
Proceedings of the 2002 Winter Simulation Conference 
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. 
  

 
 

ONE-TO-ONE MODELING AND SIMULATION OF UNBOUNDED  
SYSTEMS: EXPERIENCES AND LESSONS 

 
 

Rohyt V.Belani 
Saumitra M.Das 

 
Information Networking Institute 

Carnegie Mellon University 
Pittsburgh, PA 15213,U.S.A. 

 David Fisher 
 

Software Engineering Institute 
Carnegie Mellon University 

Pittsburgh, PA 15213, U.S.A. 

   
   
ABSTRACT 
 
Conventional computer modeling and simulation have fo-
cused on computer objects that represent elements of the 
real world.  In this paper we present a new approach to 
modeling and simulation in which authors describe the 
characteristics of the world being simulated without speci-
fying how they are to be represented as computer objects. 
This approach is enabled by the EASEL modeling and 
simulation system (EMSS). Furthermore, this approach 
does not assume global visibility and centralized control, 
which are inherently inaccurate assumptions for un-
bounded systems (in which participants have incomplete or 
imprecise information about the system as a whole). Be-
cause this approach allows models to be one-to-one with 
the real world, models should be more accurate and simu-
lations more realistic. The discussion includes the chal-
lenges faced in the modeling and simulation process of the 
distance vector IP routing protocol over a large-scale 
communications network, and the language features in-
tended to address these problems. 
 
1 INTRODUCTION 
 
The process of simulation is used to yield realistic results 
for analysis of a system or protocol before its actual de-
ployment in the real world. The success of the simulation 
process relies heavily on the accuracy of the underlying 
model of the system, which can be measured by its prox-
imity to reality. Thus accuracy of models is imperative for 
successful design and implementation of the real world 
system being simulated. The accuracy of the model is of 
special importance for systems that are difficult to proto-
type and experiment with. An example of one such type of 
system is large-scale communication networks. Thus, they 
were chosen to present our ideas. 

Large-scale communication networks are essentially 
unbounded systems, characterized by distributed adminis-
trative control without central authority. They have limited 

  

visibility beyond the boundaries of local administration, 
and at any individual node, have incomplete information 
about the network’s topology and component functions. 
We found an emergent algorithm-based approach ideal to   
model such systems realistically, as they produce global 
system-wide properties that emerge from the collective ac-
tions of the participating nodes. 

The rest of this paper is structured as follows. Section 
2 describes the challenges faced in modeling and simulat-
ing unbounded systems. Section 3 describes the advan-
tages, based on our experiences, of using EASEL (Emer-
gent Algorithm Simulation Environment and Language), 
an emergent algorithm-based language, for modeling and 
simulating such systems. Section 4 contains a detailed de-
scription of our model of a large-scale communication 
network and the simulation of the distance vector routing 
algorithm on it. Section 5 concludes the paper, ratifying the 
efficacy and realism provided by the one-to-one approach 
to the model and simulation. 
 
2 UNBOUNDED SYSTEMS SIMULATION: 

CHALLENGES AND APPROACHES 
 
Accurate simulation of unbounded systems has been a hard 
to attain goal in traditional simulation. Participants in un-
bounded systems, whether human or computerized, have 
only inaccurate and imprecise information about global 
state. Boundaries are blurred and constantly changing in 
such systems between participants. Such systems have no 
known or effective means of central control. Systems that 
resemble this description are those of large-scale critical na-
tional infrastructures, the Internet and most socio-economic 
and biological systems (Duego, Oppacher 1993). The critical 
concept to understand is that unbounded systems contrast 
dramatically with the assumptions such as closed nature cen-
tral control, which are used to model them. 

An effective approach to modeling unbounded systems 
is emergent algorithms. An emergent algorithm is any com-
putation that achieves formally or stochastically predicable 

 



Belani, Das, and Fisher 

 

global effects, by communicating directly with only a 
bounded number of immediate neighbors and without the 
use of central control or global visibility. Emergent algo-
rithms, unlike conventional algorithms, operate in the ab-
sence of complete and precise information, central control 
and hierarchical structure. Emergent and genetic algorithms 
share the characteristic of being self-stabilizing (Kutten, 
Patt-Shamir 1997). They also frequently share many of the 
environmental constraints of unbounded systems. These in-
clude direct communications only with local neighbors, ab-
sence of central control, and the inability of individual par-
ticipant components to view the state of the system from a 
global perspective. Emergent algorithms have the potential 
to generate and maintain global properties in the context of 
unbounded systems whether or not those properties can be 
generated locally in individual components. 
 
3 EMERGENT ALGORITHMS AND EASEL 
 
Current simulation systems do not produce accurate pre-
dictions of the behavior of unbounded systems. By defini-
tion, unbounded systems are incompletely and imprecisely 
defined. Thus, a simulation of an unbounded system must 
be able to produce accurate results based only on incom-
plete information. However modeling in the current 
framework requires complete information, which intro-
duces assumptions and inaccuracies. Equally important, all 
object-based models (both physical and computerized) are 
inherently inaccurate because they are based on complete 
representations as objects. This might be acceptable when 
dealing with small numbers of nodes or when great care is 
taken to differentiate between which modeling results are 
likely to be valid. Such remedies seldom, if ever, succeed 
in differentiating inaccurate results when modeling com-
plex or large-scale systems. Furthermore, as the number of 
subsystems in a model increases, the inaccuracies of each 
subsystem pervade the whole after a few iterations and 
guarantee that all simulation results will be inaccurate. 

This may account for the pervasive failure of large-
scale simulations to produce accurate results. These prob-
lems are aggravated in unbounded systems where the num-
bers of components are very large and a primary purpose 
of simulation is to accurately predict the global effects of 
local activities. Because accuracy and completeness are not 
simultaneously achievable when describing the physical 
world, accurate simulation is feasible only if the simulator 
can guarantee accurate results from accurate but incom-
plete specifications. 

The use of EASEL as a modeling and simulation tool 
for unbounded systems was an obvious choice, as it allows 
simulation of thousands of semi-autonomous actors coop-
erating in a simulated world without global visibility or 
central control. It was preferred to discrete event simula-
tion languages as it supports a loosely coupled distributed 
network model in contrast with the latter’s shared memory 
multiprocessor or multiprogramming models with inter-
leaved semantics. This loosely coupled multiprocessing 
model with near neighbor communication with parallel 
semantics, as supported by EASEL (Fisher 2000), was 
considered more appropriate for modeling unbounded net-
works. The use of the Star-Logo language (Resnik 1995), 
which is intended for simulating emergent-like algorithms, 
was also considered for this purpose. However, it requires 
that simulations be expressed in terms of central control 
and global visibility, which are often in contrast with the 
activities they simulate. 

EASEL follows the paradigm of property based types 
to provide accurate, but incompletely specified descrip-
tions of objects and processes in the real world. EASEL 
can be used to produce accurate conclusions about the ex-
amples from the physical world in contrast to physical 
models or automated simulations where models are con-
strained to be completely specified causing results to be 
accurate only for the model and not its representation in the 
real world. While traditional modeling and simulation sys-
tems answer all questions without a mechanism for user to 
determine which answers are accurate, EASEL reports 
what additional information is needed to continue toward 
an accurate result. 

Complete models are inaccurate. Any physical model 
cannot be an exact replica of the original, as in the minimal 
case it will differ from the original in its positional charac-
teristics. Completeness and accuracy are contradictory 
goals. The latter is achieved by promoting generality at the 
cost of being incomplete. Computer models also are usu-
ally complete thus introducing inaccuracy. They require 
specification even in the absence of formal knowledge of 
properties. This comes out of the fact that in conventional 
programming languages, representation of model compo-
nents is driven by the design of data structures rather than 
the description of the properties of the components. 

EASEL is a property-based language, which requires 
the author to specify properties of an actor rather than their 
computer representations. An actor is any active entity of 
an EASEL program, simulation, or processor within a 
simulation. At the program level (but outside of simula-
tions), actors act as multi-programmed tasks with the 
shared memory environment of a Macintosh application. 
Actors, in general, have a set of properties and behavior. 

This makes the model closer to real world as describ-
ing the properties of a real world system comes more natu-
rally to humans than their data structure representations. 

EASEL, unlike other simulation languages does not 
reduce the problem of mapping the real world representa-
tions to data structures. This aspect is implemented by the 
underlying system in the most appropriate manner. The 
user can then concentrate on the accuracy of the descrip-
tion. Due to this fact, the inaccuracy in the model is pro-
portional to the inaccuracy introduced during the descrip-



Belani, Das, and Fisher 

 

tion of properties, not the choice of data structures by the 
author of the simulation. 

Furthermore, simulations in conventional languages 
like C, C++ and Java simulate the effect of an event rather 
than the event itself. This widens the gap between the 
simulation and the real world activity, thus reducing accu-
racy. In conventional programming languages, we would 
require a large number of threads to simulate the action of 
each independent actor. However in EASEL each actors’ 
actions are simulated as described and the end result is that 
of the actual actions and not of the effects of the actions. 

EASEL also separates the model from the simulation 
(Fisher 1999) thus increasing the reusability of models. 
Breaking up the problem into these two domains further 
simplifies the simulation, as an author of a simulation need 
not know the complexity of the underlying model. It also 
facilitates the distinction between a user (one who runs the 
simulation to observe trends and behavior  critical to his 
needs) and an author (one who is a domain expert in a par-
ticular field and describes the properties and life cycle of 
the various components and their interactions with respect 
to a bounded set of neighbors). 

Another distinct advantage of EASEL is that inheri-
tance is implicit in the language as opposed to other object-
oriented languages where it is explicit and has to be speci-
fied by the user. This feature further reduces the complex-
ity for an author allowing him to concentrate on the de-
scription of the model and/or simulation rather than on the 
internal representations of the model components. 
 

positional: type is { 
 x : number := ?; 
 y : number := ?; 
} 

 
move (pos : positional , delta_x : number, 
delta_y : number): action is { 
 pos.x = pos.x + delta_x ; 
 pos.y = pos.y + delta_y ; 
} 

 
ant: actor type is {  
color : … 
 x : number : = …; 
 y : number : = …; 
} 

move (ant , <value> , <value>); 

 
The “ant” actor is a valid parameter to the move( ) ac-

tion as it meets all the constraints required by the positional 
type. This is different from conventional programming 
languages like C and C++ where the properties of posi-
tional type should be the only ones that ant should possess 
in order to be acted upon by the move function. This fur-
ther emphasizes the reusability of EASEL modules. 

Development of models and simulations were simpli-
fied by the fact that no type conversions are needed in 
EASEL (Fisher, Christie 2000). This is possible because 
EASEL permits operations between any types. For exam-
ple, an expression testing equality between a floating point 
number and an integer is valid without an explicit typecast. 
A more interesting example is as follows: 
 

router : actor type is { 
……………………… 
……………………… 
} 

 
mobile_router : actor type is { 
……………………… 
……………………… 
} 

 
Instances of these types can be tested for equality. The 

equality operates on the intersection of the properties of the 
two actors. 

The above property is especially useful in developing 
systems consisting of similar components with a certain 
degree of heterogeneity without completely redefining the 
components. An example of such a system is a communi-
cations network where certain routers maybe mobile and 
others stationary. The mobile routers can simply be defined 
as in the above example instead of completely redefining 
the properties of routers in the mobile_router actor type. 
This improves the reusability of previously defined actors. 

One of the drawbacks, however, is that a statement 
such as new  <actor type> triggers the EASEL translator 
to view the description of the actor type as specified by the 
author and decide a computer representation to best reflect 
the properties of the object. This translation results in the 
introduction of a certain degree of inaccuracy that is a 
function of model description inaccuracy. 
 
4 NETWORK SIMULATIONS USING  

EMERGENT ALGORITHMS  
 
In our model of an internetwork routers and links (between 
the routers) are modeled as actors. The need to model 
routers as actors was straightforward, as they have several 
inherent properties (e.g. position in the network, IP ad-
dress, list of connected links, input message queue and 
routing table) and distinct behavioral characteristics (e.g. 
message sending, message receiving and message process-
ing).  Links, on the other hand, could have been modeled 
as properties of the router actors. However, due to their 
dynamic bandwidth property, they were modeled as actors. 
Both router and link actors act independently of each other, 
thus, truly simulating the real world scenario.  

The routers are added incrementally to the network in 
a true sense; each one positioning itself in the network 
view, creating links with other existing routers as per the 
Waxman model (Zegura 1996) and sending control mes-
sages to their neighboring nodes advertising their presence 
in the network. The routers are depicted as circles centered 
at randomly generated x- and y-coordinates between the 



Belani, Das, and Fisher 

 

origin and the maximum possible x- and y-coordinates of 
the view. The link creation in accordance with this model 
produces realistic network topologies. The routers, next, 
initialize their routing tables according to the Distance 
Vector Routing  protocol (Bertsekas 1991). This task en-
tails that each newly added router request all its neighbors’ 
routing tables by broadcasting a req_neighbor_dist_vector 
message. The message is placed by the router on the mes-
sage queue of the links, which detect its presence and for-
ward it to the message queue of the destination router. This 
asynchronous message passing is accurately reflective of 
the real world, as it does not require an actor to wait for 
another. The recipient routers transmit their routing tables 
in the body of a   response_to_ req_neighbor_dist_vector 
message to the router specified by the source address of the 
req_neighbor_dist_vector message, in a similar manner. 
The recipient of the response message checks its existing 
routing table. If for any router in the sender’s routing table 
(i.e. in the message), there already exists an entry in the re-
cipient’s routing table, the entries are compared as per the 
following algorithm: 
 

if   number of hops in current entry > number of hops 
advertised by sender + 1 then 
  replace current entry for the appropriate router 
by new entry 
 

However if no entry exists in the recipient’s table for a 
particular router, for which an entry exists in the sender’s 
table, a new entry is added in the recipient’s table with the 
advertised number of hops incremented by 1. All the 
routers follow this procedure independently as and when 
they join the network. This is in contrast to most network 
simulation methodologies where a central authority con-
trols the router creation and initialization process.  

The routing of data messages (normalmsg) between 
routers was used as a means to validate the network model 
and Distance Vector Routing protocol simulation. The 
message packets were generated as per a Poisson process 
and destined to random nodes. 

The inherent dynamism of communication networks 
(Paxson et al 1997) was accounted for in the simulation by 
adding the routers one at a time in the network. This further 
emphasized the lack of need for central control and global 
visibility in the network as each router initialized its tables 
and operated independent of the operation of other routers. 

The simulation was carried out for a total of 100 
packet transmissions for randomly selected source-
destination pairs in a 50,000 node network. It was averaged 
over 10 runs to eliminate any discrepancies in the simula-
tion results. Each router, on an average, experienced a load 
of 31 data packets and 6 control packets during the course 
of the simulation.  

A limitation of the language worthy of mention is the 
finite number of routers that could be successfully sup-
ported. At the time of this simulation, EASEL could sup-
port a maximum of 75,000 actors. 

However, the integral conformance of the graphical and 
text output of the simulation with the protocol ratified the 
validity and accuracy of the simulation and network model.  
 
5 CONCLUSION 
 
The successful modeling of an unbounded system, namely 
a large-scale communication network, to truly reflect the 
activities of the various components in the real world rati-
fies the feasibility of this approach. The successful simula-
tion of the distance vector routing algorithm over this 
model further emphasizes the correctness of the model. 
The use of EASEL simplified the process of design and 
implementation of the model and simulation throughout 
the experience, as we as the authors could concentrate on 
the description of the properties of the various actors and 
their interactions rather than on the data structures to repre-
sent them in the computer. The problem was thus altered 
from being one of mapping the real world into computer to 
one of actually describing the real world, which we felt 
was closer to human instincts than the former.  
 
REFERENCES 
 
Bertsekas, G. Data Networks. Second Edition. Prentice-

Hall, Dec 1991. 
Duego, D. and F. Oppacher. Achieving Self-stabilization 

In a Distributed System using Evolutionary   Strate-
gies. Proceedings of the InternationalConference on 
Artificial Neural Networks and Genetic Algorithms. 
Berlin, GermanyApril 14-16, 1993.   

Fisher, D. A. Design and Implementation of EASEL: A 
Language for Simulating Highly Distributed  Systems, 
Dec 1999. 

Fisher, D. A. EASEL Survivability Simulation Sys-
tem.Impacts 2000, 15th Annual Software    Engineering 
Symposium. Washington DC,   September 18-21, 2000. 

Fisher, D. A. and A. Christie. EASEL- A new simulation    
language and its application to software   process. 
Prosim 2000. 

Kutten, S. and B. Patt-Shamir.  Time adaptive Self-
stabilization. Proceedings of the 16th Annual ACM 
Symposium on Distributed Computing. August 1997. 

Resnik, M. New paradigms for Computing, New  Para-
digms for Thinking. Computers and  Explanatory 
Learning ,A.diSessa,C.Hoyles And R. Noss,editors, 
Springer-Verlag (1995). 

Zegura, E. W. et al. How to Model an Internetwork. 
INFOCOMM’96. Fifteenth Annual Joint  Conference 
of the IEEE Computer Societies Networking the Next 
Generation, Proceedings IEEE, Volume 2,1996. Pages 
594-602 vol 2. 



Belani, Das, and Fisher 

 

Paxson, V. et al. Why we don’t know how to simulate the 
Internet. Winter Simulation Conference  1997. At-
lanta, GA. 

 
AUTHOR BIOGRAPHIES 
 
ROHYT BELANI is currently a graduate student in the 
Information Networking Institute (Electrical and Computer 
Engineering Department) at Carnegie Mellon University. 
He received his B.E. degree in Computer Science from the 
University of Bombay, India. His current research interests 
include Modeling and Simulation of Networks, Wireless 
Communications and Networking, and Distributed Sys-
tems. His email address is <rbelani@andrew.cmu 
.edu> 
 
SAUMITRA M. DAS is currently a graduate student in 
the Information Networking Institute (Electrical and Com-
puter Engineering Department) at Carnegie Mellon Uni-
versity. He received his B.E. degree with Honors in Elec-
tronics Engineering from the University of Bombay, India. 
His current research interests include Wireless Communi-
cations and Networks, Distributed Internet Services and 
Optical Networks. His email address is <smdas 
@andrew.cmu.edu> 
 
DAVID FISHER is currently leading a research effort in 
new approaches for survivability and simulation in infor-
mation-based infrastructures at the SEI’s CERT® Coordi-
nation Center. From 1973-75, Fisher served as program 
manager in the Advanced Technology Program (ATP) at 
the National Institute of Science and Technology (NIST), 
where he developed and managed a major initiative in 
component-based software and began an initiative in learn-
ing technology. Fisher has more than 60 publications in the 
areas of information survivability, algorithms, component-
based software, programming languages, compiler con-
struction, and entrepreneurial development in the software 
industry. He earned a PhD in computer science at Carnegie 
Mellon University, an MSE from Moore School of Electri-
cal Engineering at the University of Pennsylvania, and a 
BS in mathematics from Carnegie Institute of Technology. 
His email address is <dfisher@cert.org> 
 

 
 
 
 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 720
	02: 721
	03: 722
	04: 723
	05: 724


