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ABSTRACT 

Analyzing systems by means of simulation is necessarily a 
time consuming process.  This becomes even more pro-
nounced when models of multiple systems must be com-
pared.  In general, and even more so in today’s fast-paced 
environment, competitive pressure does not allow for wait-
ing on the results of a lengthy analysis.  That competitive 
pressure also makes it more imperative that the processing 
performance of systems be seriously considered in the sys-
tem design.  Having a generic model allows one model to 
be applied to multiple systems in a given domain and pro-
vides a feedback mechanism to systems designers as to the 
operational impact of design decisions. 
 
1 INTRODUCTION 

The typical scenario for a simulation study entails develop-
ing a specific model of an existing system for the purpose 
of analysis.  This begins with the capturing of knowledge 
by the simulation analyst from the system expert, including 
information on system structure and data, and continues to 
the modeling of that information and data at some level of 
abstraction, the running of model scenarios, and the subse-
quent analysis of the resulting model output data.  Typi-
cally, this is accomplished of a system that is in existence, 
or nearly so, that has the requisite details known by which 
to construct and run a simulation. 

Conducting a simulation study becomes more compli-
cated under two conditions: first, when details of the sys-
tem are as yet unknown because it is early in its design 
phase, and second, when two or more competing systems 
are to be compared.  It is important to emphasize that this 

  

second condition is different from the comparison of com-
peting configurations of the same system.  In comparing 
competing configurations, the same model may be used; 
however, in comparing competing systems, different mod-
els are typically required.  This necessitates the develop-
ment of separate simulation models of  the competing sys-
tems with all the time and effort involved in each.  In 
addition, it is important in these circumstances to ensure 
the simulation models are constructed at equivalent levels 
of detail and abstraction to avoid introducing dissimilar 
perturbations to one model over another. 

The problem here is that it can take months to study a 
system by the use of simulation modeling.  Developing 
multiple system-specific models becomes problematic due 
to time and budget constraints.  Some of the steps involved 
in simulating multiple systems will be shared because of 
the common objectives; however, many of the most time 
consuming steps would be unique to each system modeled.  
Therefore, the time for modeling and studying each indi-
vidual system becomes additive to the overall effort. 

In a majority of cases, design projects are not willing 
to wait for lengthy analyses.  Especially in today’s com-
petitive global marketplace, months of analysis induces too 
large a lag in production capability.  Additionally, techni-
cal and market growth and change can make a system ob-
solete prior to operation.  Finally, if system performance 
analysis is too lengthy to be useful, the opportunity to in-
fluence the design of a system with respect to the opera-
tional impacts a particular design decision is eliminated.  
On, the other hand, if it is possible to show the operational 
implications of design alternatives through simulation in a 
timely manner, it may be possible to influence the design 
towards a more operational system.  The benefit is that 
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these operational improvements/benefits will be experi-
enced iteratively throughout the operational life of a sys-
tem.  From the life-cycle perspective, operational costs far 
exceed those of design.  So, preventing, eliminating, or re-
ducing the recurring costs of a system will be realized in 
each year of operation and may far out-weigh the related 
design costs. 

The question is then, how to develop a valid and 
credible model  

 
• Of a non-existent system or a system in design, 
• In a timely manner, and 
• Compare it with similar models of competing sys-

tems 
 

To this end, it is helpful to start with a baseline or bench-
mark, or at least a similar system. 

One consideration is to develop a generic simulation 
environment of the domain at hand.  Because this approach 
is more general, additional care must be taken in its devel-
opment to ensure its applicability to all instances in the cho-
sen domain, while also capturing enough specific system de-
tail so as to be credible.  This has two benefits.  First, though 
a more generally applicable model is more difficult to con-
struct and validate, the result may be used (amortized) across 
more than a single implementation.  Second, the time re-
quired in the simulation study should be reduced because the 
model need only be populated with data from various sys-
tems and not constructed from scratch. 

 
2 LITERATURE REVIEW 

The research accomplished in the area of generic simulation 
models falls into two primary areas: that of developing mod-
els applicable to more than one system and of simulation 
models that are uniquely composed from a library of previ-
ously developed modules.  Both approaches have their asso-
ciated benefits and detriments, but those are strictly relative 
to the purpose to which each method is applied. 

One of the risks in developing systems of any kind, and 
simulations of systems are no exception, is requirements 
creep, i.e., the steady growth of requirements as the system is 
being developed.  Projects subject to this single ailment al-
most always exceed their projected budget and schedule, and 
many do not continue to fruition.  This is experienced in 
simulation systems as developing beyond the initial required 
level of abstraction.  In other words, lower levels of detail are 
added beyond that required to, for example, experiment with 
the overall throughput of the system under study.  Two ways 
of avoiding this pitfall and producing the results of a simula-
tion study in a timely manner is by strictly enforcing only the 
requisite level of detail or constricting the scope of study to a 
manageable size.  To this end, Brown and Powers (2000) 
limit their F-16 Air Force Wing simulation model to those 
components and processes required for operations and main-
tenance.  To further concentrate their efforts, the focus was 
specific to the maintenance that had a critical impact on op-
erations.  This “simulation in a box,” as they call it, is generic 
in its applicability to something on the order of an Air Force 
wing operation.  Other important issues in any type of simu-
lation modeling that are discussed include the following. 

 
• Focusing on important factors – this helps to man-

age the complexity of the model and helps to 
keeps costs in-line. 

• Simplifying input – the input of knowledge and 
data to the generic simulation model should be 
easy for the user and widely available 

• User-friendly output – graphs and charts should 
be what is needed and useful to the user 

 
Mackulak, Lawrence, and Colvin (1998) also make the 

case for generally applicable models that can be configured 
to more specific cases in the design analysis of Automated 
Material Handling Systems (AMHS).  Such design envi-
ronments require the quick turnaround of analyses to sup-
port the production of their AMHS’s at rates up to one to 
two per week.  The more traditional development of a 
simulation model specific to a single system simply does 
not meet the need of this environment.  The IntelliSim pro-
ject (Mackulak and Cochran 1990) indicated that 45% of a 
simulation project’s effort is in model building, formula-
tion, and translation.  Therefore, implementing a generic 
model that is applicable to many systems can save a sig-
nificant portion of time in a simulation study.  In addition, 
such models, once developed, are already debugged and 
can be optimized for quicker run times. 

The area of composing simulation models from a li-
brary of previously developed modules is generic at the 
module level but is more specific to the system under 
study.  This method too can save time and money in a 
simulation study, and result in a system that is less abstract 
than a wholly generic simulation.  This has the added bene-
fit of being easier to validate because the resulting model 
can be more recognizable than the system-level generic 
model.  Many considerations between the two methods are 
similar, but some are applied at the system level, while 
others are applied at the module level. 

The Winter Simulation Conference of 2000 had a ses-
sion on composable and reconfigurable simulations.  All of 
the papers (Diaz-Calderon, A., Paredis, C. J. J., and Khosla, 
P. K. 2000; Kasputis, S. and Ng, H. C. 2000; Davis, P. C., 
Fishwick, P. A., Overstreet, C. M., and Pegden, C. D. 2000; 
Son, Y. J., Jones, A. T., and Wysk, R. A. 2000) addressed 
the importance of less expensive and quicker simulation 
analysis that is possible with this type of simulation devel-
opment and that also promotes model or more correctly 
module reuse.  The requirement for this approach, however,  
is that such a library of modules must exist.  The purpose of 
this study is directed towards a system level generic model. 
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3 METHODOLOGY 

Implementation of the steps in a simulation study can take 
on many forms and are discussed in the textbooks of discrete 
event simulation.  However, several key steps become im-
portant when attempting to construct a simulation model that 
is generic to all the systems in a broader domain. 

The first step is to select the domain of interest.  The 
considerations here are similar to those of addressing the 
problem to be analyzed but with a broader perspective.  
The problem and domain must be identified to adequately 
address the objectives of the study.  It is important to in-
clude only the requisite details of the systems in the do-
main.  It is easy when working with system experts to in-
clude lower levels of detail than necessary for the 
objectives of the simulation project.  Keeping only the ap-
propriate level of detail is another aspect of abstraction in 
modeling.  On the other hand, a domain that is too broad 
can lead to exceedingly large models that become difficult 
to understand and maintain. 

The second step is to draw a conceptual level diagram 
of a generic system in the domain.  These diagrams show 
the processes of the systems and their interrelationships as 
entities flow through the system (an example is shown in 
the following section).  Developing a generic model from 
scratch can be overwhelming (Brown and Powers 2000) 
and so it can be beneficial to start with a representative 
system that is subsequently broadened to the domain level.  
Once a system specific conceptual diagram is constructed, 
careful consideration of the processes and entities is re-
quired to make the shift to the generic level.  This is the 
point where model abstraction increases and face-
validation with system and domain experts becomes criti-
cal.  Implementing abstraction in a model is the realm of 
the simulation analyst, but is typically contrary to the 
thinking of system experts.  In order to keep model size 
and focus under control, communication of system abstrac-
tion is crucial to maintaining model validity from the per-
spective of the system expert and is always an iterative 
process.  The trick here is to include enough detail to be 
useful, but have enough abstraction to be generic. 

Once the conceptual diagram is completed, it should 
be a fairly straight forward task to identify the constructs 
that make up the system and relate them to the constructs 
of a simulation model.  The constructs of a system process 
are, generically, things that flow through the system, ac-
tions that occur to those things, and assets that are required 
to perform the actions.  These system or domain constructs 
must be mapped to the constructs of a simulation model 
(Table 1) for the translation of the system/domain into a 
computer simulation model. 

Translating the conceptual model into a computer 
simulation model is at this point typical to other simulation 
studies and so is mentioned only for completeness.  Proc-
esses, entities, and resources are defined and related in the
 

Table 1: Simulation Model Constructs 
Entity 
• Arrival time model 
• Attributes 
• Sequence/Routing 

− Per entity type 
− Time 

Process (Server) 
• Process time model 
• Queue size & protocol 
• Resource requirements 
Resource 
• Types 
• States 
• Daily Schedules 
• Maintenance Schedules 
• Reliability (MTBF) 
• Quantity 
 
General Simulation/System Characteristic 
• Terminating 
• Steady State 

 
simulation environment of choice with generic variable 
names, so that specific system data may be loaded for run-
ning of the model with information from a system within 
the domain. 

Another key aspect of developing generic models is in 
the method of eliciting the requisite information from the 
now broader scope of many different system experts within 
the selected domain.  More traditional simulation model 
development obtains this information on a very limited 
scale, specific to one system.  What is interesting at this 
point is to elicit this same information, but of various sys-
tems that may use very different terminology.  One of the 
tasks of any product or service is to get the product used.  
To this end, the user interface must allow the system ex-
perts to enter information into the generic simulation using 
terminology with which they are familiar.  Subsequently, 
this same system specific terminology should also be used 
in displaying the output results from running the model.  
The user interface must, therefore, provide a structure by 
which information is solicited, independent of the underly-
ing generic model.  Entry of this information should allow 
specification of specific system components in the termi-
nology native to that system.  Because this generic envi-
ronment will be used on many different systems, a simple 
and intuitive user interface is imperative. 

This methodology resulted from the development of a 
generic simulation model of reusable launch vehicles 
(RLVs) for the National Aeronautics and Space Admini-
stration (NASA).  This example is discussed in the follow-
ing section. 
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4 AN EXAMPLE GENERIC MODEL 

NASA’s Space Launch Initiative (SLI) program is cur-
rently studying various architectures for the next genera-
tion reusable launch vehicle (RLV).  Several competing 
companies are developing designs that address the aggres-
sive requirements of that program in the area of cost, reli-
ability (safety), and availability with the goal of having 
magnitudes improvements over the first generation RLV 
(i.e., the Space Shuttle).  When these proposals are submit-
ted, it is necessary to compare the competing designs by as 
similar means as possible, and in a timely manner. 

The concept of availability is directly related to a 
specified launch rate, and is also a direct factor in the eco-
nomical case for any launch vehicle.  Because of the great 
expense of acquisition and operation of space launch vehi-
cles, one way to justify the expenditure is with the ability 
to amortize those costs across a greater number of 
launches.  The maximum launch rate achieved by the 
Space Shuttle was approximately 10 flights per year, but 
this was not for a sustained period.  So, one way to im-
prove the economical argument for the next generation 
RLV is to increase the number flights that vehicle is able to 
make in a given year.  A way, one may argue, the best 
way, to analyze the operations performance of a RLV is by 
discrete event simulation (DES). 

For any system, the issue of performance is multifac-
eted and may be viewed on three general levels.  The first is 
does it work at all.  This might be considered the physics 
level of performance in that the system is able to work to any 
degree (e.g., the system does something, the system works 
correctly).  Secondly, at the engineering level, the concern is 
for how well the system works.  Systems always have some 
level of performance specification to which they are de-
signed (e.g., a communication system must transmit data at 
so many bits per second, a structural system must withstand 
so much force, a rocket must produce so much thrust in or-
der to lift so much weight).  The world of design engineering 
is saturated with such thinking, and for some systems this is 
to the exclusion of operations performance. 

This is also typically dependent on the maturity of a 
given technology and the market demand.  The Space Shut-
tle is a first generation RLV and so the primary focus of the 
program was to simply make it work to some level of engi-
neering specification.  To this end, it is successful with over 
100 flights to its credit.  However, the operations perform-
ance, that is, the desired flight rate and resource require-
ments for turnaround processing, is not what was desired.  
Program requirements for the second generation RLV place 
a much greater focus on operational performance. 

The issues precipitating the need for a generic RLV 
simulation model were to analyze the operations perform-
ance of several architectures in a timely manner, and to 
provide feedback to the design community as to the opera-
tional ramifications of design decisions.  To this end, the 
Generic Simulation Environment for Modeling Future 
Launch Operations (GEMFLO) was developed. 

Following the methodology of the previous section, 
the first task is to determine the domain of interest.  When 
starting this project, the goal was to develop a generic 
model applicable to any reusable launch vehicle or launch 
vehicle with both reusable and expendable components.  
Upon completion of the first phase of the project, it is pos-
sible that GEMFLO can simulate any launch vehicle turn-
around process (reusable or expendable), but this has not 
yet been verified. 

In developing the generic conceptual flow diagram, 
the diagram used in developing the simulation model of 
Shuttle ground processing (Cates, Steele, Mollaghasemi, 
Rabadi 2002) was used as a starting point.  This proved a 
very useful exercise, required several iterations, and re-
quired some additional abstraction than would be found in 
a model of a single system.  What resulted from this ex-
pansion from specific system level to domain level is an 
understanding of the processes that are generic to any 
launch vehicle flight hardware element (FHE).  Table 2 
lists the processes in order, arbitrarily starting with ascent.  
The conceptual flow diagram is shown in Figure 1. 

 
Table 2: Generic Flight Hardware Element Processes 

1. Ascent 
2. Staging 
3. On Orbit 
4. Landing Site Decision 
5. Descent 
6. Landing 
7. Post-Flight Safing 
8. Transport 
9. Post-Flight Processing 
10. Depot Maintenance Decision 
11. Normal Processing 
12. Integration 
13. Launch 
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Figure 1: Generic RLV FHE Conceptual Flow Diagram 
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It is important to point out one manner of abstraction in 
this diagram for reusable or partially reusable launch vehi-
cles.  Taking the Space Shuttle as an example, the Solid 
Rocket Boosters (SRBs) and External Tank (ET) do not 
reach orbit (i.e., reach the orbital operations process).  Yet, 
after staging of the individual FHEs, they all show the simi-
lar flow of going “on orbit.”  This is a level of abstraction 
required for this model to be generic, but is compensated by 
the fact that zero process times are inserted for those generic 
processes that in reality do not occur.  This keeps the overall 
flow generic, but does not affect the statistics kept while 
running the model.  As another example, some future RLV 
may have a single stage to orbit architecture.  In the concep-
tual flow, integration of FHEs and staging during ascent 
would not occur in reality, but in the running model, they 
would occur with zero delay or process time. 

With the conceptual flow diagram in hand, the RLV 
processing constructs are enumerated.  These include 
FHEs, ground processes, and ground resources, examples 
of which are shown in Table 3.  This information is what is 
translated into a generic simulation. 

 
Table 3: Generic RLV Simulation Construct Examples 

FHEs Ground Resources for 
Crew Vehicles 
Payload Vehicles 
Boosters 
Tanks 
Payloads 

Processing 
Integration 
Launch 
Landing 
Retrieval 
Safing 

 
In conjunction with the development of the generic 

simulation model, a mechanism for eliciting the requisite 
information from individual system experts to input to the 
simulation must also be developed.  As previously dis-
cussed, this is a crucial part of the generic system devel-
opment in that the intuitive appeal of the product will go a 
long way to getting it used, thus, amortizing its longer de-
velopment time across a greater number of customers.  For 
this particular product a Visual Basic user interface was 
developed.  It starts out with generic RLV terminology in 
requesting the number of FHE included in a single RLV, 
but allows the naming of those elements and other related 
resources to user specific instances.  In this way the results 
of a simulation run will show, for example, utilization of 
an Orbiter Processing Facility for processing the Shuttle 
instead of just a generic processing resource.  The underly-
ing model is generic, but it is populated with system spe-
cific information so that the results are reported as if a sys-
tem specific model were developed. 

One measure of validation of this system was to take 
the data from a previous simulation model of Space Shuttle 
processing and use it as input to this generic RLV model.  
The results of both the generic and specific models were 
the same.  Though this is encouraging, it is as yet only one 
data point.  Continuing use and development of this ge-
neric system will refine these results. 

One difference between the specific Shuttle simulation 
and the generic RLV simulation is that the FHEs were 
treated differently in each model.  The previously devel-
oped Shuttle model treated the FHEs as entities that were 
processed by the system.  For example, the orbiter enters 
the system and is processed in the orbiter processing facil-
ity.  In the generic model, FHEs are treated as resources 
that are requested by certain processes to service the mis-
sion entities that are created by a defined input process.  
This second approach is a more accurate and more useful 
rendition because it allows the collection of utilization sta-
tistics on the FHEs and the experimentation with the quan-
tities of FHEs in the fleet.  This will be a great assistance in 
determining the correct complement of flight and ground 
resources to meet a given mission manifest. 

 
5 DISCUSSION 

The investment in generic models of many systems within 
a given domain appears worthwhile, with supporting cases 
from the F-16 Wing and AMHS venues.  The case for the 
generic RLV simulation model will be made with applica-
tion to the forthcoming next generation RLV designs. 

Comparing the generic development process with that 
of specifically focused simulation models points out the 
values of each approach.  This comparison of the different 
aspects is given in Table 4. 

It is especially beneficial to organize and communicate 
the pertinent aspects of operations performance to the de-
sign community.  From the design process, bad decisions 
are paid for and good decisions are reaped in the much 
longer operations life-cycle of any product.  Generic mod-
eling is one method that can assist in communicating the 
operations ramifications of design decisions. 

 
6 CONCLUSIONS 

The longer development time of generic models is out-
weighed by the benefit of amortizing the use of those mod-
els across many systems in the chosen domain and the 
shortened experimentation phase once the mode is devel-
oped.  Generic models also offer the opportunity to organ-
ize operationally pertinent information on systems in a 
domain so they may be compared on a more level playing 
field than is easily possible with differing models.  The ad-
dition of domain specific details could enhance the fidelity 
of generic models if deemed necessary.  Specific models 
do provide an easier path to higher fidelity analyses and 
more representative animation, which can be crucial to ob-
taining face validity. 
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Table 4: Specific & Generic Aspect Comparison 
Aspect Specific Sim. Generic Sim. 
Development Focused on a sin-

gle system 
Attempts for gen-
eral application 
make development 
more complicated; 
requires more time 

Domain Narrow – Single 
System 

Broader 

Abstraction More system 
specific – can get 
as detailed as de-
sired 

More abstract rela-
tive to any one sys-
tem 

Animation As much as de-
sired by devel-
oper & customer 

Only minimally 
present unless 
manually added for 
each specific sys-
tem addressed 

Validation Standard simula-
tion techniques 

More difficult to 
validate due to 
higher degree of ab-
straction 

Use Can be easier 
due to focusing 
on a single sys-
tem. May be 
more difficult if 
ease of user input 
not considered. 

Most likely easier 
due to the need for 
structured knowl-
edge capture in the 
generic venue. 

Invested 
Time 

Development 
time is shorter 
but must be re-
peated for each 
system modeled 

Development time 
is longer but has 
broader application 
(Mackulak, et al. 
1998). Once devel-
oped, time required 
of the simulation 
study is shorter than 
that required in de-
veloping and ana-
lyzing the single 
system simulation 
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