
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

COST: A COMPONENT-ORIENTED DISCRETE EVENT SIMULATOR

Gilbert Chen
Boleslaw K. Szymanski

Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, NY 12180, U.S.A.

ABSTRACT

COST (Component-Oriented Simulation Toolkit) is a gen-
eral-purpose discrete event simulator. The main design
purpose of COST is to maximize the reusability of simula-
tion models without losing efficiency. To achieve this goal,
COST adopts a component-based simulation worldview
based on a component-port model. A simulation is built by
configuring and connecting a number of components, ei-
ther off-the-shelf or fully customized. Components interact
with each other only via input and output ports, thus the
development of a component becomes completely inde-
pendent of others. The component-port model of COST
makes it easy to construct simulation components from
scratch. Implemented in C++, COST also features a wide
use of templates to facilitate language-level reuse.

1 INTRODUCTION

Discrete event simulation is a very effective method for
analyzing existing or to-be-built systems. Although all
physical systems are indeed continuous, many of them can
be viewed as discrete systems if details below a certain
level can be abstracted away. For example, computer sys-
tems, computer networks, digital logic, traffic systems, to
name a few, are all classical subjects of discrete event
simulation. The benefit of simulation is that, by construct-
ing a simulation model with the computer, we are able to
study the system without actually manipulating or building
it physically.
 Our attempt to build yet another discrete event simula-
tor is motivated by our recent progress in the concept of
component-based simulation (Chen and Szymanski 2001).
More specifically, we proposed a component-oriented
simulation worldview that takes a divide-and-conquer ap-
proach to simulation modeling. In order to make compo-
nent composable, we introduced a simulation component
classification that groups components into three classes:
timeless, time-dependent, and time-independent. Timeless
components have no notions of simulation time. Time-
dependent components are aware of the existence of the
simulation time, but cannot change it, while time-
independent components maintain their own simulation
clock. It is therefore a natural choice to build an entirely
new simulator with these new understandings.
 A good simulator possesses two essential features.
First, it must support reusable models. A model written for
one simulation should be able to be effortlessly embedded
into other simulations that require the same kind of a
model. Second, the model should be easy to be built from
scratch. Interestingly, we observe that most existing simu-
lators do not possess these two features simultaneously.
Most commercial simulators provide a reusable model li-
brary, often coming with a friendly graphical user inter-
face, but adding new models to the library is always a pain-
ful task. On the other hand, most freely available
simulators follow a bottom-up approach; writing models
from scratch is straightforward, but the reusability is se-
verely limited.
 COST attempts to address these two problems simul-
taneously. The key to the solution is the component-
oriented worldview as well as the underlying component-
port model, which are described in depth in Section 2. Sec-
tion 3 mainly discusses the design and implementation is-
sues of COST. Section 4 gives a detailed example of an
M/M/1 simulation on top of COST.

2 COMPONENT-BASED SIMULATION

The component-oriented worldview sees a simulation as
being composed of a set of components. It takes a divide-
and-conquer approach in which the whole simulation is
partitioned into a number of smaller simulation tasks,
which are modeled by each component individually. The
immediate benefit of doing so is that the complexity is sig-
nificantly reduced. Each component is now a smaller task
whose internal logic is much simpler than that the whole
simulation. With this approach, reusability can also be

Chen and Szymanski

achieved if the components are designed in such a way that
context-relevant information is not embedded into the code
of the components.
 The component-port model ensures that any component
is completely independent of the simulation in which it will
be used. Components exchange messages with each other
only via input or output ports. To send out a message, the
component simply places the message in the desired output
port. The receiver is not determined until the configuration
phase, in which an output port is connected to one or more
input ports. Messages placed in the output port in the run
time will then be delivered to connected input port(s). Simi-
larly, the component responds to messages arriving at an in-
put port, regardless of the sender, thus, it is able to accept
messages at the input port sent by any other component.
These properties of input and output ports and the accompa-
nied configuration phase are the source of the independence
between the components and the simulations, and such in-
dependence results in maximum reusability.
 The term component has been used in computer sci-
ence often without elaboration. We define a component as
an object with an interface that enables it to be combined
with other objects. The interface, either explicit or implicit,
prescribes in what kind of interaction the components
would be involved with other components. The interface
alone does not distinguish a component from an object,
however. The real requirement for our components is that
all interaction between components must be reflected in the
interface. From this point of view, many current compo-
nent-based approaches are not truly component-based, like
CORBA, DCOM, and JavaBeans, because there, an object
can directly call a function of another object. Although the
function to be called exists in the callee’s interface, it is not
reflected in the caller’s interface. Consequently, the inter-
action between objects is not fully captured by the inter-
face. A more serious problem is that this kind of binding
does not produce composable objects. The dependency is
buried in the code of the caller object and would remain
fixed unless the code can be modified.
 Output ports are the solution to this problem. Input ports
are equivalence of functions. They prescribe what function-
alities a component can provide. Output ports, in contrast,
prescribe what functionalities a component may require
from other component. By delaying their connection until
the configuration phase, the binding becomes more flexible.
For instance, a component integrator may try to link the out-
put port of a component with the input port of several differ-
ent other components in order to select the best one.
 For simulation modeling, there is another essential as-
pect that must be taken into consideration: the simulation
time. This is where our simulation component classification
can help. All components that we referred to so far are time-
less components. Since we are only concerned with design
of a single simulator, time-dependent components are suffi-
cient for the modeling purpose. Messages exchanged be-
tween time-dependent components are timestamped by an
implicit argument representing the simulation time at which
the message occurs. To deal with the simulation time, we
introduce a special entity called timer. Similar to input and
output ports, timers are declared in the interface. However,
components do not communicate with each other through
timers. Rather, timers serve as a messenger between compo-
nents and the simulation engine. A timer is actually a hybrid
of an input and output port. By writing a timer with a value
denoting a future time, the component is asking the simula-
tion engine to schedule an event at the preset time. When the
preset time is reached, the timer is activated, and the compo-
nent must respond to the timer.
 Similar component-port models have been proposed
before (Ferenci, Perumalla, and Fujimoto 2001; Shan-
mugan and LaRue 1992). Actually, any component model
that relies on ports as the only inter-component communi-
cation mechanism bears some resemblance with ours. We
made two contributions, though, when introducing it as the
basis for our component-oriented simulation worldview.
First, we point out that the existence of the output ports is
fundamental to a true component-based approach. Second,
our simulation component classification clarifies the role
played by the simulation time, and helps us develop a
component-port model specifically for simulation. In the
next section, we will describe the implementation of such a
simulation component model.

3 IMPLEMENTATION OF COST

The first issue of implementing the aforementioned simula-
tion component model is the choice of the implementing
language. Discrete event simulators can be roughly divided
into two groups: those based on a special simulation lan-
guage, such as GPSS and SIMSCRIPT (Law and Kelton
1982), and those based on a general programming lan-
guage, such as SIMPACK (Fishwick 1992) and SIMKIT
(Gomes et al. 1995) Simulation languages contain abun-
dant semantics designed for simulation, but requires a
steep learning curve. General programming languages are
more familiar to programmers, but lack the essential simu-
lation constructs.

We chose C++ as the implementation language for
two reasons. First, general programming languages always
have good compiler support, and thus their execution speed
is generally faster after optimization. Second, language-
level reusability is a factor as important as component-
level reusability, and C++ is one of the few languages that
support code reuse well. With STL (Austern 1999; Musser
and Saini 1996), C++ programs can easily achieve high ef-
ficiency while maintaining a high level of code reuse,
which matches our design goal.

However, with C++ we ran into a problem. As men-
tioned in last section, input ports are equivalent to func-
tions, so it is natural to define them as member functions of

Chen and Szymanski
the component. But how can we represent output ports?
C++ language standard requires that the address of an ob-
ject must be provided when the member function is being
called. This conflicts with the requirement that component
development should be completely independent. The clas-
sical solution for such a problem is a functor, which is the
generalization of the function pointer.

3.1 Functor

A functor, or a function object, is an object “that can be
called in the same way that a functions is” (Austern 1999;
Musser and Saini 1996). A functor class overloads the op-
erator () so that it appears as a function pointer. For in-
stance, the following is declaration of a functor class that
takes one function argument.

template <class T> class functor {
public:
 typedef funct_t bool (*f)(T);
 functor (funct_t _f): f(_f) {}
 virtual bool operator (T t) { return f(t); }
private:
 funct_t f;
};

The class functor is a helper class that wraps a function

pointer of type funct_t. Upon invocation, it calls the actual
function pointer and returns the result. The syntax of using
the functor is exactly the same as that of a function pointer.

The same idea can be applied to member functions as
well. In C++, a member function of a class always takes an
implicit parameter this, which is a pointer to the object
upon which the member function will be invoked. As a re-
sult, two member functions that belong to different classes
but take the same explicit parameters are treated as func-
tions of different types. In the component level, however,
they should be viewed as interchangeable. A mem_functor
declared below can hide the class type as well as the im-
plicit parameter this.

template <class C, class T>
class mem_functor : public functor {
public:
 typedef funct_t
 bool (C::*f)(T);
 mem_functor (C* _c, funct_t _f)
 : c(_c), f(_f) {}
 virtual bool operator(T t){return c->f(t);}
private:
 C* c;
 funct_t f;
};

With these two classes, functor and mem_functor, it is

now straightforward to implement input and output ports.
An input port could be simply an instantiation of the
mem_functor class. Since an output port does not know the
component(s) to which it will be connected, it could be

represented as a pointer to a functor. When connecting an
input port to an output port implemented in this way, the
address of the mem_functor object corresponding to the in-
put port is assigned to the functor pointer corresponding to
the output port, because the class mem_functor is derived
from the functor class. When the output port is invoked,
the operator () of the mem_functor class is called, because
it is declared as virtual.

3.2 Inport and Outport Class

The method of implementing input and output ports di-
rectly on top of two functor classes should work well, but
there are some practical considerations. For instance, a port
should have a name for the purpose of the debugging and a
port must be set up properly before it can be used in order
to initialize its member variables. Moreover, one to multi-
ple connections would make topology generation more
convenient. It is easy to connect an input port to multiple
output ports by passing its address to each of them, but
when connecting an output port to multiple input ports, the
output port must store the addresses of all connected input
ports. Those reasons are the main motivation for building
the inport and outport class on top of functor classes.

The outport class is declared to be a class with a tem-
plate parameter that is the type of the events that can be
handled by the output port. The function Setup() gives the
port a string name. The function Write() is invoked by the
component to output a message. ConnectTo() connects an
input port to the output port.

template <class T>
class outport {
public:
 void Setup(typeii* c, const char* name);
 bool Write(T t);
 void ConnectTo(inport& port);
private:
 std::vector<functor<T>*> inports;
};

Similarly, the inport class takes one template parame-

ter that is the type of the function argument. It must be
bound to a member function of a component, therefore the
type of the component is passed as the template parameter
of the member template function Setup(), as shown below.

template <class T>
class inport {

public:

 template <class C>

 void Setup(typeii* c,

 mem_functor<C,T>::funct_t _f,

 const char* name);

 bool Write(T t) { return (*f)(t); };

private:

 functor<T>* f;

};

Chen and Szymanski

Since the type of the member function bound to the
input port must be passed to the Setup() function, we need
to find a way to construct this type from two template pa-
rameters, C and T. Fortunately, this type is declared pub-
licly in the class mem_functor<C,T> as funct_t.

3.3 Simulation Time and Port Index

Until now, functors in COST take only one function argu-
ment, which is the message exchanged between compo-
nents. However, two more arguments are necessary. First,
all the components in COST are time-dependent compo-
nents, so messages should be timestamped. Hence, an extra
argument is needed to denote the simulation time at which
the message is generated. Another extra argument is for
arrays of input ports, which are convenient if a number of
input ports are of the same type. All elements in an input
port array share the member function bound to them.
Therefore, it is necessary to have an extra argument to dis-
tinguish between them by their indices. The index of an in-
put port that is an element of an array is always zero. The
resulting functor class could be like (other classes must be
modified accordingly):

template <class T> class functor {
public:
 typedef funct_t bool (*f)(T,double,int);
 functor (funct_t _f): f(_f) {}
 virtual bool operator (T t, double time) {
 return f(t,time,index); }
private:
 funct_t f;
 int index;
};

3.4 Timer

The timer class requires two different functor classes,
t_functor and mt_functor, because a time event has empty
content, so the binding function of a timer only takes the
timestamp argument and the index argument. A timer ob-
ject is actually an array of timers, each of which is identi-
fied with a unique integer number, as in the input port ar-
rays. The timer class has two methods: Set() to schedule an
event and Cancel() to cancel an event.

class timer {
public:
 void Setup(typeii*,
 mt_functor<C>::funct_t, const char* name);
 void Set(double time, int index=0);
 void Cancel(int index=0);
private:
 t_functor * f;
};

 So far, we have described techniques that we adopted to
implement the component-port model in C++. It should be
noted that all these implementation details are transparent to
users. Users do not need to have advanced knowledge of
C++ templates in order to write simulations in COST.

4 SIMULATION OF AN M/M/1 SYSTEM

To illustrate the modeling process with COST, we will de-
scribe in detail how to build an M/M/1 simulation. In an
M/M/1 system, packets arrive according to a Poisson dis-
tribution and compete for the service in an FCFS (First-
Come-First-Served) manner. The service time is also
drawn from a Poisson distribution. In practice, M/M/1 sys-
tems are useful because many complex systems can be ab-
stracted as composition of simple M/M/1 systems. M/M/1
systems also have an accurate mathematical solution with
respect to the arrival rate and the service rate, which makes
them well suited for validating simulation results.

An M/M/1 system built in COST is composed of three
components, namely, source, FCFS server, and sink, as
shown in Figure 1. Packets are generated by source, queued
and served by FCFS server, and dispatched from sink.

Figure 1: An M/M/1 System

4.1 Data Type

A new data type, Packet, is defined to represent the packets
that flow through the M/M/1 system. To measure the time
spent in the FCFS component for each packet, a field arri-
val_time records the arrival time of a packet at the FCFS
component.

struct Packet {
 double arrival_time;
};

4.2 Source

The source component creates packets at a rate specified
by a given interval. It contains an output port of type
Packet and a timer for scheduling the time to deliver the
next packet. It is derived from the class typeii, the base
class of all COST components.

class Source : public typeii {
public:
 double interval;
 outport < Packet > out;
 timer wait;

 void Setup(const char*);
 void Start();

private:
 bool Create(simtime_t, int index);
};

source FCFS sink

Chen and Szymanski

 All COST components must provide a Setup() func-
tion in which the Setup() function of every port and timer
must be called. The Setup() function of the base class typeii
must be invoked first.

void Source::Setup(const char* name) {
 typeii::Setup(name);
 out.Setup(this,”out”);
 wait.Setup(this, &Source::Create,”timer”);
}

 The Start() function, invoked the moment the simula-
tion gets started, i.e., at the simulation time zero, is where a
component can perform initialization of variables and
schedule initial events using the SetTimer() method de-
clared in the typeii class. Exponential() is another method
declared by typeii to create a Poisson distribution.

void Source::Start() {
 m_seq_number=0;
 SetTimer(wait, Exponential(interval));
}

 The Create() function is bound to the timer wait, so it
is invoked every time the timer becomes activated. Its tasks
include scheduling the event representing the next packet
to be generated and delivering the current packet to the
output port. Finally, it returns a true value. This is required
for all member functions that are bound to input ports or
timers. A true value indicates that the function has finished
successfully.

bool Source::Create(simtime_t time,int) {
 SetTimer(wait, time+Exponential(interval));
 Packet packet;
 packet.arrival_time = time;
 out.Write(packet,time);
 return true;
}

4.3 FCFS Server

The FCFS component is declared as a template class with a
template parameter that has the type of packets that the
FCFS server can hold. By instantiating it with different
packet types, the FCFS component is capable of holding any
packets. It could have been designed particularly for packets
of type Packet, but that would prevent it from being used in
a different simulation for any types other than Packet. This
exemplifies the great benefit of using C++ template.

The FCFS component contains an input port and an
output port, to receive and sent packets, as well as a timer
to simulate the service of packets. A public member vari-
able service_time specifies the average service time each
packet will receive. There are three private member vari-
ables: m_busy reflects the status of the server; m_queue
stores the packets waiting to be serviced; in_service is the
packet that is currently being serviced.
template < class DATATYPE >
class FCFS : public typeii {
public:
 void Setup(const char*);
 void Start(){m_busy=false;}

 double service_time;
 inport < DATATYPE > in;
 ouport < DATATYPE > out;
 timer wait;
private:
 bool m_busy;
 std::deque<DATATYPE> m_queue;
 DATATYPE in_service;

 bool Arrive(const DATATYPE& packet,
 simtime_t, int index);
 bool Depart(simtime_t, int index);
};

Again, the Setup() function sets up every port and
timer.

template < class DATATYPE >
void FCFS <DATATYPE>
 ::Setup(const char * name) {
 typeii::Setup(name);
 in.Setup(this,&FCFS<DATATYPE>::Arrive,”in”);
 out.Setup(this,”out”);
 wait.Setup(this,&FCFS<DATATYPE>::Depart,
 “next”);
}

 The Arrive() function is called when a packet arrives.
Notice that packets are passed by reference to avoid vari-
able copying overhead. The const keyword prevents the
packet from being modified accidentally in the function.
 The value of m_busy denotes whether or not the server
is busy serving another packet. If it is not, the arriving
packet is put into service and a service time is generated
randomly. If it is, this packet is simply put into the queue.

template < class DATATYPE >
bool FCFS<DATATYPE>::Arrive(
 const DATATYPE& packet, simtime_t time,int){
 if (!m_busy){
 in_service=packet;
 SetTimer(wait,time +
 Exponential(service_time));
 m_busy=true;
 }
 else
 m_queue.push_back(packet);
 return true;
}

 The Depart() function is called when the timer wait
becomes activated. It outputs the current packet in service,
and then checks if there are any other packets waiting in
the queue.

template < class DATATYPE >
bool FCFS <DATATYPE> :: Depart(
 const trigger&, simtime_t time, int) {
 out.Write(in_service,time);

Chen and Szymanski

 if (m_queue.size()>0){
 in_service=m_queue.front();
 m_queue.pop_front();
 SetTimer(wait,time +
 Exponential(service_time));
 }
 else
 m_busy=false;
 return true;
}

4.4 Sink

In the Sink component, we collect the time that each packet
spent in the FCFS server. It only has one input port and no
timer. The two private member variables are used to record
the cumulative delay time and the number of packets re-
ceived, respectively. Start() is called when the simulation
begins, and Stop(), in which we print out the result, is called
when the simulation reaches the preset ending time.

class Sink : public typeii {
private:
 double m_total;
 int m_number;
public:
 inport< Packet > in;

 void Start(){
 m_total=0.0;
 m_number=0;
 }
 void Setup(const char* name) {
 typeii::Setup(name);
 in.Setup(this,&Sink::Arrive,”in”);
 }
 void Stop(){
 printf(“Average delay is: “
 “%f (%d packets) \n”,
 m_total/m_number, m_number);
 }
private:
 bool Arrive(const Packet& packet,
 simtime_t time,int) {
 m_total+=time–m_packet.arrival_time;
 m_number++;
 return true;
 }
};

4.5 Constructing the Simulation

The simulation class is derived from the CostSystem class.
Components are instantiated as private member variables.
Two public member variables are two simulation parame-
ters that determine the arrival rate and the service rate.

class MM1 : public CostSystem {
public:
 void Setup(const char*);
 double interval;
 double service_time;
private:
 Source source;
 FCFS <Packet> server;
 Sink sink;
};

 The simulation has a Setup() function too. It first maps
component parameters to simulation parameters, and then
invokes the Setup() function of every component. After
that, it connects pairs of input and output ports. Finally, the
Setup() function of the base class is invoked.

void MM1::Setup(const char*name) {
 source.interval=interval;
 server.service_time=service_time;
 source.Setup(“source”);
 server.Setup(“server”);
 sink.Setup(“sink”);
 Connect(source.out,server.in);
 Connect(server.out,sink.in);
 CostSystem::Setup(name);
}

4.6 Running the Simulation

To run the M/M/1 simulation, first we need to instantiate
an M/M/1 simulation object, and then choose the parame-
ters. StopTime is a default parameter indicating the ending
time of the simulation. The Setup() function must be in-
voked prior to the simulation.

int main(int argc, char* argv[]) {
 MM1 mm1;
 mm1.interval=1;
 mm1.service_time=0.5;
 mm1.StopTime=1000000.0;
 mm1.Setup(“mm1”);
 mm1.Run();
 return 0;
}

4.7 Reusability in COST

COST has been used for other, far more complex, simula-
tions , like queuing networks, computer networks and PCS
simulations. These examples can be found at
<http://www.cs.rpi.edu/~cheng3/cost>. It is
targeted at the simulation modelers who have beginning or
intermediate knowledge of the C++ language. Once they
understand the basic component-port model and its support
classes, it is fairly easy for them to write models with
COST, and, more importantly, to take the component-
based approach to model the system to be simulated.

Although some simulators, like CSIM (Schwetman
1986), may simulate the M/M/1 system in perhaps tens of
lines of code, COST does not necessarily imply longer code.
First, we can see that a large portion of the COST code is
straightforward and suitable for code generation. Second,
COST components are highly reusable. For instance, the
FCFS component can process any types of packets. Even the
Source and the Sink components can be modified with few
changes into template classes to take any type of packets

http://www.cs.rpi.edu/~cheng3/cost

Chen and Szymanski

with a field arrival_time. Once a component repository with
a wide range of models is developed, the modeler will be
able to construct a simulation just by connecting compo-
nents obtained from the component.

5 SUMMARY

COST is a discrete event simulator written in C++ that
embodies a component-oriented modeling style. At the
heart of COST is a component-port model, which is distin-
guished from many developed component models by the
notion of output ports. Our simulation component classifi-
cation allows us to extend such a component-port model to
make it well suited for discrete event simulation by intro-
ducing the implicit timestamp mechanism and timers.

The most distinct feature of COST is the component
reusability. Components developed for one simulation can
be effortlessly reused in other simulations. With an exten-
sive set of library components, writing simulation in COST
could be as simple as dragging a few components from the
library and connecting them, as some commercial simula-
tors do. The extra advantage of COST is that building
components from scratch is simple.

The only inefficiency of COST simulations comes
from the message exchange between components, which
may involve several layers of function calls and a few vir-
tual function table lookups. However, this is rather the de-
ficiency of the C++ language, not of the underlying com-
ponent-port model, because theoretically such overhead
can be eliminated during the configuration phase. Had we
had a truly component-oriented language, COST would
have achieved perfect efficiency.

ACKNOWLEDGMENT

The work presented in the paper has been partially sup-
ported by NSF Grant KDI- 9873138. The content of this
paper does not necessarily reflect the position of policy of
the U. S. Government; no official endorsement should be
inferred or implied.

REFERENCES

Austern, M. H., 1999. Generic Programming and the STL.
Addison-Wesley.

Chen, G., and Szymanski, B. K., 2001. Component-Based
Simulation. Proc. 2001 European Simulation Multi-
Conference, pp. 68-75. SCS Press.

Ferenci, S., Perumalla, K. S., and Fujimoto, R. M., 2000.
An Approach for Federating Parallel Simulators. Proc.
4th Workshop on Parallel and Distributed Simulation,
pp. 63-70.

Fishwick, P. A., 1992. SIMPACK: Getting Started with
Simulation Programming in C and C++. Proc. 1992
Winter Simulation Conference, ed. J. J. Swain, D.
Goldsman, R. C. Crain, and J. R. Wilson, pp. 154-162.

Gomes, F., Franks, S., Unger, B., Xiao, Z., Cleary, J., and
Covington, A., 1995. SIMKIT: A High Performance
Logical Process Simulation Class Library in C++.
Proc. 1995 Winter Simulation Conference, ed. C.
Alexopoulos, K. Kang, W. R. Lilegdon, and D.
Goldsman, pp. 706-713.

Law, A. M., and Kelton, W. D., 1982. Simulation Model-
ing and Analysis. McGraw-Hill.

Musser, D. R., and Saini, A., 1996. STL Tutorial and Ref-
erence Guide. Addison-Wesley.

Schwetman, H., 1986. CSIM: A C-Based, Process-
Oriented Simulation Language. Proc. 1986 Winter
Simulation Conference, ed. J.Wilson, J. Henriksen,
and S. Roberts, pp. 387-396.

Shanmugan, K. S., and LaRue, W., 1992. A Block-
Oriented Network Simulator (BONeS). Simulation,
58:2, pp. 83-94.

AUTHOR BIOGRAPHIES

GILBERT CHEN is a graduate student at the Department
of Computer Science, Rensselaer Polytechnic Institute. He
received an MS and a BS in electronic engineering from
Tsinghua University, P.R. China. His research interests in-
clude parallel discrete event simulation and component-
based software development.

BOLESLAW K. SZYMANSKI is a Professor at the De-
partment of Computer Science, Rensselaer Polytechnic In-
stitute. He received his Ph.D. in Computer Science from
National Academy of Sciences in Warsaw, Poland, in
1976. Dr. Szymanski is an IEEE Fellow and a member of
the IEEE Computer Society, and the ACM for which he
was a National Lecturer.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 776
	02: 777
	03: 778
	04: 779
	05: 780
	06: 781
	07: 782

