IN JVB AND
JVB DEVELOPMENT

4.1 Umbra Robotic Vehicle Simulation for JVB

Sandia’s involvement in JVB provides examples of how
the above can be used in HLA federated simulation and to
support federated simulation development. Within an Um-
bra federate, tasks and sensor-readings interactions are
treated as communications and data received through Um-
bra communications and sensor modules. Robotic ground
truth state information (vehicle positions, velocity, etc.) is
computed by Umbra Vehicle Physics modules and reported
back to the HLA layer as Platform Services. Communica-
tions, including status reports, are generated by Umbra and
reported through the HLA layer to Behavior and Commu-
nications Services. Robot models might also command
and exchange data with other automated devices, such as
sensors or other robots, during their normal operation.
These interactions are coordinated as Behavior Services
that are invoked by the control, command, and
communications (C3) grid. Other functions and state
changes, including damage states, are propagated to the
sensor and physics modules as appropriate.

Robotic platforms types include UGVs, UAVs, and ex-
otics. Platforms transmit state data and changes according to

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

the JVB FOM. Position, speed, acceleration (both Cartesian
and angular) are reported in JVB required formats at re-
quired frequencies. Umbra Platform Services support instan-
tiation and destruction operations. Instantiation calls include
data that describe specific platform features.

A number of specific Umbra models and libraries have
been developed for the JVB project (Gottlieb et al. 2002b).
A central task for Sandia has been notional UGV and
UAVs models and their HLA interfaces. In order for vehi-
cles published by other federates to be tracked and ren-
dered in Umbra, “stealth” models were developed. An
HLA proxy module class represents platform state of both
UAVs and UGVs. HLA interaction interface modules re-
ceive remote_create commands from the HLA control
layer and various movement commands from the C2 Grid.

Umbra models in JVB use Compact Terrain Database
(CTDB) data via the Umbra CTDB Terrain (UCT) library
interface to DMSO’s LIBCTDB library from MODSAF
and ONESAF Testbed. Umbra interface modules that util-
ize CTDB terrains form a key part of the UCT library.
These modules include terrain lookup modules as well as
physics, sensor and communications models. The CTDB
interface modules exploit Umbra’s Worlds technology. A
Terrain world module is a factory module that also sup-
ports a variety of CTDB initialization and lookup func-
tions. The Terrain world module is also the factory for
physics modules, including the Constrainer and RoadSen-
sor module mentioned below.

4.2 Notional Robotic Vehicle Models

The UGV meta-module in Figure 6 shows the module con-
figuration for the notional UGV developed for JVB’s No-
vember 2001 experiments. Each robot model includes
WayQueue, CarWayPoint, SCMachine, CarPhysics, Con-
strainer, Model(-in-Scene), RoadSensor, and HlaRobot-
Model modules. The Ambassador is shared.

The WayQueue module generically feeds a list of po-
sitions and times to the WayPoint module. WayQueue
takes its input from a Tcl command with a list of positions
and outputs them in an ordered way on its wayPoint con-
nector. Typically, input comes from HlaOrder modules de-
scribed later, and an arrived connector is used to pulse the
wayPoints generation. WayQueue modules generate way-
points for one-way, bi-directional, and cyclic paths. The
CarWayPoint module outputs a vehicle steering and speed
command that attempts to drive the vehicle toward the goal
and arrive at the specified time. It updates this command
with respect to the time output by the Ambassador module
and the position reported by the Constrainer module. The
RoadSensor module contains a list of configurable sensors
that monitor the state of pre-determined ground conditions.
For example, sensors can be programmed to sense whether
the terrain at a given point is part of a road.

The SCMachine module takes an input control vector
(steering and speed) and overrides or offsets it on the basis
of sensor input. The module is programmed via Tcl with a
list of offset operators that correspond to each state gener-
ated by a sensor module. In the notional model, the
SCMachine uses inputs from RoadSensor in overriding the
input driving commands, up to a point, to try to keep the
vehicle on the road; it drives more slowly off-road. The
CarPhysics and Constrainer modules together compute the
motion of the vehicle. The CarPhysics module computes
the vehicle’s instantaneous velocity (including rotational)
based on either an Ackerman steering or a skid-steering
model. The Constrainer module corrects the velocity
based on the terrain geometry and mobility values and in-

$m .wheels (constrainer)

dt
velocity

position

$m .geom (m odel)

joints (xyzq) Outputs

am b (Am bassador)

dt
tim e

$m .car (CarPhysics)

s tate

m axSpeed

position

velocity

F

$m .wp (CarW ayPoint)

tim e
wayPoin t

position

s tate

arrived

$m .h la (H laR obotMode l)

posIn posO ut

uoc_m axSpeed

$m .wq (W ayQ ueue)

arrived

wayPoin t

F

$m .brain (SCMach ine)

ControlIn

sensorIn

contro lOut

$m .sense (RoadSensor)

position s tate

Figure 6: Notional UGV Model. Circled ‘F’ explicitly denotes feedback connector.

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

tegrates the adjusted velocity to compute the vehicle’s new
position on the terrain. The optional Model-in-Scene
module (Model) is a generic module provided by the Um-
bra core library. It is created by the 3D visualization mod-
ule (Scene, not shown), which renders the vehicle’s
geometry in the 3D viewing window.

The HlaRobotModel module is a generic HLA proxy
module that represents the platform state to the JVB fed-
eration. It is created by the Ambassador module as part of
an HLA world. In a JVB simulation, Umbra generates in-
dividual proxy modules for each Platform Object Class in-
stance in the simulation. When Umbra creates a platform,
it creates a proxy publisher module that publishes the Ob-
ject Class instance and updates its object attribute data.
When Umbra discovers a platform (i.e., a platform pub-
lished by another federate), it creates a proxy subscriber
module that reflects the externally updated attribute data.
A single module can even play both roles, dynamically re-
linquish ownership of some individual object attributes,
and request and gain ownership of others.

For convenience, HlaRobotModel modules are used to
proxy all Platform Object Class Instances. HlaRobot-
Model performs dead reckoning using algorithms similar
to those in Singal & Zyda (1990), both as subscriber and
publisher (to estimate error). Since module updates in
Umbra federates are computed 10 to 1000 times more fre-
quently than time requests are made, Umbra can accurately
integrate behaviors over the relatively large time steps used
in the JVB federation. A high-frequency filter is used to
remove noise due to terrain-induced accelerations.

The notional UAV model developed for JVB’s No-
vember 2001 experiments leverages the WayQueue,
HlaRobotModel, and Model-in-Scene (configured appro-
priately) modules from the UGV model, and interacts with
HLA via the same Ambassador. A UavController module
takes wayPoint output directly from the WayQueue mod-
ule and produces control outputs to fly to the current way-
point; if the WayQueue runs out of waypoints, UavControl
flies a figure-eight about the last one. Control outputs are
fed directly to UavPhysics, a flight model.

4.3 Stealth Models

In a variety of situations it is important to track and render
vehicles entirely published by other federates. Stealth ve-
hicle meta-modules, typically consisting of an HlaRobot-
Model module connected to a Model-in-Scene module,
were developed to serve this purpose. Stealth models are
subscriber models. Unlike the UAVs and UGVs described
earlier, Stealth models are created upon object discovery.
The Tcl command used to request that Umbra’s Ambassa-
dor module subscribe to an object contains the script name
for creating the stealth vehicle in its arguments. When the
Ambassador discovers (via an RTI callback) that an object
of the given class has been created, it calls this function
with the name of the new object in its parameters. The
callback script then calls the necessary functions for creat-
ing the stealth vehicle. Because object attribute data asso-
ciated with platform instances is provided in separate call-
backs from the discovery callback, the stealth model
creation script is broken into two Tcl procedures. The first
instantiates the HlaRobotModel and scene model modules
and schedules a call to the second procedure with the Tcl
after function. Instantiating the HlaRobotModel module
provides a mechanism to parse and store attribute data re-
ceived by the Ambassador. The second procedure (incre-
mentally) fleshes out the HlaRobotModel module if data is
available; if it is not, the procedure schedules itself to be
called again later or requests new attribute data if there has
been too much delay.

4.4 HLA Interaction Interface Modules

Two modules were developed to handle JVB-related inter-
actions that Umbra responds to. The first, the HlaOrder
module, handles command and control-related interactions.
These interactions typically originate in C3 federates and
contain commands for robots. The second, the HlaRe-
moteCreate module, supports JVB’s remote_create simula-
tion control function. These interactions typically originate
in federation control tools (like HLA Control) and com-
mand simulation federates to dynamically create robot in-
stances. While designed to receive interactions, these mod-
ules can also be used to send interactions, for example, to
support Umbra and small federation testing.

Only one HlaOrder and one HlaRemoteCreate object
are created in a typical Umbra application. During initializa-
tion, the Ambassador subscribes to the interactions of inter-
est through the RTI. This ensures that the RTI listens for and
passes on interactions to the Ambassador. (At this time, the
Ambassador may also be commanded to request permission
to publish the interactions.) Next, the modules are com-
manded to subscribe to the particular interactions through
the Ambassador. This ensures that the Ambassador passes
interactions to the individual modules.

Callback script names are provided to the interaction
modules in their interaction subscription. Later, when an
appropriate interaction is received, the modules call the
named Tcl functions while also providing interaction data
in a parsed form to the script. These scripts then typically
execute the requisite function. The callback script pro-
vided to the HlaRemoteCreate module uses the data from
the remote_create interaction to construct an entire robot
meta-module. This includes creating, naming and initializ-
ing each module and connecting the modules into a net-
work. Callback scripts provided to the HlaOrder module

Gottlieb, McDonald, Oppel, Rigdon, and Xavier

typically use the data from the interaction to program the
control modules of the indicated robot to execute particular
commands. For example, Move orders include the name of
the entity being commanded and route information. The
callback script for Move orders uses the Tcl interface on
the WayQueue module to load and execute the desired
path. In addition, the script performs various error check-
ing, error recovery, reporting, and bookkeeping functions.

5 CONCLUSION

Umbra is a highly modular framework for interactive simu-
lation. It enables execution in C++ and scripting, simula-
tion configuration, and interaction in Tcl/Tk with OpenGL-
based visualization. Umbra naturally supports models that
follow system structure through their organization into
module networks known as meta-modules. Umbra’s Mul-
tiple Worlds abstraction conceptually cuts across meta-
module boundaries to enable modeling multiple interaction
phenomena.

The Umbra framework and associated technologies
are convenient for building HLA support. We developed
the Umbra HLA interface library to integrate HLA federa-
tion capability into Umbra simulations supporting the US
Army JPSD’s JVB simulation framework for Objective
Force concept analysis.

Future work should increase scale and broaden do-
mains. Specifically, we would like to explore multiproces-
sing, cluster-based Umbra simulations, and apply Umbra to
more complex systems, such as ones including embodied
agents having human cognitive and perceptual models.

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL8500. Portions of this work were sponsored by the
U.S. Army Joint Precision Strike Demonstration (JPSD)
Project Office.

The authors thank Maj. Rick Schwarz of US Army
JPSD, Russell Richardson of SAIC, Rich Briggs of Virtual
Technology Corporation, Ray Harrigan, and Terri Calton
for their programmatic support and technical advice.
Thanks also to David Hensinger and David Schoenwald for
their comments.

REFERENCES

Anderson, R. A. 1997. Building a modular robot control
system using passivity and scattering theory. Proc.
1997 IEEE Int’l Conf. On Robotics and Automation,
Minneapolis, MN.
AVS Advanced Visual Systems. 2002. AVS.
Defense Modeling and Simulation Office (DMSO). 2001.

High Level Architecture Run Time Infrastructure RTI
1.3-Next Generation Programmers Guide, Version 4.
U. S. Department of Defense DMSO.

Diaz-Calderon, A., C. J. J. Paredis, and P. K. Khosla.
1998. A modular composable software architecture
for the simulation of mechatronic systems. Proceed-
ings of DETC’98, ASME 18th Computers in Engineer-
ing Conference, Atlanta, GA.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994.
Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley.

Gottlieb, E. J., M. J. McDonald, and F. J. Oppel. 2002a.
The Umbra High Level Architecture Interface, Sandia
Technical Report SAND2002-0675.

Gottlieb, E. J., M. J. McDonald, F. J. Oppel, J. B. Rigdon,
and P. G. Xavier. 2002b. Umbra’s Joint Virtual Bat-
tlespace (JVB) Models, Sandia Technical Report
SAND2002-xxxx. [Publication Pending].

Mathworks, The. 2002. Simulink.
Mechanical Dynamics. 2002. ADAMS.
National Instruments. 2002. LabVIEW.
Otter, M., H. Elmqvist, and S. E. Mattsson. 1999. Hybrid

modeling in Modelica based on the synchronous data
flow principle. Proceedings CACSD’99, Hawaii.

Singhal, S. and M. Zyda. 1999. Networked Virtual Envi-
ronments: Design and Implementation, Reading, MA:
Addison-Wesley.

Stewart, D. B., R. A. Volpe, and P. K. Khosla. 1997. De-
sign of dynamically reconfigurable real-time software
using port-based objects. IEEE Transactions on Soft-
ware Engineering, 23(12):759-776.

AUTHOR BIOGRAPHIES

ERIC J. GOTTLIEB is a consultant for the Intelligent
Systems and Robotics Center at Sandia National Laborato-
ries. He recently joined Orion International Technologies.

MICHAEL J. McDONALD, FRED J. OPPEL, J.
BRIAN RIGDON, and PATRICK G. XAVIER are re-
spectively Principal, Principal, Senior, and Principal Mem-
bers of the Technical Staff in the Intelligent Systems and
Robotics Center at Sandia National Laboratories. They
collectively have over five decades of experience in robot-
ics and simulation.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 981
	02: 982
	03: 983
	04: 984
	05: 985
	06: 986
	07: 987
	08: 988
	09: 989

