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ABSTRACT

Large clouds of tiny devices capable of computation, com-
munication and sensing, goal of theSmart Dustproject,
will soon become a reality. Hardware miniaturization is
shrinking devices and research in software is producing
applications that allow devices to communicate and coop-
erate toward a common goal. Success on the software fron
hinges on the design of algorithms that can scale up with
system size. Given that the number of individual cooperat-
ing devices will reach high orders of magnitude (hundreds
of thousands or even millions), debugging and evaluating
the software in such a large system can reap much bene
fit from simulation. This paper describes the design of a
scalable and flexible simulator which allows for the direct
execution, at source code level, of applications written for
TinyOS, the operating system that executes on Smart Dust
This simulator also provides detailed models for radio signal
propagation and node mobility.

1 INTRODUCTION

The idea ofSmart Dust, which seemed seemed to be almost
science fiction not long ago, is fast becoming a reality.
This project born to a group at UC Berkeley, has aimed
at producing tiny devices calledmotes, which are capable
of some form of communication, using either laser or ra-
dio frequency, and are embedded with a microprocessor
memory and sensing circuits (Warneke et al. 2001). These
devices, the motes, can be distributed over some portion o
physical space where they self-organize into a communica
tion network that is tightly integrated with the environment
and, perhaps, even invisible. In large numbers, the devices
can come close to being ubiquitous and, one small portion
at a time, the physical world can be imbued with the ability
to take inputs, process them and react back on the physica
world (Estrin et al. 2002). One cannot overstate the impact
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this new technology will have on the way computing devices
and the world interact.

In many ways, the diminutive size of the devices will
be one of the key factors behind this revolution in the way
computing is done. For this reason, it is only natural that
the word tiny has been associated with the Smart Dust
project from its inception. Their main goal at this time
is to achieve a level of integration, using micro-electrical
mechanical systems (MEMS) technology, that brings the
form factor of the mote down to one cubic millimeter
(Warneke, Atwood, and Pister 2001). While the fruits of
these efforts in miniaturization take time to ripen, devices
with much larger form factor are becoming increasingly
popular in the research community.

Themotescurrently in industrial production (CrossBow
2002) are perhaps unworthy of being called a speck of dus
since their form factor is 1 inch by 1.5 inches. Time and
experience are demonstrating, however, that even at thi
size, these wireless computing platforms have a wide range
of applicability. Motes are enabling several projects in
remote sensing as well as in robotics (Sibley et al. 2002).
The success and the popularity of these devices is not onl
the result of advances in hardware, but also of ingenuity in
the design of TinyOS, the system software that empowers
them.

TinyOS can be considered as much of a technology
enabler as motes themselves are. It is the operating syste
that allows Smart Dust to happen creating an environmen
of high flexibility for application design and execution over
a severely constrained computing platform. Some may
question what TinyOS really is, in this day and age when
some operating systems have been more super-sized tha
meals at fast-food restaurants. What this operating system
offers lies not so much in the range of services it provides,
but rather in the principles that guide thedesignof these
applications.

At the core of TinyOS are lean mechanisms for task
scheduling and interrupt handling. The application design
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framework based on this foundation is one which allows the
high flexibility desirable in problem-specific optimizations
and ease of expression of the extensive level of concurrenc
inherent to the system. The programming model used in
TinyOS imposes a hierarchical, component-based desig
resembling the organization of hardware, as we see later i
this paper.

Although this hierarchical design methodology can lead
to application programs that are easier to understand, con
struct and maintain, it does not eliminate the need for
verification, debugging and, very likely, optimization be-
fore the code is run in production stages. Even if one take
great pains to ascertain the correctness and the performan
of the application by trial runs on a few of motes, little
can be said about what happens when conditions that a
fect communication change or when the number of mote
participating in the network is substantially increased. In
circumstances such as these, the value of conducting tri
runs over a simulator is obvious and unquestionable.

For quite a while, the distribution of TinyOS has shipped
with a simple simulator TOSSIM (Levis 2002) that allows the
verification of basic properties of applications before they are
loaded into motes for operation in the field. Although helpful
for preliminary debugging and verification of applications,
this simulator has proved to restrictive in a number of ways

First, TOSSIM doesn’t allow one to mix different ap-
plications in the same simulation run: all motes in the
simulation must run exactly the same code. One can ea
ily conceive of scenarios where different motes in a Smar
Dust cloud would have specialized functions, thus running
different applications, and still cooperate toward a common
objective. With a bit of programming trickery, one can
get around this limitation and make TOSSIM run different
branches of the same code for different types of motes
For instance: if the identification for a mote is an even
number, take a certain branch in the code and behave a
applicationA, if the identification is an odd number, take
another branch and behave as applicationB. While this
may suffice for simulation purposes, it would require that
the code executed on the simulator be a modification of th
actual code that is loaded onto real motes for operation
This process of source code modification for simulation
introduces the possibility of changing the behavior the ap
plication would exhibit in the real system, thus invalidating
the results of the simulation. It would be much preferable
if the simulation could run the code that goes in the mote
as-is.

Second, this simulator is rather simplistic in modeling
the environment where motes are placed. There is n
provision for simulating the processes that stimulate the
sensors on the motes. For instance, one could design
cloud of motes that can take measurements of temperatu
and the presence of a certain gas, then somehow process a
exchange the collected data. Without models that accurate
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represent the conditions of temperature and diffusion of
gases in the environment, simulation runs will not exhibit
the same reactions that motes experience in the field and th
verification of correctness or the estimation of performance
of the application software are severely impaired. Another
important environmental model which can be improved in
TOSSIM regards the propagation of radio signals. Radio
connectivity is described by an all-or-nothing approach:
the radio channel is either perfect (effective bit error rate
of zero), or totally broken, meaning that the motes cannot
communicate. A common criticism to simulators of wireless
communicating devices is that they hardly ever accurately
portray what happens in the real world. Rather than give up
on studying a wireless network by simulation for this reason,
we propose the development of a more detailed simulator,
one which accounts for how radio signals propagate on a
given terrain with features specified by the modeler.

Finally, and most importantly, TOSSIM was not built
with performance scalability in mind: the current documen-
tation reports that simulations scale well up to one thousand
motes. One cannot use TOSSIM to efficiently run exper-
iments where the number of motes has the same order o
magnitude as that which is expected of large-scale Smar
Dust systems. We may design applications that are intended
to bring together hundreds of thousands of motes, or perhap
even more, but if the number of motes we can simulate is
actually orders of magnitude smaller, simulation will teach
us little about the dynamics of the larger system. Moreover,
it is a well-known fact that simulation provides the exper-
imentalist with not only a virtual environment with nearly
endless possibilities, but also with powers of controllability
and repeatability over the conditions where experiments are
run. The importance of these powers is magnified when we
consider the difficulty of controlling field experiments with
large-scale wireless networks and the near impossibility of
repeating all the conditions for each test trial. Even if one
could amass the incredible resources to perform experi-
ments with a large-scale Smart Dust system, deploying it
and exercising any measure of control over an experimen
with it would be a herculean task, not to mention what it
would take to observe it in action.

These gaps in what current simulators for TinyOS de-
vices have to offer and the long wish list of what would
be desirable in a simulator have motivated us to start the
project which we call TOSSF, a TinyOS Scalable Simu-
lation Framework. Fortunately, our efforts in constructing
TOSSF don’t start from ground zero, but rather build up
on two other projects in our group: DaSSF, the Dartmouth
Scalable Simulation Framework, and SWAN, our Simulator
for Wireless Ad-Hoc Networks. We present more details on
DaSSF and SWAN in later sections of this paper; for now,
suffice it to say that DaSSF is a streamlined and optimized
simulation kernel with a proved record for high-performance
and scalability, and that SWAN is collection of C++ classes
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that builds up on the DaSSF kernel to offer a range of
models for the simulation of wireless ad hoc networks.

The remainder of this paper is organized as follows.
Section 2 presents concepts on TinyOS, expounding its
philosophy of application design, its programming model
and implementation. Section 3 introduces the reader to the
most important concepts in DaSSF and SWAN, explaining
the foundation upon which TOSSF is built, while Section 4
describes the architecture and the implementation of TOSSF
Finally, Section 5 presents the challenges in the evolution
of TOSSF and the work that lies ahead in its development

2 TINYOS CONCEPTS

One of the greatest contributions TinyOS makes to the de
velopment of applications for massively distributed, heavily
constrained computing platforms is arguably its program-
ming model. Applications are made of small, self-contained
units calledcomponentswhich are interconnected by a di-
rected graph to compose the greater picture. A TinyOS
component is made of collections ofcommandhandlers,
eventhandlers, andtasksplus itsframe, a fixed-size portion
of memory allocated at compilation-time to store the local
state.

task
frame

TOS Component

...

...

...

...

commands from
higher components

commands from lower
components

events from lower
components

events to higher
components

Figure 1: Structure of a TinyOS Component

Figure 1 illustrates the standard component structure
defined in the TinyOS literature (Hill et al. 2000, TinyOS
Programming Bootcamp 2001). Triangles pointing up rep-
resent event handlers. Events are software signals analogo
to hardware interrupts. The orientation of the triangles is
not an arbitrary choice, but rather indicates that the events
a component handles can only be signaled by component
below in the hierarchy. An event can signal higher events or
issue commands to lower components. Similarly, triangles
pointing down represent command handlers and indicate
that only components placed above can issue command
to the component. The arrows indicate that a componen
can only issue commands to other components below an
events to other components above. It is important to point
out that commands are non-blocking function calls to a
lower component (which can in its turn trigger commands
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to even lower components) and also that both event and
commands are expected to execute in very short time.

Commands or events can post tasks into a FIFO queu
handled by the scheduler for the mote. We can say that tas
scheduling is the only “service” implemented by TinyOS,
or put in another way, that the task scheduler is basically
the kernel of this operating system. Once a task starts to
execute, it can only be preempted by the arrival of an event
neither by commands nor by other tasks. Tasks can pos
other tasks and operate only on data that is placed within
the frame of the component to which they belong. When
the queue empties out, in the absence of any events, th
mote can enters a dormant, power-saving state.

Activity in a TinyOS application starts down at the
hardware, the lowest level of components in the hierarchy.
Events such as the arrival of a sensor reading from the
analogue-to-digital converter or an incoming message from
the radio receiver cause a hardware interrupt, which is
handled by some component, which may, in its turn, initiate
an upward flow of events. At a certain point, this upward
flow changes direction, and the components at the high-
end of the chain issue a downward flow of commands
with processing activities eventually ceasing until the arrival
of another hardware interrupt. This architecture supports
multiple flows, or threads, allowing for the representation
of the extensive concurrency inherent to applications in this
regime.

The programmer uses the C programming language to
describe the component in two distinct steps. First, the
interface is defined in a.comp file using keywords that
label blocks containing function prototypes. The keywords
HANDLESandSIGNALS, respectively, indicate the events
the component handles and the events the component ge
erates on higher components. The keywordsACCEPTSand
USES, respectively, indicate the commands that the com-
ponent exports to higher components and the command
from lower components that it calls. The.comp interface
files describe the connection points for softwarewires that
represent inputs and outputs of a component in the sam
way that one could describe a piece of hardware. Second
the “guts” of the component are defined in a dialect of
the standard C syntax that introduces TinyOS keywords to
specify structures such as the component’s frame, the com
mand handlers it implements, the command calls it makes
the event handlers it implements, the events it signals, etc

In what TinyOS programming style is concerned, most
components can be described by finite state machines (FSM
The first state in a component’s FSM is an initialization
state. This state is entered whenever the component receive
a command to initialize is issued by another component in
a higher position in the hierarchy. In practice, theMAIN
component in the application, implemented by themain()
function in C, spawns a wave of initialization commands
that propagates out from its hooks and descends along th
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application graph causing all components to be initialized.
After initialization, components enter a state where they wait
for another wave of commands, this time a wave ofSTART
commands also spawned by theMAIN component, which
take the components’ FSMs into their main processing loop

Each component can be defined in isolation of others
or it can be defined as a collection of other components
hiding the internal details and offering the programmer,
at a higher-level of abstraction, just the functionality the
collective implements. This design philosophy allows for
the construction of databases of components from which
the programmer can draw pieces to quickly assemble highl
tailored applications.

Applications and components constructed from other
components need to define the interconnections between i
pieces. For this purpose, TinyOS uses description (.desc )
files, which contain two different sections: first, an enumera-
tion of the components used; second, how these componen
are interconnected. These interconnections are mapping
between the endpoints of the wires defined in each compo
nent’s.comp file and define a directed graph such as the one
in Figure 2. For instance, if a componentCLOCKsignals the
occurrence of an eventCLOCK_FIRE_EVENTto another
componentCOUNTER, which expects to receive this kind
of events at a “wire” calledCOUNTER_CLOCK_EVENT,
one would find the following line in the applica-
tion’s .desc file: COUNTER:COUNTER_CLOCK_EVENT
CLOCK:CLOCK_FIRE_EVENT. Figure 2 also indicates
that there is a dichotomy in the kinds of components in
TinyOS: some are just software, while others are pieces o
hardware which interact with software components accord
ing to the same component interface.

SW

HW

COMP C

COMP A

COMP B

HW 1

HW 2

Figure 2: An Example of an Application Graph

The TinyOS augmentations for the C language mus
be translated to standard syntax before the source code
passed to a C compiler. The translation process happens in
several steps handled by compile time tools invoked from the
application’smake file. The most important of these steps
are the translation of TinyOS keywords to standard C syntax
and the wiring together of components. This latter step
consists of the creation of a linkage header file which invokes
the C preprocessor to do symbol substitutions mapping th
endpoints of component’s wires to one another. Clearly, in
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order to allow for the direct execution of TinyOS source
code, a simulator will need to perform similar translations
preserving the semantics from the original application while
adapting translated commands to fit in the new framework
Providing the tools to accomplish the translations for a
simulator entails a simple, although, unexciting task.

We have identified features of TinyOS, however, tha
are encouraging for the development of a scalable simulat
for the execution of mote applications. First and foremost
it is interesting to note that the memory footprint of the
simulated mote is very small. Clearly, the memory spac
occupied bysource codeof the mote application is the
same whether one simulates a model with one mote o
with hundreds of thousands of motes. Only one copy o
the source code for each component needs to be kept
memory. This fact is exploited in TOSSIM (Levis 2002).
On the other hand, the overall memory space occupied b
componentframesis proportional to the number of motes
multiplied by the number of components per mote. Sinc
motes have very small RAM space, however, one can expe
that even in today’s humble platforms such as a workstatio
with 512M bytes of memory, it would be possible to store
large numbers of component frames for a simulation.

Second, the fact that the memory for each mote ap
plication is static and has its size defined at compile-tim
makes memory management in the simulator nearly triv
ial. Exchanges between components happen exclusively v
commands or events, which deposit data in the frame of th
callee. Component frames can be encapsulated by wrapp
classes in object-oriented programming and allocated prio
to the start of the simulation.

Third and finally, the event-driven nature of the TinyOS
programming model facilitates the construction of a simu
lator based on the discrete-event world view. If a kernel fo
discrete-event simulation, which can efficiently deal with
very large numbers of events, is available, one of the harde
parts of the construction of the simulator is made easy. W
have been working with such a kernel (DaSSF) and discus
it in more detail in the next section, where we also introduc
a general purpose simulator for wireless ad-hoc network
(SWAN) which has been used to create a substrate for th
implementation of a TinyOS simulator.

3 THE SIMULATION SUBSTRATE

The Dartmouth Scalable Simulation Framework (DaSSF
is an implementation of the SSF standard application pro
gramming interface for discrete-event simulation of large
and complex systems (SSF API 1999). This concise AP
allows for high portability between compliant simulators
and, furthermore, allows for the automatic parallelization
of simulation models. DaSSF is one particular implementa
tion of this API and employs conservative synchronization
in the construction of a simulation kernel optimized for
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high performance when dealing with large models (Liu and
Nicol 2001).

Since the SSF API was developed within the context
of models for telecommunication systems, it lends itself
naturally to the description of computer networks. The five
classes defined in SSF,Entity, Process, Event, inChannel
and outChannelhave proved useful and powerful in the
simulation of models for network protocols. Starting from
these few classes, SSFNET, a comprehensive library o
models for Internet protocols, was built and extensively
used in large-scale simulations (Cowie, Nicol and Ogielski
1999a, 1999b). The SSFNET project provides a high-
performance alternative to established simulators, such a
ns-2 and OPNET, which scales well with the number of
nodes in the network model.

Our interest in investigating the use of self-configurable
wireless networks in emergency response scenarios couple
with the expertise we accumulated in the simulation of Inter-
net protocols lead us to develop a project similar to SSFNET
but focused on models of wireless protocols instead. To this
end, in cooperation with BBN Technologies, we have con-
structed a framework in which we can execute simulation
models of wireless networks in conjunction with detailed
models that describe the environment where the network
operates. We named this framework SWAN: Simulator for
Wireless Ad-Hoc Networks (Liu et al. 2001a). Version 1.0,
the first public release of the SWAN is available on the
WWW (Liu et al. 2002).

Mobility Sensor

MAC

App

Net

PHY

IP

Sensor

MAC

App

Net

PHY

IP

RF Channel

...

Terrain

Environmental Process

Models of the
mobile nodes

Figure 3: Component Architecture of SWAN Framework

The architecture of SWAN, illustrated in Figure 3, is
composed of five classes of submodels. Each of these sub
models is encapsulated so that instances can be remove
or substituted by other instances from a library. The spec-
ification of all the submodels that compose a simulation
resides in a configuration script which is fed to the simu-
lator engine at execution time. This means that the code
base does not have to be recompiled and submodels from
the libraries provided can be easily plugged in or out of the
overall configuration.

The first submodel worth of mention is that of the
terrain, which affects how radio signals propagate, how
f
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sensed processes behave and how the nodes in the netwo
move. As of now, only two simple terrain models are
available in SWAN: one shaped as a rectangle and anothe
shaped as a torus. The terrain models can be simply bi-
dimensional or have an extra axis to measure elevation
We have on-going efforts to allow the modeler to enter
arbitrarily complex descriptions of terrain features using
file formats similar to TIGER, used in electronic maps by
the USGS.

The RF propagation model is also of great importance in
this framework. Among other goals, the simulation should
be able to indicate the behavior and the performance of the
network in realistic conditions. Radio connectivity needs
to be modeled at a level of detail that is able to stress the
salient features in the network design and at the same time
be simple enough so as not to overburden the simulation
with unnecessary computation (Takai et al. 2001). We have
provided several variants of RF propagation model, so that
different levels of detail are available to the simulationist,
who can tailor the specifics according to the requirements
of the experiments.

The environmental process, which interacts with sensors
in mobile nodes, may or may not be affected by the terrain
submodel. At this time, we have only implemented a simple
model for the diffusion of gases on the simulated space,
which is subject to a field specifying the direction and
strength of air currents. The nature of the sensors which
equip mobile nodes ultimately determines the nature of
environmental processes and, as is the case with any othe
SWAN submodels, new specific environmental process can
be easily added to the framework.

Finally, the last model which depends on terrain data
describes the mobility of nodes. We have implemented a
number of different kinds of mobility models such as those
described in Camp et al. (2002). It is currently not possible
to mix nodes with different mobility models in the same
simulation, although we intend to relax this restriction in
future releases of SWAN. Building a simulator for TinyOS
sensor networks on top of SWAN should perhaps require
only one kind of mobility model: one where nodes are
stationary (either with random or directed placement). It
would seem that all the other mobility models built into
SWAN would be wasted on TinyOS simulations because
sensor nodes don’t move. However, that is not the case
A research group at USC has proposed Robomote, a robo
design based on Berkeley motes running TinyOS (Sibley et
al. 2002). Simulations of Robomotes would benefit from the
various mobility models that SWAN has to offer, especially
one that allows the application to determine dynamically
the direction and the speed of movement.

The description of the application code which runs
inside each mobile node in SWAN is also highly modular.
We have provided for a number of options commonly used
to compose the protocol stack in wireless networks. To
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simulate Berkeley motes running TinyOS, however, none
of these are of any help with the exception of the physica
layer model. Since Berkeley motes use RF signals t
communicate, we can reuse that component from SWAN a
the foundation for the communication hardware model in a
TinyOS simulator. In the next section, we discuss in detai
how we constructed this simulator from SWAN’s existing
code base.

4 RUNNING TINYOS APPLICATIONS IN A
SIMULATOR

Adapting SWAN to produce a simulator for TinyOS applica-
tions requires modifications that lie mostly within the model
of a mobile node, which is shown as a stack of protocols
in Figure 3. Part of the attraction for using SWAN as the
foundation for this new simulator comes from the fact tha
SWAN offers the flexibility of model configuration at run
time. In TinyOS, when an application is changed, part o
the code has to be recompiled and a different executable
generated by the linker.

The first difficulty that arises when we try to implement a
TinyOS application graph on a simulator comes from the fac
that to achieve the same flexibility of model configuration
found in SWAN, a lot more work needs to be done. Not
only the list of components that makes up the application
graph may change, but also the way they are wired togethe

The solution we chose to giveTOSSF the same flexibility
of model configuration at run time found in SWAN breaks
the applications as TinyOS would have built them, so that w
can put them together again our own way. Rather than allow
TinyOS’ programming tools to wire components together by
mapping symbols exported to symbols imported at compil
time, we compile applications one component at a time
The commands and events exported by a component a
registeredwith the simulator. This registration is achieved
by identifying the exported functions in the source code
and instrumenting them so that when constructors for th
objects in the program are called, a string with the name o
the function and a pointer to the function are passes to th
simulator. TOSSF organizes this information in a lookup
table which is used later on to perform the dynamic linking of
components. We further instrument the component to fetc
from TOSSF (during its initialization stage) the pointers to
all the functions from other components that it will call.

More than just add flexibility to model configuration,
with a little extra trickery, this scheme of dynamic linking
allows one single copy of the object code for each componen
to reside in memory. Say that two different application
typesA and B need to be used in the same simulation
model. If the intersection of the component types used
in the two applications is non-empty, dynamic linking will
guarantee that the memory footprint of the simulation mode
is optimal. If we were to blindly bundle up all components
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that constitute application typeA, build an object-wrapper
around this bundle and then repeate the same process fo
application typeB, the components common to both types
would end up in memory twice.

It turns out that what we do for the sake of optimizing the
memory footprint of the simulation model and for the sake of
enhanced flexibility in model configuration is a must when
we deal with the allocation of storage for each component.
Every different instance of the same component must have its
own frame. Therefore, we need to ensure that when the code
of a component executes, it has access to the correct instanc
of component frame. Again, we instrumented the TinyOS
source code. This time we translated frame definitions to
force components to register its frame type with TOSSF.
During the initialization of the component, when the wave
of INIT calls percolates through the application graph
carrying along in the function call a unique identification
for the mote to which it belongs, its own instance of the frame
is allocated. This instance of the frame is also registered in
a lookup table withing the simulator. All references to data
in a component’s frame via theVARkeyword are modified
so that access to the data is made indirectly: first a pointer
to that specific instance of the component is fetched from
TOSSF, then the data can be accessed. Surely this add
overhead to the execution of the model by adding one level
of indirection to every data access. We have yet to quantify
this effect and analyze it in the light of its benefits.

A positive consequence of this dynamic linking scheme
is that TOSSF can create application types on the fly and
reuse them throughout the model initialization. When the
configuration script for a model is first read in and a new
application name is encountered, a corresponding applica-
tion type is created in the form of a data structure containing
a list of components and a wiring map that describes the
application graph. From that point on, if the same appli-
cation type is found again in the configuration file, all the
simulator has to do is to allocate space for its component
frames. Instances of the same application type share the
same wiring map, so no memory is occupied with multiple
replicas of the same information.

The configuration scripts used by TOSSF are very simi-
lar to those in SWAN. They are described in DML (Domain
Modeling Language), which has a simple, but powerful
grammar whose worth has been proved time and again in
SSFNET models. The DML model script can be described
as the composition of three distinct parts. First, theARENA
section defines models for mobility, node deployment and
radio propagation for the length of the simulation run. Next,
theMOTEs in the model are instantiated one at a time, defin-
ing for each one a unique identification and an application
type. Last, at the end of the script, comes a dictionary of
application types. Each application type in this dictionary
is derived mechanically from the original TinyOS.desc
files.
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In the development of TOSSF, a substantial portion of
time was spent in the construction of programs or scripts to
instrument source code or convert configuration file formats
While the latter of these two tasks can be performed by
simple Perl scripts, the transformations of component sourc
codes proved a bit problematic. One crash at a time, we’ve
discovered that this translation process can get complicated
The Perl script transforming the source code from TinyOS
syntax to C++ had to be corrected a number of times and
still does not cover all possible situations correctly. The
right approach in this circumstance is to leave this work for
a specialized tool such as a source-to-source compiler. A
TOSSF matures, we expect to abandon our much hacke
Perl script in favour of a better solution.

It is important to note that two facts drive us to auto-
mate these transformations on source code. First, from th
perspective of the TinyOS programmer the learning curve
in using TOSSF has a very sharp rise. The same set of file
and programming tools used to produce the application fo
a real Berkeley mote is used to create the application fo
TOSSF. The programmer does not need to aquire any ski
other than learning to write a very basic DML configura-
tion script to define the scenario for the simulation and the
motes which populate the simulation space. Second, th
automation of this translation process will likely be much
less error prone than if done by hand.

In addition to developing techniques to convert software
components and applications for execution on TOSSF, we
also had to develop additional SWAN models to represen
the hardware components in the Berkeley mote platform
namely CLOCK, ADC, LEDS, RFM and UART. Actually,
since we were not currently interested in simulating the
interaction of motes with PCs via serial port, we have left
the development of a UART model for later. On the other
hand, we have developed software components that mimi
the behavior of the other pieces of hardware.

Our model for the radio transceiver, the RFM compo-
nent, is nearly identical to the physical layer in standard
SWAN. The CLOCK component was also very simple to
construct: it consists of a SWAN timer programmed with
the data for resolution and time scale passed during the in
tialization of the CLOCK’s FSM. The ADC, used to convert
sensed data from analogue to digital format, was also simpl
to implement. The command to request data from the ADC
spawns a SWAN timer that expires after a fixed delay and
pushes the converted data out through the port specified i
the request. Finally, the LEDS component which contains
three LEDs in red, green and yellow, only has to receive
commands to control individual diodes which are repre-
sented by boolean variables in the frame of the componen
These components are made available for the constructio
of models of applications and the resulting architecture,
illustrated in Figure 4 still bears much resemblance to the
original SWAN from Figure 3.
.
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Figure 4: Architecture of the TinyOS Scalable Simulation
Framework

When we consider the current design of TOSSF, we
see that its main limitation regards the accuracy in estimate
of the processing time for the applications executed. As of
yet, TOSSF cannot deal with interrupts that would preempt
an executing task. If the simulation model of a hardware
component flags an interrupt during the execution of a task
the corresponding event is queued to be handled when th
task completes. Of course, in the real hardware, the even
would take precedence over the task execution. In the
simulation, the implementation of task preemption would
require too much added complexity at a stage when we sough
a proof of concept and, therefore, has been postponed to
later time. In any case, one can argue that the timing erro
incurred in our scheme is very small since it is a fraction of
the execution time of a task, which by construction should
be very small. The precise time when a hardware interrup
is handled in the simulation is delayed by a very small
(perhaps even negligible) factor.

This first version of TOSSF does take liberties with
respect to the timing of certain operations for the sake
of simplifying the simulation model. In addition to the
absence of task preemption, TOSSF assumes that tas
execute instantaneously, that is, in zero simulation time
The time taken in the execution of commands and events i
also neglected. The simulation clock is incremented only
when events generated at the level of TinyOS hardware
components are processed. Since communication latencie
should dominate the execution time of the applications, we
expect that the relative errors in timing should be small.
However, we intend to improve on the current design in an
attempt to increase the accuracy of timing in our simulations

5 CONCLUSIONS

This paper presented concepts related to TinyOS, the ope
ating system behind Berkeley motes, a computing platform
capable of sensing and radio communication that can b
seen as the precursor of Smart Dust. Our contribution with
this work was to take SWAN, a high-performance simulator
of wireless ad-hoc networks, and build upon it to develop an
architecture for a flexible and scalable simulator for TinyOS
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applications. The TinyOS Scalable Simulation Framework,
or TOSSF, resulted in a collection of additional models for
SWAN that represent hardware components from the Berke
ley motes. Also, TOSSF offers the programmer of TinyOS
applications with a set of scripts that transparently adap
the source code for execution in the simulator. Through the
use of dynamic linking of TinyOS components into working
applications, we have managed to minimize the memory
footprint of simulation models at the cost of a degradation
of memory access times that still needs to be quantified
Finally, we indicate that there is still work to be done to
enable TOSSF to produce faithful estimates of timing of
execution of applications.

TOSSF still needs to mature before becoming ready fo
a public release. We expect that the demand for a simulato
with its features is already great and that it keeps growing
as more and more researchers look forward to performing
scalability studies in the applications under development.
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