
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

THE ABELS SYSTEM: DESIGNING AN ADAPTABLE INTERFACE FOR LINKING SIMULATIONS

G. Ayorkor Mills-Tettey
Greg Johnston

Linda F. Wilson
Joseph M. Kimpel

Bin Xie

Thayer School of Engineering
Dartmouth College

Hanover, NH 03755-8000, U.S.A.

ABSTRACT

The Agent-Based Environment for Linking Simulations
(ABELS) provides a framework to facilitate the dynamic
exchange of data between distributed simulations and other
remote data resources. Specifically, the framework allows
the formation of a dynamic “data and simulation cloud”
that links a heterogeneous collection of networked re-
sources. ABELS consists of three major components: user
entities that serve as data producers and/or consumers, a
brokering system for organizing and linking the various
participants, and generic local agents that connect simula-
tions and data resources to the cloud of participants. This
paper describes the major redesign and implementation of
the generic local agent, which serves as the adaptable inter-
face between the user and the ABELS system.

1 INTRODUCTION

Many simulations and other applications need dynamic ac-
cess to a variety of data resources. For example, a simula-
tion predicting the severity of a flood needs rainfall and
weather predictions (from weather simulations), current
water levels (from sensors), and information regarding the
existing drainage infrastructure (from databases). Re-
searchers in a particular field (e.g., medicine or arctic re-
search) may form a consortium to exchange data and pro-
vide services.

In the traditional approach involving interaction be-
tween different entities, any simulation desiring to com-
municate with another simulation or data resource must
know in advance where, when, or how it will be required
to do so. Thus, simulations typically must be hardwired to
specific resources or developed according to a certain stan-
dard. This traditional approach is not always desirable or
even feasible.

We have developed a framework for using software

agent technology for linking distributed simulations and
other data resources. The Agent-Based Environment for
Linking Simulations (ABELS) framework uses software
agents to coordinate distributed simulations, communicate
data efficiently between simulations, and retrieve data from
other sources such as sensors and datasets. ABELS allows
simulations to enter and exit a global simulation “cloud”
consisting of dynamically changing data and computational
resources. Note that the networked resources may consist
of other simulations, datasets, active probes, and sensors.

Each simulation in the cloud is designed independ-
ently with little or no knowledge of the other simulations in
the cloud. While a simulation must be able to specify what
resources it needs and what services it provides to the
cloud, it does not need to know any specifics about the
other simulations. The simulation also does not need to be
written to a particular specification; instead, our agent-
based framework provides the interface for linking the
simulations and adapts to their needs.

Data resources may join or leave the cloud at any time.
The simulations and other resources do not need to be per-
fectly synchronized in time, but the resources needed by a
particular simulation must generally cover the same time
frame or have been previously generated for the appropri-
ate time period. Currently, we are working with loosely-
coupled simulations, but we will add synchronization
mechanisms for tightly-coupled systems at a later date.

Previous papers (Kumar et al. 2002, Sucharitaves et al.
2002, Wilson et al. 2001) described the ABELS framework
and its primitive prototype implementation. This paper de-
scribes the current design and implementation of the inter-
face between resources and the cloud which links and co-
ordinates the resources. This work represents a major
redesign of some of the ABELS components, and it pro-
vides examples that demonstrate the flexibility of our
framework in adapting to the needs of users.

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

2 RELATED WORK

The ABELS framework is not the first that is designed to
allow information exchange between autonomous entities
that benefit from shared information. Two notable archi-
tectures that have similar goals to the ABELS system are
the High Level Architecture (HLA) and the Web Services
architecture. In this section, we discuss these two frame-
works and their relationship to the ABELS system.

The High Level Architecture (HLA) allows tightly-
coupled simulations that conform to a set of rules and share
a common Federation Object Model (FOM) to interact at
runtime using a common runtime infrastructure (RTI)
(Dahmann 1998). In the HLA, all individual simulations,
known as federates, must conform to the Federation Object
Model (FOM) in order to exchange information with other
federates. This requires legacy systems to be rewritten to
conform to the HLA standard, and does not easily facilitate
spontaneous information exchange between simulations,
since the Federation Object Model must be agreed upon
before the formation of the federation. The ABELS system
described in this paper targets information exchange be-
tween loosely-coupled information producers and consum-
ers, including entities that do not share a data representa-
tion format.

There are other architectures being developed that also
allow a more loosely-coupled communication paradigm
between participating entities. The Web Services frame-
work, backed by industry players such as Microsoft, IBM,
and Sun, is an emerging framework for application-to-
application interaction built on existing Web protocols and
open XML standards (Curbera et al. 2002). In the publish-
find-bind paradigm employed in the web services architec-
ture, businesses publish their services to a directory system
where other businesses can then find these services and
bind to them in order to use them (Knutson and Kreger
2002). The three protocols that form the backbone of the
current web services architecture are the Simple Object
Access Protocol (SOAP), the Web Services Description
Language (WSDL), and the Universal Description, Dis-
covery and Integration (UDDI) protocol.

SOAP (Mitra 2001, Gudgin et al. 2001a, Gudgin et al.
2001b) is an XML-based protocol that provides a platform-
and language-independent means of remote method invo-
cation. To use a remote web service, a program sends a
SOAP request specifying the method to invoke, as well as
input and output parameters, to the remote web service, of-
ten over HTTP. The web service performs the required ac-
tion or computes the desired result, and sends back a
SOAP response encapsulating the reply.

In order to be able to successfully send a SOAP re-
quest to a web service, a client needs to know what meth-
ods the web service supports, what the expected input and
output parameters are, the location of the service, and the
protocols it understands. This is achieved by having busi-
nesses describe their services using the Web Services De-
scription Language (WSDL) (Christensen et al. 2001). The
WSDL is an XML format for describing network services
as a set of endpoints operating on messages containing ei-
ther document-oriented or procedure-oriented information.
In the WSDL, the operations and messages are first de-
scribed abstractly and then bound to a specific network
protocol and address.

The final component in the web services equation is
Universal Description, Discovery, and Integration (UDDI),
which defines a means of publishing and discovering infor-
mation about web services (McKee et al. 2001). UDDI de-
fines the interface exposed by a distributed business registry
that stores business registrations written in a common XML
format. The information included in the registration in-
cludes address and contact information, industrial categori-
zations based on standard taxonomies, and technical infor-
mation about services that are exposed by the businesses.
This technical information includes specifications which can
be WSDL descriptions of supported web services. In a typi-
cal usage scenario, programs and programmers use UDDI to
locate information about services, and a programmer would
then use this information to create client programs that use
the published web services, or would use UDDI to publish
web services that can be used by others.

The web services architecture is an important step in
the direction of enabling interoperability between services
provided by different businesses and organizations. It re-
duces the time required to create programs that use the ser-
vices of other businesses by eliminating the need to design
custom data exchange protocols. This in turn enables the
re-use of services as components in creating more complex
services provided to an end-user. Legacy services could
conceivably utilize the web services architecture by creat-
ing SOAP wrappers that translate SOAP requests and re-
sponses to and from the particular protocol that is under-
stood by the service.

However, an important functionality that is not di-
rectly supported by the web services architecture is that of
runtime brokering or matching of clients and services. The
idea of runtime brokering of clients and services shifts fo-
cus from the concrete implementation of a service to the
abstract service or information that is provided. It allows
the transparent replacement of one service provider with
another that provides similar functionality, without having
the services be written to conform to a specific standard. It
is this runtime brokering and matching of clients and ser-
vices that forms the core of the ABELS system described
in this paper.

3 ABELS OVERVIEW

The ABELS framework uses software agents and a brokering
system to allow independently designed, distributed simula-
tions and data resources to communicate with each other with

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

no a priori knowledge of the implementation details of other
simulations or data resources. As shown in Figure 1, the
ABELS system architecture consists of user entities, generic
local agents (GLAs), and a brokering system.

GLA 3

User Entity 3

GLA 4

User Entity 4

User Entity 1

GLA 1

User Entity 2

GLA 2

Broker

Figure 1: Basic ABELS Framework

The user entities are often described as simulations but

can actually be any producers or consumers of data. For
example, a sensor that generates data would be a data pro-
ducer. Visualization tools that are used to collect and dis-
play the output of various simulations would be consum-
ers. Simulations, of course, can be both producers and
consumers of data. In general, we say that consumers
make requests or queries for data and producers provide
services that generate data.

The generic local agent (GLA) serves as the interface
between a user entity and the data and simulation cloud. It
allows a producer to describe its services, register the ser-
vices with the cloud, and provide services as resources for
others. Similarly, it allows a consumer to make requests
for resources, send the request to the brokering system for
matching, and connect to the corresponding producers to
use those services of interest. Furthermore, the GLA han-
dles any necessary data format and unit conversions. Al-
though the GLA is implemented in Java, it does not require
the user entity to use a specific language or platform. Sec-
tion 4 covers the GLA in more detail.

The brokering system is responsible for managing all
the resources in the data and simulation cloud. Specifi-
cally, it stores descriptions and references for all the re-
sources in the system and matches requests with corre-
sponding services, based on textual descriptions. Once the
brokering system establishes links between two GLAs, the
GLAs communicate directly without going again through
the broker. In Figure 1, the broker has established one link
between GLAs 1 and 2 and another link between GLAs 1
and 4. The brokering system also notifies the users and up-
dates the list of services when new services arrive or exist-
ing services become unavailable

Logically, the brokering system consists of the broker,
the matching and ranking system, and the keyword and
unit databases. For better accuracy and efficiency, there
are two levels of matching in the ABELS system. The
broker stores the services and performs the first-level
matching according to high-level categories or groups such
as “medical simulation” and “weather simulation”. The
matching and ranking system performs the second-level
matching and ranks all the matching services according to
their descriptions. For efficiency and possible user interac-
tion, the matching and ranking system is local to each
GLA. (As discussed in Section 4, the matching and rank-
ing system is actually implemented as part of the GLA,
even though it logically belongs to the brokering system.)
The keyword and unit databases provide users with key-
words and units to accurately describe services and re-
quests. The unit database also contains conversion factors
between related units. The broker is implemented using
Sun Microsystems’ Jini technology. For more information
on the brokering system, see Kumar et al. (2002).

4 THE GENERIC LOCAL AGENT

4.1 Overview

The ABELS generic local agent (GLA) is a user entity’s
portal into the ABELS cloud. Every user entity, whether a
consumer or producer, connects to and interacts with other
entities in the cloud through its generic local agent. Sev-
eral user entities, administered by the same person or or-
ganization, may use the same GLA to connect to the
ABELS cloud.

A GLA that acts as a portal to a producer user entity is
referred to as a producer GLA. Conversely, the GLA for a
consumer entity is a consumer GLA. Every GLA has the
potential to be a producer, a consumer, or both, and its des-
ignation may change over its lifetime, based on the entities
that use it to connect to the ABELS cloud.

The main functions that the GLA performs on behalf
of its user entities are the following:

• The GLA maintains service registrations in the
cloud on behalf of producer user entities.

• It performs service lookups with the broker on
behalf of consumer entities.

• It refines service matches from the broker on be-
half of consumer entities.

• It initiates remote service requests on behalf of
consumer entities.

• It relays incoming service requests to producer en-
tities, and returns the response to the requestor.

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

In order to perform these functions, the GLA must in-
teract with the other entities in the ABELS cloud, namely,
its own user entities, the brokering system, and other ge-
neric local agents. Figure 1 illustrates these interactions.
The GLA uses a TCP/IP socket to communicate with its
user entity and RMI to communicate with other GLAs and
the brokering system.

As illustrated in Figure 2, the functionality of the GLA
is divided into four modules, a detailed description of
which forms the bulk of the remaining sections of this pa-
per. These modules are briefly described below.

The service module stores information on services
provided by producer entities using this GLA. It is respon-
sible for all interactions between the GLA and its producer
entities.

The query module stores information on queries being
made by consumer entities using this GLA. It is responsi-
ble for all interactions between the GLA and its consumer
entities.

The matching and ranking module is responsible for
refining the high-level matching between producers and
consumers that is performed by the broker, to better suit
the needs of the consumer GLA. It is used by the query
module of a consumer GLA.

The communication module is responsible for all
communication between the GLA and the brokering sys-
tem. Its services are used by the other three GLA modules.

Figure 2: Conceptual View of the GLA and Its User In-
terface

A final component that is closely associated with the

GLA, but is not a module of the GLA, is the user interface.
While the GLA interacts directly with its producer or con-
sumer user entities, it interacts with a human user or ad-
ministrator through a user interface. As described in Sec-
tion 4.2, the user interface assists the human user in setting
up and editing descriptions of services or queries, that are
then stored and used by the GLA.

Figure 2 illustrates the conceptual view of the GLA,
its modules, and its user interface. The implementation of
the user interface is in reality decoupled from the generic
local agent, as shown in Figure 3. This is to provide more
flexibility to the user in terms of which kind of user inter-
face to use. It also reflects the fact that after the one-time
description of services and/or queries is complete, the GLA
will often be used without human interaction.

Generic Local Agent

User Interface
(Web, GUI, or command-line)

Service
Module

Query
Module

Matchmaking
Module

Communication
Module
Figure 3: Implementation Overview of the GLA and Its
User Interface

4.2 Defining Services and Queries

One of the primary goals of the ABELS system is the ability
to exchange data between different entities with little or no
changes in the implementation of the user’s simulation. With
a variety of simulations running on a variety of platforms,
socket communication was chosen to be the most common
platform- and programming-independent way of passing
data between entities. However, in order to achieve true
communication (i.e., a seamless integration of data between
heterogeneous simulations), a standardized way of describ-
ing a simulation through its inputs and outputs was devel-
oped. Since the producer and consumer GLAs will exchange
data through sockets in a byte stream, the simulation inputs
and outputs will be defined in a one-dimensional format. To
assist the user, the GLA provides interfaces specifically for
the purpose of formatting services and queries. We have de-
veloped a graphical web-based interface using Java Server
Pages, and we are currently developing a Java graphical user
interface based on Swing. A command-line interface will be
developed in the future.

The ABELS user interface attempts to provide a very
adaptable way of describing simulations regardless of their
platform, programming language, and content. By viewing
simulations as black boxes and only focusing on defining
their inputs and outputs, the interface can abstract away the
details of the simulation implementation.
 Inputs and outputs are further generalized in terms of
a sequence of variables having a specific data type, defini-
tion, and possibly additional qualifiers (e.g., units). To re-
duce the amount of repetition that may occur when defin-
ing identical variables in an input or output, the user begins
by defining components (i.e., definitions, subsets, ranges,

User Interface
(Web, GUI, or command-line)

ServiceModule object

QueryModule object

MatchmakingModule object

CommunicationModule object

GenericLocalAgent object

TCP/IP socket

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

units) and then later assembles them into variables. Figure
4 gives some examples of components.

Definitions: Family name, Age, First name, GPA, Pets
Units: Years, Meters
Subsets: {Dog, Cat}, {Man, Woman}
Data types: String, Float, Integer, Double

Figure 4: Example Components

Once all of the components are defined, the interface

will guide the user through the process of assembling the
input and output sequences for the simulation, one variable
or pattern at a time. Table 1 demonstrates a theoretical one-
dimensional input sequence.

Table 1: Input Sequence with Variables Defined
through Components
Data Type Definition Qualifier Type

String Family name Variable
Float GPA Variable
String First name
Float GPA Pattern

Integer Age Unit: Years
String First name
Float GPA Pattern

Integer Age Unit: Years
String Pets Subset: Dog, Cat Variable
String Pets Subset: Dog, Cat Variable

The user assembles the input sequence by defining

variables and using patterns. Patterns are repeating se-
quences of variables that contain exactly the same compo-
nents. Therefore, the user can define patterns (if any) and
then use them in the same way as components (e.g., as a
qualifier to a variable). Table 2 demonstrates how the user
would define the example above.

Table 2: Example Input Sequence Defined

Input
Location

Input
Type

Input
Data Type

Input
Description

Input
Qualifier

Input
Repeat

1 – 1 Variable String Username 1

2 – 2 Variable Float GPA 1

3 – 8 Pattern Person 2

9 – 10 Variable String Pets Dog, Cat 2

Once all inputs and outputs to a simulation are defined,

the graphical user interface presents a build page where the
user can verify previously-defined service information and
select the input/output combinations that will be offered by
the service. A service can support several functions (i.e., a
specific input/output combination located on a specific port).
For example, a simulation can have a function that expects
an input of two integers and outputs one integer as the sum.
The same simulation can have another function on a separate
port that receives the same two input integers but outputs
one float as the average.

The user interface will prompt the user to further de-
scribe the simulation by selecting keywords and ABELS
groups to join. All producer simulations are required to
join at least one ABELS group. As discussed in Section
4.5, a consumer begins the search for producer entities by
performing a first-level lookup to locate entities belonging
to specified groups. This grouping helps reduce the search
time for consumers.

Once simulations have been retrieved through the
first-level lookup, keywords can be used to broaden a con-
sumer’s search through these simulations. For example, a
consumer searching for a service about cats can further
broaden the search by adding keywords such as “feline”
and “kitten”. This will not only retrieve all producer ser-
vices with the word “cat” in the definition but also retrieve
those potentially useful services with the words “kitten” or
“feline” in the definition. In the same way, producers can
also add keywords to the definition to make the service
more likely to be found by consumers.

Both consumers and producers will use the interface to
connect or disconnect to the ABELS cloud, describe their
simulations, and/or search for other simulations. Once a
user has used the interface to describe the simulation, this
information will be passed to the GLA for use in registra-
tion and stored locally for future updates.

The graphical user interface (GUI) provides the fol-
lowing advantages to the ABELS system:

• User-friendliness: The GUI provides clear instruc-
tions for the user to register services and requests.
It allows the user to navigate backward and for-
ward between each registration step to view or al-
ter previously entered information. It also has de-
scribes data in terms of reusable components.

• Robustness: The GUI provides a way of error
checking data before it gets sent to the ABELS
cloud. In this way, user inputs can be validated
throughout the registration process and errors that
may occur due to inconsistent simulation descrip-
tions can be caught ahead of time.

• Scalability: The GUI communicates with the GLA
through sockets and therefore can be launched
from the same computer as the GLA or from a
completely separate computer. This allows multi-
ple users to access the GLA from different ma-
chines. Furthermore, the web-based interface al-
lows users to access the GLA from anywhere in
the world through a basic web browser.

• Security: The GUI will have an initial login page
to validate users. Since potentially sensitive data
may be exchanged, this provides an extra layer of
security to the ABELS system. The interface se-

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

curity is only one of many security mechanisms
that will be used in ABELS.

4.3 The GLA Service and Query Modules

After the interface gathers the service information from the
user, the service module (for producers) or query module
(for consumers) is responsible for saving and managing
this information. They both act on behalf of their user dur-
ing the data exchange process and are primarily involved
in the following areas:

• Local storage
• Request/Response
• Statistical data.

As described in Section 4.2, both consumers and pro-
ducers define their simulations through a common user in-
terface. Once a user finishes defining a simulation, the in-
formation is saved in a Java object and, in the case of a
producer, passed to the communication module for regis-
tration with the broker. This registration object contains the
following information:

Main Information
• Simulation name
• Simulation description
• Simulation location (IP address)
• Simulation functions (input/output combinations)
• Simulation keywords
• ABELS groups joined or requested by the simu-

lation
Helper Information

• Component information (i.e., definitions, ranges,
subsets, units, patterns).

This registration object fully describes the simulation
and is the common link between a consumer’s request for
data and a producer’s advertisement of its data. For a pro-
ducer of data, it is a description of the service to be pro-
vided to the entities in the ABELS cloud (i.e., given a cer-
tain input, what the service will produce as an output). For
a consumer, it is the description of the simulation data that
is desired from the cloud (i.e., the input that can be pro-
vided and the output that is desired). On registration, a pro-
ducer’s service module and consumer’s query module are
responsible for storing this Java object locally. For future
updates to a previously-defined simulation, the service
module or query module retrieves the Java object so that
the user can edit the information through the interface.

The data exchange begins on registration by placing all
user simulation descriptions (consumer and producer regis-
tration objects) into specific groups. When a consumer
makes a first-level lookup request (as discussed in Section
4.5), the broker returns all producer simulations that are part
of the same group. The query module receives the first-level
lookup results and then passes them to the matching module
for the second-level matching and ranking. The second-level
matching and ranking, as described in Section 4.4, is a de-
tailed comparison between the given service and the query,
resulting in a ranking between 0 and 1.0 that represents the
degree of compatibility between the service and the query.
As a result, the query module stores a sorted list of the
ranked matching services with each query, and will use the
highest ranked service for data exchange.

A human user, via a user-interface, can also override
the second-level matching and ranking by designating a
particular matching service as “preferred” or “unsuitable”.
These designations are used to further classify services and
give the user more control over the service(s) used by his
simulation. Therefore, the query module will maintain for
each query three lists of services: “preferred”, “regular”
and “unsuitable”. Resolving a query then follows a path of
selecting the highest-ranked service in the “preferred” list,
then if necessary (i.e., there are no services in “preferred”
or it cannot communicate with them), choosing one from
the “regular” list. A service will never be selected from the
“unsuitable” list.

Once the query module has selected a service, it uses
the service proxy sent with the service description to con-
tact the simulation and begin transferring data. It takes the
input data from the local simulation, performs any conver-
sion needed (dictated by the matching and ranking module
described in Section 4.4), and then sends it through the
consumer GLA to the receiving remote simulation. The
query module waits for the eventual output response from
that remote simulation and again handles the conversions
before channeling it back to the consumer simulation. By
handling each request in a separate thread of execution, the
query module can handle multiple requests from its con-
sumer entities simultaneously.

When a request is made by a consumer, it is the pro-
ducer service module that handles the execution of the simu-
lation. It retrieves the input data from the requesting remote
consumer simulation, channels it to the appropriate local
producer simulation (using the IP address and port contained
in the request), and waits for output. Finally, when the out-
put is eventually returned, the service module sends it back
to the requesting remote consumer simulation. Figure 5 dis-
plays a high-level view of the data exchange process.

When simulations locate each other through the cloud
and begin exchanging data, the ABELS system will also
maintain a variety of statistical data. The producer service
module and consumer query module will be responsible for
generating and storing this statistical data since all requests
and responses are handle by these two modules. The fol-
lowing statistics will be collected:

Service module

• Average wait time in the queue

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

• Average execution time of each simulation
• Total number of users accessing each simulation

Query Module
• Average wait time per request per service
• Ranks of all services.

The data collected can then be used to improve the re-
sponse time in future applications where the emphasis is
placed on execution speed (e.g., real- time applications).

Query
Module

Simulation

Service
Module GLA

 GLA

 Consumer

 Producer

 TCP/IP Socket

 TCP/IP Socket

 response

 request
 RMI

Simulation

Figure 5 : Data Exchange between Generic Local Agents

4.4 The GLA Matching and Ranking Module

At the heart of the ABELS system is a sophisticated match-
ing and ranking system that facilitates the difficult task of
finding services which might be of interest to a particular
consumer. In the first-level look up, explained in Section
3, the service descriptions for all services in the current
group are retrieved from the broker. After this process,
each description is sent to the matching module, where it is
compared with the query specification and receives a rank
from 0 to 1.0. This rank will give some indication of how
consistent a particular service is with the given query.

The architecture of the matching module, as shown in
Figure 6, is a multi-component system that communicates
with the broker and GLA. Although logically the work of
the matching module falls under the scope of the brokering
system, it is implemented as part of the GLA to avoid bot-
tlenecks. The matching module contacts the unit database,
a centralized repository for information on possible units
(e.g., miles, degrees Celsius, etc.) and conversions between
exchangeable units. The database is stored centrally be-
cause applicable conversions can be added at any time by
other entities. During the matching process, the matching
module finds any unit information available though RMI
calls to the database, and checks for the convertibility of
query units to service units.

Broker
Unit Database

User Entity

GLA

Matching Module

RMI

Keyword Filter

Range Checker

Variable Matcher

Keyword Database

Figure 6: Matching Module Components and Interactions
with Other Modules

The keyword database, although not specifically used

by the matching module, is important for ranking. It al-
lows users to select possible synonyms for their keywords
during the initial description of their service or their con-
struction of a query. This will assure that all possibly rele-
vant services are found by the ranker. Only synonyms that
the user selects will be added to a list of keywords, to en-
sure that superficially similar words that are not relevant to
the particular description are not included. For example,
we would not want a search that included the keywords
“Puget Sound” to match with a service containing the
keywords “interference through communication systems”,
despite the fact that both descriptions contain a synonym of
the word “noise”.

The keyword filter, a component of the matching
module, will look at the keywords and descriptions speci-
fied in either a query or a service description and filter out
words (e.g., prepositions) that will be of little use in find-
ing matches. A static list of words deemed useless is
stored locally for comparison. Unless they have been spe-
cifically designated to be kept, these words are removed
from the descriptions for matching. After this filtering, de-
scriptions are compared for relevancy.

The range checker will check possible values that in-
put/output parameters of a desired service can take, as
specified in either ranges or subsets. These are compared
with those of the query to determine whether there is any
possible overlap. This process also takes into account pos-
sible unit conversions. In the case of no overlap, a ser-
vice’s rank is decreased.

A third component of the matching module is the
variable matcher, which will compare two sets of vari-
ables, one specified in the query and another present in the
service. The variable matcher will evaluate all the possible

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

variable mappings and determine the optimal mapping of
variable descriptions from the query to the service. This
ensures that regardless of the order in which a query speci-
fies its variables, the best match will be found. In its most
basic form, this process is a perfect matching on a com-
plete bipartite graph, and the variable matcher utilizes the
Kuhn-Munkres algorithm (Bondy and Murty 1976).

Once the rank of a service is computed, the module re-
turns the rank, any unit conversions, and the variable map-
ping. The rank will be used in the selection of a service, and
the additional information is cached to avoid further time-
consuming RMI calls to the broker when a service is chosen.

4.5 The GLA Communication Module

The communication module of the GLA encapsulates all
communication between the GLA and the broker. It ex-
poses the functionality of the brokering system to the rest
of the GLA. It also hides the implementation of the broker
communication technology from the other GLA modules,
allowing the communication technology or the implemen-
tation of the brokering system to undergo changes in the
future without repercussions on the entire GLA.

The main functions that the communication module
exposes to the rest of the GLA are the following:

• Joining and exiting the ABELS cloud
• Querying the broker for the list of groups cur-

rently supported by the ABELS cloud
• Submitting a request to the broker for a new group

to be supported by the ABELS cloud
• In a producer GLA, performing service registra-

tion with the broker and maintaining leases on all
service registrations

• In a consumer GLA, performing the first-level
lookup with the broker and maintaining leases on
all first-level lookup subscriptions

• In a consumer GLA, relaying first-level lookup
notifications from the broker to the query module.

Like the ABELS brokering system, the GLA commu-
nication module is implemented using Sun’s Jini technol-
ogy. Jini’s purpose is to federate groups of devices and
software components in a dynamic distributed system. The
lookup service forms the heart of the Jini architecture, and
it is the central repository of objects that can be searched
based on what interfaces they support or other criteria. The
prototype distributed brokering system used in the current
implementation of ABELS consists of several Jini lookup
services, each running on a separate machine and support-
ing specific groups of services.

The communication module of the GLA registers each
service supported by a producer GLA with one or more of
the Jini lookup services in the brokering system, based on
the group(s) that the service wishes to join. The registra-
tion information stored with the broker includes a descrip-
tion of the service, formatted as described in Section 4.2,
as well as a service proxy object that will be used by cli-
ents to communicate back to the producer GLA in order to
execute the service. In the current implementation, this
service proxy is a remote reference to the service module,
implemented using Java remote method invocation. After
registering each service, the communication module re-
ceives and persists the service IDs assigned by the lookup
service to each service, and maintains leases on these ser-
vice registrations for as long as the GLA is part of the
ABELS cloud. When the GLA exits the ABELS cloud, all
the services are de-registered with the broker. When the
GLA later re-enters the ABELS cloud, the services are re-
registered with the same service IDs that the communica-
tion module saved to persistent storage. This behavior
conforms to the Jini join protocol, and makes it possible to
uniquely identify a service across several registrations and
de-registrations in its lifetime.

On the consumer’s side, the communication module
performs a first-level lookup with the broker to find all ser-
vices registered with the cloud in a specific group or set of
groups associated with a particular query. The service reg-
istration information and the service proxy of each service
returned from the broker are passed to the query module,
which is responsible for managing the consumer entity’s
queries. When performing the first-level lookup for a
query, the communication module also subscribes to noti-
fications from the broker for changes in service registra-
tions in the groups of interest. The notifications are re-
ceived, for example, when a new service in the groups of
interest enters the cloud, or when a previously discovered
service exits the cloud. The communication module con-
veys these notifications to the query module as needed.
Some performance optimizations implemented by the
communication module include consolidating notifications
representing the same event but sent from different lookup
services, and caching first-level lookup results for one
query to be used for a different query interested in the
same groups. The communication module maintains leases
on the first-level lookup notification subscription for as
long as the GLA is part of the ABELS cloud.

5 CONCLUSIONS AND FUTURE WORK

This paper presented the redesign of the generic local
agent, which serves as the portal to the ABELS system. It
also demonstrated how the system adapts to the needs of
the users.

For future work, there are many improvements and
enhancements that can be made. First of all, we will con-
tinue to develop and improve the user interfaces. In par-
ticular, we will extend the functionality of the user inter-
faces to expose more administration capabilities to the
human user. For example, we will allow the user to de-

Mills-Tettey, Johnston, Wilson, Kimpel, and Xie

velop lists of preferred services and unsuitable services, to
be used by ABELS in dynamically switching between
matching services. We will continue to improve both the
first- and second-level matchings. The system will be ex-
panded to allow not only one-to-one matchings but also
many-to-one matchings of services to queries so that the
results from several services can be combined to generate
the desired response. We are developing a test deployment
scenario to experiment with the matching and ranking of
actual services to study how well the system performs. Fi-
nally, there are several security features that must be
added. In addition to the basic user validation mechanism
described in this paper, we will add encryption capabilities
and authentication mechanisms to restrict access to sensi-
tive resources.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation KDI
Grant 9873138 and U.S. Army Corps of Engineers contract
DACA42-01-P-0288. We would like to thank Min (Cecilia)
Zhang for her work on the graphical user interface.

REFERENCES

Bondy, J. A., and U. S. R. Murty. 1976. Graph Theory
with Applications. London, England : MacMillan.

Christensen, E., F. Curbera, G. Meredith, and S.
Weerawarana (editors). 2001. Web services descrip-
tion language (WSDL) 1.1. W3C Note 15 March
2001. Available online via <http://www.w3.org
/TR/wsdl> [accessed May 06, 2002]

Curbera F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and
S. Weerawarana. 2002. Unraveling the web services
web: an introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, March/April 2002 86-93.

Dahmann, J. 1998. Standards for simulation: as simple as
possible but not simpler: the high level architecture for
simulation. Simulation 71(6) 378-387.

Gudgin, M., M. Hadley, J.-J. Moreau, and H. F. Nielson
(editors). 2001a. SOAP Version 1.2 Part 1: Messaging
Framework. W3C Working Draft 17 December 2001.
Available online via <http://www.w3.org/TR
/2001/WD-soap12-part1-20011217/>
[accessed May 06, 2002]

Gudgin, M., M. Hadley, J.-J. Moreau, and H. F. Nielson
(editors). 2001b. SOAP Version 1.2 Part 2: Adjuncts.
W3C Working Draft 17 December 2001. Available
online via http://www.w3.org/TR/2001/WD -soap12-
part2-20011217/ [accessed May 06, 2002]

Knutson, J., and H. Kreger. 2002. Web Services for J2EE,
Version 1.0. Public Draft v0.3. IBM. Available online
via <http://www-3.ibm.com/software
/solutions/webservices/pdf/websvcs-
0_3-pd.pdf> [accessed May 09, 2002]
Kumar, A., L. F. Wilson, T. B. Stephens, and J.
Sucharitaves. 2002. The ABELS brokering system.
In Proceedings of the 35th Annual Simulation
Symposium, 63–71. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

McKee, B., D. Ehnebuske and D. Rogers (editors). 2001.
UDDI Version 2.0 API Specification. UDDI Open
Draft Specification 8 June 2001. Available online via
<http://www.uddi.org/pubs/Programmer
sAPI-V2.00-Open-20010608.pdf> [accessed
May 06, 2002]

Mitra, N. (editor). 2001. SOAP Version 1.2 Part 0: Primer.
W3C Working Draft 17 December 2001. Available
online via <http://www.w3.org/TR/2001/WD
-soap12-part0-20011217/> [accessed May
06, 2002].

Sucharitaves, J., L. F. Wilson, and A. Kumar. 2002. The
generic local agent: gateway to the ABELS system. In
Proceedings of the High Performance Computing
Symposium – HPC 2002, ed. A. Tentner, 147–154.
San Diego, California: The Society for Modeling and
Simulation International.

Wilson, L. F., D. J. Burroughs, A. Kumar, and J.
Sucharitaves. 2001. A framework for linking
distributed simulations using software agents.
Proceedings of the IEEE, 89 (2): 186–200.

BIOGRAPHIES

G. AYORKOR MILLS-TETTEY is a master's student at
Dartmouth's Thayer School of Engineering. She received
her AB degree from Dartmouth College in 2001.

GREG JOHNSTON is a research associate at Dart-
mouth's Thayer School of Engineering. He received his
AB degree from Dartmouth College in 1999.

LINDA F. WILSON is Associate Professor of Engineer-
ing at Dartmouth’s Thayer School of Engineering. She re-
ceived her MSE and PhD degrees from The University of
Texas at Austin in 1991 and 1994, respectively.

JOSEPH M. KIMPEL is a senior engineering major at
Dartmouth College.

BIN XIE is a doctoral student at Dartmouth's Thayer
School of Engineering.

http://www.w3.org/TR/2001/WD -soap12-part2-20011217/
http://www.w3.org/TR/2001/WD -soap12-part2-20011217/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 832
	02: 833
	03: 834
	04: 835
	05: 836
	06: 837
	07: 838
	08: 839
	09: 840

