
Proceedings of the 2002 Winter Simulation Conference 
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds. 
  
 
 

A MOTION ENVIRONMENT FOR WIRELESS COMMUNICATIONS SYSTEMS SIMULATIONS 
 
 

Nathan J. Smith 
Trefor J. Delve 

 
Communications Research Laboratory 

Motorola Labs 
1301 East Algonquin Road 

Schaumburg, IL 60196, U.S.A. 
   
   
ABSTRACT 

We describe the environment and motion systems used in a 
parallel, discrete event large scale wireless simulator. The 
simulator is capable of supporting user motion on multiple 
environment types (different types of streets, buildings etc.) 
and provides a unified and intuitive interface to users whilst 
being efficient for the systems that make use of it. This is 
achieved by making use of a hierarchical environment de-
scription. With this approach, users can provide different 
levels of detail as required, whilst the motion systems have a 
simple interface to interrogate the environment. As there is a 
close coupling between the environment and the RF data re-
quired by the wireless simulator (which is considerable in 
size), this too is represented in a hierarchical manner. This 
allows a more efficient use of system memory with only the 
data that is required being loaded. 

1 INTRODUCTION 

As radio communications systems grow to be increasing 
complex it becomes more desirable to use simulations to 
model these systems. Simulation modeling allows a re-
searcher to gain a more controlled understanding of the sys-
tem’s operation. However, as simulations are just a model of 
actual systems, the accuracy of results gathered from simula-
tions is limited by how closely their model represents reality. 
The more detailed the model, the more accurate the results 
can be. Detail, though, comes at a price. 

Radio network simulations are notoriously slow and 
can use a frightening amount of computing resources. As a 
result, researchers find themselves working in a minimalis-
tic environment enabling only those simulation features 
that are deemed absolutely necessary. One feature that is 
often ignored in wireless systems simulations is user mo-
tion. User motion, though, is the core of most modern 
wireless systems. 

While motion had an arguably minute effect on the rela-
tively simple wireless systems of the recent past, its affect on 

  

the operation of modern and future wireless systems can be 
quite profound. Simulated user motion will become increas-
ingly important as system designers begin to tackle modern 
features such as high-bandwidth wireless applications. 

This paper will address the need for simulated user 
motion by describing a motion environment designed for 
use with discrete event wireless communications systems 
simulations. It will first describe the simulation architec-
ture in which the motion system has been designed. The 
physical environment description will then be detailed. 
Lastly, an overview of the implemented motion and phys-
ics system is included. 

2 SIMULATION ARCHITECTURE 

The core of the simulation architecture is DaSSF, a parallel 
discrete event simulation framework. As the primary focus 
of the simulator in which we are implementing this motion 
environment is RF interference calculations, the simulator 
architecture has been designed with these calculations in 
mind. Each simulation consists of a number of entities 
connected together through event routers.  

Event routers are entities that route events between 
simulation entities. By connecting entities through event 
routers, we are able to limit the number of inter-entity con-
nections. All events being sent from one entity to another 
are sent indirectly through an event router. The event 
router receives the event and determines how to route it 
based on the event’s destination address. In principle, event 
routers function in much the same way as network routers. 

Each router and all of its connected entities are grouped 
together into a logical process. The logical processes are 
spread across all available processors. Each router has a 
number of mobile and basestation entities as well as an RF 
entity attached to it. The RF entity is responsible for periodi-
cally calculating the received signal interference of all RF 
entities that are attached to its router. The frequency of this 
update depends on the simulated system’s technology. 

 



Smith and Delve 

 

While the partitioning scheme that has been chosen for 
this simulation architecture is extremely efficient for RF cal-
culations, it is not necessarily the most efficient partitioning 
for distributed motion simulation. It does, though, provide a 
framework that lends itself well to both the environment and 
motion solution that we present in this paper. A more in 
depth discussion of this architecture can be found in the pa-
per, Use of DaSSF in a Scalable Multiprocessor Wireless 
Simulation Architecture (Delve and Smith 2001). 

3 ENVIRONMENT 

The basis of any motion system is the environment in 
which simulated users move. For a wireless system, that 
environment can vary dramatically in size. Some simulated 
systems may be as small as a few adjoining rooms while 
others may incorporate entire cities. The environment por-
tion of our motion system must be capable of representing 
this broad spectrum of environments. It also needs to work 
under varying computing environments including shared-
memory and distributed-memory parallel execution. 
Lastly, the environment needs to efficiently handle our RF 
description, thus enabling us to scale not only the size of 
the environment, but also handle the increasing amounts of 
RF data associated with that environment. 

How, though, do we efficiently represent physical sys-
tems of varying degrees of complexity? Our solution lay in 
the path of a hierarchy. 

3.1 The Environment as a Hierarchy 

Looking at the world around us, we see that objects can be 
classified into a hierarchical relationship with each other. 
Almost every object can be said to be contained by exactly 
one other object. From the perspective of an RF system 
simulation, all physical objects in the simulation, such as 
buildings, streets, and trees, would be contained by the 
bounds of the simulation space.  

For example, a simulation of the RF systems in Chi-
cago could be broken down such that Chicago is the 
bounds of the simulation space. Chicago would then con-
tain many buildings, one of which is the Sears Tower. 
Likewise, the Sears Tower could contain many floors, one 
of which is the Observation Deck. This relationship is de-
picted in the following Figure 1. 

It is not difficult to see how other environments could 
be partitioned and built using such a system.  Before the 
environment hierarchy is fully usable, though, there are a 
number of things that must be described so that we can 
give form to the nodes in the hierarchy. Also, a general set 
of rules that can be applied to all of the nodes in the tree is 
helpful in defining a consistent environment. 
Chicago

McCormic
Center

The Art
Institute

Sears Tower

Main Lobby Observation Deck Armory

 
Figure 1: Hierarchy of Buildings and Floors in Chicago 

3.1.1 General Rules 

In the environment description, as in life, there are certain 
limitations that are imposed by the world. As we are creat-
ing a model of a physical environment, we would like for 
simulated users to be able to move through the environ-
ment in understandable and predictable ways. We would 
also like to be able to control how those users move 
through the simulated world. One step towards this control 
is access restrictions. 

3.1.1.1 Access Restrictions 

It is likely that we will want to prevent pedestrians from 
walking on expressways and likewise prevent vehicles 
from driving around on building floors. However, without 
some form of access restrictions, our users are free to roam 
throughout the environment. Thus, each node in the envi-
ronment hierarchy has an associated list of allowed and re-
stricted users and user types. This provides us with two 
keys on which to discriminate. 

As a user attempts to access a node in the environment, 
it will be discriminated against based on its user type. If its 
user type is accepted on that particular node, it will then be 
checked to ensure that its user id in particular has not been 
listed on the disallowed list. If either check fails, the user 
should not enter the restricted environment node.  

Additionally, each node can have a base range of speeds 
associated with it. Any user that moves into an environment 
node must be capable of moving within the base range of 
speeds which that node has published. Again, this prevents 
pedestrians from entering expressways as pedestrians are 
unable to move in the range of speeds required for entry. 

In Figure 2, three users are trying to access the park. 
User 1 will be rejected because it is of type vehicular which 
is restricted in parks. User 2, on the other hand, has an ac-
ceptable type, type cyclist, although it will still be rejected 
because its range of speeds does not intersect with the al-
lowed range of speeds in the park. Only User 3 will be al-
lowed entrance to the park because not only is it of an ac-
ceptable type, type pedestrian, its range of speeds also 
intersects with the allowed range specified by the park node. 



Smith and 
 

Area: Park

Speed:         3-5 Mph
Restricted: Vehicular

User 1

Speed: 20-60 Mph
Type:   Vehicular

User 2

Speed: 6-15 Mph
Type:   Bicyclist

User 3

Speed: 2-4 Mph
Type:   Pedestrian

Figure 2: User Type Access Restrictions 
 
While in principle it would be relatively simple to im-

plement a system that checked users as they were entering 
and leaving environment nodes, due to the distributed na-
ture of our physics engine (see Section 4.5) our implemen-
tation relies on the honor system. We leave it up to each 
user to determine its fitness for entry into each node in the 
environment. 

3.1.1.2 Layout Restrictions 

There are two primary restrictions on the layout of objects 
in the environment: objects on the same plane cannot par-
tially overlap each other and objects must be wholly con-
tained within the bounds of their parent. 

The restriction on areas stems as a requirement for ac-
cess restrictions and path finding. If two areas partially 
overlapped each other (and one was not contained by the 
other), it would create differing descriptions for the same 
simulation space potentially allowing restricted users ac-
cess to an otherwise inaccessible area. The same reasoning 
supports the restriction that child objects must be wholly 
contained by their parent. If an edge of a child were al-
lowed to spill past the edge of its parent, it would create a 
situation of ambiguity. 

Keep these basic restrictions in mind as we discuss the 
primitives out of which an environment can be built. 

3.1.2 Vector Streets 

Vector streets are mathematical vectors that connect exactly 
two points in our physical environment. These vectors, like 
all nodes in our hierarchy, have various associated attributes. 
These attributes include speed and direction. 

The speed attribute indicates not only the range of 
speeds at which users may travel, but also allows for the 
definition of varying ranges of speed depending on user 
type. For instance, we could have a vector that represents a 
street and its sidewalks. On such a street we may want to 
force all vehicular traffic to move at speeds between 30 
and 45 Mph. However, because that vector also represents 
Delve 

the sidewalks along that street, we wouldn’t want to force 
our pedestrians to move at a brisk 30 Mph walk. By assign-
ing the same vector two conditional speed ranges, the con-
dition being the type of user that is moving on the vector, 
we are able to differentiate between these two types of us-
ers and allow our pedestrians to move at a more comfort-
able three miles-per-hour. 

The same can be said for direction. While there may 
be one-way streets that apply to cars in a city, it is unusual 
to limit street-side pedestrian traffic to a single direction of 
flow. By making the direction also conditional on the type 
of user, we allow ourselves flexibility in how we assign at-
tributes to the vector streets. 

3.1.3 Polygonal Areas 

Polygonal areas describe areas of arbitrary shape and size. 
They are used to represent everything from the floor of a 
building to the surface of entire cities. The environment 
description supports any valid single contoured convex or 
concave polygon that exists on a single plane. Complex 
polygons, such as those shown in Figure 3, are not sup-
ported for the simple reason that we are modeling reality, 
and you will not find bow-tie buildings or parks that twist 
over on themselves in real life. 

 

Bow-Tie Polygon Multi-contoured Polygon

Figure 3: Illegal Polygon Shapes 
 
A useful feature of polygon areas is that they may con-

tain other objects in the hierarchy. This would allow you to 
create a polygon that seemingly had two contours. The 
second contour would simply be another polygon nested 
inside of the first. 

Polygons are described as a series of edges. Each edge 
can have associated attributes that apply to only that edge. 
Additional user restrictions, for example, are a common 
addition on a polygon’s edge. These additional restriction 
attributes further limit what types of users are allowed to 
cross an edge. This limits users as they not only enter, but 
also exit, a polygonal area. 

Edge-by-edge user restriction application is useful 
when creating areas such as garages. While it may be ac-
ceptable for vehicles to enter through the garage door, you 
may want pedestrians to use a side entrance. This can be 
accomplished by allowing only vehicles access through the 



Smith and Delve 

 
garage door edge of the polygon thus preventing pedestri-
ans from crossing that polygon edge. Similarly, pedestrians 
would be the only user types allowed access through the 
side entrance. The remaining polygon edges would be set 
so that no access is allowed through their edges. This 
would prevent users from walking or driving through the 
walls of a building. 

3.2 Example Definition 

Using only the primitives that we have described, vector 
streets and areas, we are now able to describe an environ-
ment in which our simulated users can traverse. Figure 4 
below depicts an environment consisting of a building, 
shown as a semi-transparent shell of three floors, and two 
pathways, shown as a pair of gray lines on the third floor 
of the building.  

 

 
Figure 4: Sample Motion Environment 

 
As the following Figure 5 depicts, the building is built 

as a tree of areas. The pathways are then contained within 
the building. 

 

Building

Area

Floor 1

Area

Floor 3

Area

Path 2

Vector

Path 1

Vector

Floor 2

Area

 
Figure 5: Hierarchy of the Sample Motion Environment 

3.3 Simulation Interface 

A popular division scheme used in large environment sys-
tems as of late is to partition the environment at physical 
boundaries, placing only a small portion of the environ-
ment on each processing node being used in the simulation. 
This can provide a desirable load-distributing mechanism. 
Our simulation, though, cannot be efficiently divided using 
geographical boundaries. Instead, as described in Section 
2, it is divided and spread based on an even distribution of 
RF entities. This has a direct impact on the distributed as-
pects of the environment. 

Because there is no physical division of the environ-
ment into partitioned pieces, each processing node used to 
run the simulation must have a complete copy of the entire 
simulated environment. While this is not terribly efficient 
in terms of memory usage, it does save in communications 
between processing nodes. In order to further limit the 
amount of overhead caused by the environment on the rest 
of the simulation, objects in the environment are forcibly 
static. Had we chosen to implement doors that open and 
close or operating traffic lights, a mechanism would have 
been required to update each copy of the environment with 
these changes. 

Probably the most important aspect of the environment 
system interface is how the user interacts with the envi-
ronment hierarchy. Iterators into the environment tree are 
sent to all users at the beginning of the simulation. These 
iterators have the same interface as that of an STL iterator 
and allow the users to traverse the tree in two dimensions: 
ascending and descending through parent-child relation-
ships as well as moving laterally to nodes sharing a com-
mon parent. The iterator into the environment provides a 
useful and intuitive interface into what could otherwise 
have been a complicated data structure with which to work. 

3.4 Environment Scalability 

Despite the limitations on physical partitioning schemes  that 
are placed on the environment due to its design, the funda-
mental choices that have been made allow for scalability. 

3.4.1 Arbitrarily Sized Environments 

As previously noted, a key requirement of our environment 
description is the scalability of environment complexity. 
The hierarchy provides a mechanism of scalability that we 
may not have had with other descriptions. 

In the description of a simulated system in Section 3.1, 
we chose Chicago as the root of our environment tree. Chi-
cago, we described, contains many buildings each of which 
contains many floors. However, we would not have to de-
scribe the environment as such. If we were interested in 
only outdoor environments we could quite easily remove 
the insides of the buildings from the description. The struc-
ture of the environment is not fundamentally changed as 
we still have a tree of objects in our simulation. Likewise, 
we could expand our system boundaries to include all of 
Illinois or all of the United States.  



Smith and Delve 

 

 
The scaling of detail also works in the opposite direc-

tion. We could bring the scale of the environment down 
such that only the Sears Tower, or even just the observa-
tion deck of the Sears tower is being simulated. 

3.4.2 Location Based Data Management 

Another requirement that we have placed on our environ-
ment description is that it allow for, and assist in, the  scal-
ability of RF data. When dealing with RF systems that can 
potentially span entire cities or states, the amount of pre-
calculated RF information can be staggering. A common 
source of precalculated RF information is pathloss between 
a fixed RF device and all other points within range of that 
device.  When working with systems that represent only a 
relatively small portion of a city, the amount of precalcu-
lated data is easily manageable. However, for systems that 
span entire cities, cities that potentially contain hundreds of 
such devices, the amount of associated data can quickly 
become difficult to manage. 

The hierarchical approach, though, facilitates in the 
management of this data by providing a convenient parti-
tioning boundary. By splitting the pathloss data at the 
boundaries of each object in the hierarchy, we can control 
which data is loaded at any given point in the simulation. If 
there are no users in the Sears Tower, then we simply do 
not load the pathloss data for the Sears Tower, thereby 
freeing memory that could potentially be used by some 
other part of the simulation. Heuristics can also be used to 
further optimize what RF data is currently loaded and to 
know when to load data that is likely to be needed soon. 

4 MOTION 

With a wireless system simulator, the main requirement is 
that users are moving. It is of no great concern if users pass 
through each other as it does not affect the communication 
statistics. The users, though, exist in a simulated physical 
environment and should not be allowed to “walk” through 
buildings etc. The buildings and other obstructions must 
exist in the simulated environment as they affect the re-
ceived signals and thus the ability of simulated users to re-
ceive and decode data. Moreover, it is often the case that a 
real city must be modeled and simulated in order to deter-
mine the effectiveness of a proposed communications net-
work. Here the simulated city and the users within must 
faithfully reflect the actual city. 

The wireless system simulator collects data regarding 
the system performance when a user population is moving 
and using wireless equipment. The user population, like a 
normal population, must have different characteristics. 
There must be pedestrians, slow vehicles and fast vehicles, 
and possibly other types as required (office based users for 
example). There must be users in buildings as well as 
groups of users moving together. The motion system must 
be able to handle all of these situations. Fortunately, the 
simplifying condition that users can be considered to be 
points (i.e., user-user collision detection is not required) 
makes the task much easier. This is important for a number 
of reasons which will be described in more detail shortly. 
However, the key reason is that it removes the necessity 
for a centralized controller opening the door for a more ef-
fective distributed motion system. 

4.1 High Level Motion Modeling Options 

As with any motion system, there are a number of ways to 
move users around. We could choose to divide the areas on 
which the users move into tiles and move from tile to tile at 
discrete points in time. These points in time could be regu-
larly spaced, where different speeds would require moving 
over more or less tiles. Or, speed differences could be de-
termined by moving over the same fixed distance but at 
different points in time.  

However, as has already been discussed,  the environ-
ment is described in terms of polygon areas and vector 
streets. This is for two reasons: 1) it makes for a more in-
tuitive description of the environment, and 2) based upon 
previous simulator requirements, it has been shown to be 
useful as it allows a mix of RF data sources within the 
simulator, e.g., ray traced and/or statistical (for large ar-
eas), and measured (for small areas where a user should 
have movement restricted along a vector). It is desirable 
that the same method for motion on a vector and a polygon 
be employed. As motion along a vector path is relatively 
simple, it is desirable that movement on an area make use 
of a vector type motion. The main difference between vec-
tor and area motion is that the user has the opportunity to 
make direction changes in addition to speed changes after 
each movement. How often the choices can be made is 
dealt with in the next section. 

4.2 Motion on Vectors 

A simplified vector environment is shown in Figure 6, with 
an enlarged view following in Figure 7. In the vector envi-
ronment shown above, each of the vectors knows to which 
vector(s) and to which end of the vector each of its ends is 
connected. In the above environment, there are no direction 
restrictions on any of the vectors, however, mobility re-
quirements, as previously described in Section 3.1.1.1, are 
present. So, if a pedestrian user starts on vector v1, its pos-
sible path is {v1, v2, v3}. If a vehicular user is dropped on 
v4, its possible path is {v4, v5, v2}. However, if a user with 
mobility characteristics {pedestrian, vehicular} is dropped 
on any of the vectors, there are many paths that may be 
taken. But how does the motion take place? 

The user is considered to be at the start position when 
the time is one second. The question is how often and how  



Smith and Delve 

 

v1

v2

v4

v3

v5

Pedestrian

Pedestrian,
Vehicular

Vehicular

Vehicular

Pedestrian

 
Figure 6: Simplified Vector Environment 

  

v2 v4

v1

Min.
Desired
Distance

User start
position

t=1s t=2s

 
Figure 7: Unrestricted User Motion on a Vector 

 
far should a user move in each step? As this is a wireless 
simulator, there is no point in moving less than a quarter of 
a wavelength as the change in RF signal will be insignifi-
cant. There will therefore be a minimum distance that the 
user should move at each step as shown in Figure 7 above. 
From past experience it is useful to try to move the users at 
least one meter in each move. So, if our user is moving at 
1m/s, and the minimum desired step is 1m, then the next 
move would be one second later, i.e., at two seconds. 

The question arises: what happens if the next move 
would cause the user to move beyond the end of a vector? 
As has been discussed before, the simulator makes use of a 
discrete event engine. Thus it is possible to schedule user 
moves at any arbitrary time in the future. The motion sys-
tem would simply schedule the user to be at the end of the 
vector at a time appropriate for the speed. So, if in Figure 7 
above, the user was 0.5m from the end of the vector at a 
time of two seconds, as the user is moving at 1m/s, then the 
next move would place the user on the end of the vector at 
a time of 2.5s. This is shown in Figure 8. 

At the end of the vector, the user must decide on the 
next course of action. As described earlier, each vector has 
knowledge of its connections. It is therefore able to obtain 
details of the connected vectors from the environment sys-
tem and determine matches between its own mobility char-
acteristics and those of the attached vectors. If multiple 
suitable choices exist, there are a number of options open  
 

v2 v4

v1

Modified
Distance

t=2s

t=2.5s

 
Figure 8: A Shortened User Step 
to the End of a Vector 

 
to the user. It could maintain the current mobility charac-
teristic or it could change it if it hasn’t been changed for a 
long period of time. How it chooses is less important than 
the fact that it can. From a wireless simulation point of 
view, this ability to change mobility characteristics during 
the simulation allows for a diversity in the simulation 
population that will more realistically represent the sce-
nario being simulated. 

In the description above, users were considered to be 
moving at a constant speed. However, each of the mobility 
characteristics used includes minimum and maximum 
speeds and accelerations which are used to provide ran-
domness in the motion. With each of the motion types 
available, different speed and acceleration values will be 
used to provide a model of that type of user. 

4.3 Motion on Areas 

Motion on areas represents a slightly different, and more 
difficult problem than that of motion on vectors. Whereas 
vectors have knowledge of their connections, areas have no 
knowledge of adjacent areas and users must interrogate the 
environment to determine adjacencies. However, the prob-
lem is simplified as the environment is arranged in a hier-
archical manner. Figure 9 below shows a simple three ele-
ment area environment with the corresponding 
environment tree shown in Figure 10. 

Two users are shown in Figure 9 both on Area 2. User 
1 is about to exit Area 2 via edge e2,2. In the same way as 
the user moves to the end of a vector with vector motion, 
the user moves onto the edge which it is about to exit with 
area motion. Now e2,2 and e3,2 are the same edge and have 
the same vector description. As Area 2 is contained within 
Area 1, the user queries Area 1 to determine if there are 
any other areas with edges that also contain the exit point. 
As the exit point will also lie on e3,2, Area 3 is a candidate 
for the user to move on. Mobility characteristic checks are 
performed to ensure that the user can cross the edge and 
enter Area 3. If there are no conflicts, the user will acquire 
Area 3 details and consider its exit point from Area 2 to be 
its start point on Area 3. 

Considering User 2, having reached edge e2,1, the user 
will perform the same checks as User 1. However, interro-



Smith an
 
 

Area 2

Area 3

e3,1

e3,2

e3,3

e2,1

e2,2

e2,3

User 2

User 1

 
Figure 9: Simplified Area Environment 

 

Area 1

Area 2 Area 3

 
Figure 10: Environment Hierarchy Tree 

 
gating the environment will show that no other areas have 
edges sharing the same point, but the exit point is still 
within Area 2’s parent (Area 1). The user will then acquire 
Area 1 and, after a mobility characteristic check, will con-
tinue to move into Area 1. Should the user attempt to move 
out of Area 1, the environment system will not be able to 
find another area which shares the same exit point and the 
user will be reflected at the edge. 

4.4 Area-to-Vector and Vector-to-Area Transitions 

So far we have considered the motion on areas and vectors 
separately. However, the simulator must allow environ-
ments with both environment components where users may 
transition between both types. Motion from a vector to an 
area (as shown in Figure 11) can be considered relatively 
straight forward. 

Here, the user would move to the end of the vector (as 
described previously). As vectors have knowledge of their 
end connections, the user is able to determine that the vector 
is connected to an area vertex and perform the appropriate 
check. Upon finding a suitable match of characteristics, the 
user may acquire the area and begin moving upon it.  

 

d Delve 

Area

User start
position

 

Figure 11: Vector to Area Transition 
 
However, the situation of area to vector transition is 

very different. Figure 12 (below) shows a number of users 
moving on the same area. 

      Area

Vector

 

Figure 12: Area to Vector Transi-
tion Problems 

 
Clearly, the probability of a user moving exactly onto the 
vertex to which the vector attached is very small indeed. 

To improve the flow of users from areas to vectors, the 
concept of a capture edge is introduced. These are created 
by a pair of vertices which form an edge of the area. Once 
a user has touched a capture edge, it is forced to move 
along it in one direction only as shown in Figure 13, the 
idea being that the user is moved toward the exit vertex. 
Essentially, the capture edge is a one-way vector.  

 

      AreaVector

Capture
edges

 

Figure 13: Area to Vector Tran-
sitions with Capture Edges 

4.5 Distribution of Motion Calculations 

Thus far, the specifics of the of the motion have been de-
scribed without reference to actual implementation issues. 
As described in Section 2 and in more detail in Delve and 
Smith (2001), this simulation kernel is object oriented with 



Smith and Delve 

 
users essentially distributed across processors. Each user is 
a separate object which is free to make motion decisions 
independently and move based upon the motion character-
istics assigned to it. Therefore, there is no single motion or 
physics engine within the simulator; essentially, the motion 
calculations are distributed across the simulator’s comput-
ing resource. As described above, each of the users makes 
a decision on the time of next move based upon speed and 
required move distance. So, as the users are all making 
random direction and speed changes, essentially, the mo-
tion calculation is also distributed in time. 

For the current requirements of the wireless simulator 
where users don’t interact, this distribution of motion calcu-
lations is useful as it avoids the processors having to com-
pute the motion calculations for many thousands of users at 
the same time. However, should the situation arise that user-
user collision avoidance is required or a dynamic environ-
ment model is needed, a centralized controller will have to 
be included in the architecture to coordinate the calculations. 

5 CONCLUSIONS AND FUTURE WORK 

Motion environments designed for use with wireless radio 
simulators cannot utilize traditional approaches to process 
distribution and workload sharing. Instead, the designers 
must find a way for the motion environment to fit well 
within the wireless simulation. However, design of a mo-
tion environment cannot be an afterthought. We have 
found a suitable approach to motion simulation within 
wireless environments that successfully scales inside of 
these restrictions.  

We have presented a method of describing physical 
environments suitable for use with a discrete event wireless 
communications system simulation. A system of motion 
has also been described that utilizes the physical descrip-
tion. It has been shown to be flexible in the types of envi-
ronments that can be described. It also provides a mecha-
nism for scaling the size of the environments to include 
both more and less complex descriptions. The wireless sys-
tem in particular has shown its flexibility through its use of 
discrete event technology. 

Using this fundamental motion environment, we hope 
to extend it to simulate new aspects of our world such as 
mass transit. We also hope to use this system to research 
the affect of mass user movement, such as flocks of users 
as they move towards and away from public sporting 
events, on wireless communications systems. 

REFERENCE 

Delve, T. J., and N. J. Smith. 2001. Use of DaSSF in a scal-
able Multiprocessor Wireless Simulation Architecture, 
In Proceedings of the 2001 Winter Simulation Confer-
ence, ed. B. A. Peters, J. S. Smith, D. J. Medeiros, and 
M. W. Rohrer, 1321-1329. Piscataway New Jersey: In-
stitute of Electrical and Electronics Engineers. 

AUTHOR BIOGRAPHIES 

NATHAN J. SMITH is a Software Research Engineer 
with Motorola Labs. He received his B.S. from Illinois 
State University in 2000. He has worked as a lead applica-
tions developer for Illinois State University and an embed-
ded systems developer for Motorola. His email address is 
<Nathan.Smith@motorola.com>. 

TREFOR J. DELVE is a Communications Research En-
gineer with Motorola Labs. He received his B.Eng (Hon-
ors) degree from the University of Birmingham, U.K., in 
1991. He has worked as a communications engineer for 
The MathWorks, a systems engineer for NEC and a re-
search associate working on underwater communications 
for the Ministry of Defence, U.K. His research interests in-
clude channel coding and propagation modeling. His email 
address is <Trefor.Delve@motorola.com>. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 671
	02: 672
	03: 673
	04: 674
	05: 675
	06: 676
	07: 677
	08: 678


