
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

MODEL TESTING:
IS IT ONLY A SPECIAL CASE OF SOFTWARE TESTING?

C. Michael Overstreet

Computer Science Department
Old Dominion University

Norfolk, VA 23462-0529, U.S.A.

ABSTRACT

Effective testing of software is an important concern in the
software engineering community. While many techniques
regularly used for testing software apply equally well to test-
ing the implementations of simulation models, we believe
that testing simulations often raises issues that occur infre-
quently in other types of software. We believe that many
code characteristics that commonly occur in simulation code
are precisely those that the software testing community has
identified as making testing challenging. We discuss many
of the techniques that software engineering community has
developed to deal with those features and evaluate their ap-
plicability to simulation development.

1 INTRODUCTION

Determining the correctness of a simulation is often a
complex task. Even a precise meaning of “correctness” is
not easily formulated; it generally includes the idea of the
implementation “correctly” implementing model behavior
and the model “correctly” replicating salient features of the
system it represents. But it can include accuracy require-
ments, meeting performance goals, the usability of user in-
terfaces, the quality of graphics and many other aspects. In
this paper we focus primarily on issues in testing as one of
several useful techniques for assessing the correctness of
an implementation; see Sargent (2000), Sargent (2001) and
Balci and Ormsby (2000) and Balci (2001) for broader dis-
cussions of issues in the verification, validation and ac-
creditation of simulation models.

A comment on terminology: we use the term model to
mean a representation of a system that utilizes some form of
abstraction. Thus models can be physical (for example
made of plastic, wood, or paper), iconic (based on drawings
or pictures), text based, or some combination of three.
Source code in some general purpose or simulation pro-
gramming language is also a model of a system. It may not
be the idea model representation form since of necessity the
source code often includes many implementation details that

can obscure the underlying model. Some simulation pro-
gramming languages incorporate iconic representations so
that the model they implement is more easily communicated
to a reader. When we wish to emphasize the implementation
characteristics of the source code, we use the term simula-
tion implementation, but this is still a model.

The software engineering community has developed
many techniques to help in determining the correctness of
code. In addition to testing, these include very different
and often complimentary approaches such as the use of
formal inspections of requirements, designs, test plans and
code (Fagan 1976) and the use of formal methods (that is,
formal mathematical proofs of correctness). But the most
widely used technique in industry is testing, though it may
be used in conjunction with complementary techniques
such as inspections.

While testing has long been an important area in soft-
ware engineering, it is still an area of active research. This
is in large part due to its high cost, often cited as up to 50%
of project development costs, even more if the software
must be highly reliable, see, for example, Osterweil et al.
(1996). This high cost has caused interest in the potential
ability of other less expensive techniques to improve soft-
ware quality; see Chillarege (1999), Hetzel (1993), Beizer
(1990), and Roper (1994) for discussions on software test-
ing and other quality-improvement techniques.

Many issues in the use of testing to establish charac-
teristics of code for both simulations and other types of ap-
plications are the same. This is true in part since many
simulation applications have requirements similar to other
application domains and use similar implementation tech-
niques to meet these requirements,. Thus testing to deter-
mine if these requirements are met is no different from
testing in other application domains. These include,
among many possible examples, using testing to estimate
performance or testing to evaluate user interfaces.

We believe that many inherent characteristics of simu-
lations and the implementation techniques widely used
simulation applications make testing difficult. Many of
these specific characteristics occur in other application

Overstreet

domains but the combination of issues frequently found in
simulations seems to occur rarely if at all in other areas.

In Section 2 we discuss some testing issues that have
direct application to simulation. In Section 3, we discuss
some common aspects of simulation that make testing dif-
ficult, and follow this by conclusions.

2 TESTING ISSUES

A common problem in the testing of software is the diffi-
culty of detecting unanticipated interactions among com-
ponents. Sometimes these unintended interactions only
occur when the components execute in a particular order.
This is particularly true of simulations. The typical simula-
tion execution consists of a collection of components
whose execution is managed by the modeler and by a
simulation executive. In some languages, these compo-
nents are called events, in others, activities. If the lan-
guage is process interaction based, then each process typi-
cally consists of several components whose individual
executions are managed by the simulation executive. Un-
derstanding the possible execution orders of the compo-
nents can be difficult. Adding to this difficulty is the sto-
chastic nature of many simulations.

Many testing methodologies attempt to guide the test-
ing process so that these interactions are more likely de-
tected during testing.

2.1 Using Coverage to Reduce Testing Costs

A key concern in testing is cost. One of many approaches
to reducing these costs is identifying a smaller number of
test cases that still effectively tests the code. To do this, it
is usually desirable that different tests have the possibility
of revealing different problems. A common approach for
guiding the selection of test cases uses the idea of cover-
age. In general coverage is intended to help with two
complementary goals: 1) to ensure that all features of code
are tested, and 2) to avoid duplicate tests that check the
same feature. The software engineering community has
identified many types of coverage; the testing references in
Section 1 discuss them.

Because of common techniques used in simulation
implementations and the basic characteristics of many
simulations, achieving some widely advocated types of
coverage is can be more complex than for many other ap-
plication domains.

These coverage issues are particularly relevant for
simulation since executions typically consist of a sequence
of components whose order is determined by the modeler,
the simulation executive and random numbers.
2.2 Code Coverage Criteria

A basic form of coverage is full statement coverage. It in-
volves testing until every executable line of code in the
program has run in at least one test case. It is often rec-
ommended as a minimal testing goal. But since some code
problems are a result of unintended interactions among dif-
ferent code components, these problems may depend on
the order of execution of those program components. Thus
other more ambitious coverage goals include the concept
of testing many (ideally all) of the various possible execu-
tion orderings.

A naive testing goal is to execute all program state-
ments in all the orders that are possible. This is almost al-
ways infeasible for at least two reasons: one is that identi-
fying all achievable orderings can be difficult or
impossible (determining that an apparently feasible execu-
tion sequence is in fact impossible can be difficult). The
second is that the number of possible orderings is often so
large that executing a separate test run for each ordering
would take more time than is practical.

A closely related problem in testing is the oracle prob-
lem, that is, the difficulty of actually detecting incorrect
output when a program is tested. A large number of test
cases is an added problem from the oracle perspective
since, in addition to the time required to design and run
these test cases, the task of detecting when a test reveals
incorrect behavior is often daunting. In simulation, some-
times data from the system being simulation is available.
If so, and if it can be compared with corresponding model
output, the real system data can serve in part as an oracle.
However, when models components are assumed to have
random behaviors, this comparison may require use of ap-
propriate statistical tests.

3 SIMULATION-RELATED
TESTING PROBLEMS

In this section we discuss several aspects of simulations
that often make their testing more difficult. While none of
these issues are necessarily unique to simulation, they oc-
cur frequently in simulation testing.

3.1 Access to Source Code

If a simulation application is written in a general purpose
programming language such as C++, Java, or Visual Basic, a
tester typically have full access to all source code. This
source code can be used to guide the testing process; many
commercial tools are available to facilitate testing and de-
pend on the source being available. In many cases, how-
ever, the tester will not have access to some key code, for
example, the executive that selects code components for
execution. If the application is written in a simulation pro-
gramming language, the compiler provides a simulation ex-

Overstreet

ecutive that manages and schedules the execution of some
code components. Likewise, even if the application is writ-
ten in a general-purpose programming language, if it uses a
package that supports the building of simulation models, the
package likewise provides an executive that can manage the
selection of components for execution. The source code for
the package may not be available to testers to assist in guid-
ing the testing process. This “unpredictability” of execution
orders of components due to lack of access of the details of
the executive adds to the complexity of testing—if a testing
goal is to test alternative orderings.

Many models assume stochastic behavior of some be-
haviors. This randomness can also add to testing complex-
ity similar to that discussed above since components may
be invoked in a variety of orderings based, say, on the ran-
domness of an arrival process.

3.2 Testing Concurrent Programs

The testing community has frequently asserted that testing of
parallel or distributed code is significantly more complex
than testing sequential code. We believe that these addi-
tional difficulties are due in part to the many possible execu-
tion orders, all possibly valid, of program components,
where some may result in incorrect interactions among
components. This raises complex coverage issues if alter-
nate execution orderings are to be tested. This is an active
research area and several tools have been developed to assist
in testing by identifying feasible execution paths; see, for
example, (Naumovich et al. 1998), (Cleaveland and
Smolka1996) (Cleaveland et al. 1994), (Yang et al. 1998).

This identifying and testing of many different possible
statement execution orderings, while a problem for several
types of applications, can be a central problem in testing
simulations. Models often depict a system as having many
activities occurring in parallel. In a distributed simulation
implementation, several activities may truly occur simulta-
neously. But valid single processor executions, which
must serialize the apparent parallel executions, can have
many possible alternative orderings for the execution of
code components, all valid. A particular implementation
(possibly provided by the simulation executive) will select
one of several possible orderings. If so, it could be point-
less to test other feasible orderings since the executive will
never select them.

3.3 Implications of Abstraction and Simplification

In a traditional view of building simulations, models
should be as simple as possible, at the highest-level ab-
straction possible provided the behaviors produced are suf-
ficient to satisfy the model objectives. Thus, the behavior
of some aspects of a model may not resemble the corre-
sponding behavior of the system being simulated. Like-
wise, simplifications are usually desirable as long as they
do not compromise the ability of the model to meet simula-
tion objectives. This “Occam’s Raiser” principle of using
the simplest possible simulation model is in part motivated
by the belief that less complex models will typically be
easier and faster to code, easier and faster to test, and often
run faster than a more complex version of the same model.

This implies that it is sometimes desirable for simula-
tion models to produce “incorrect” behaviors for some as-
pects of the system being simulation. These intentionally
incorrect (or too simplistic) behaviors can be revealed in
testing. The tester must then understand that these appar-
ently incorrect behaviors are acceptable.

We note that in some domains, particularly where the
reuse of existing model components is used to reduce the
cost of developing new simulations, this minimalist view
may conflict with the advantage of using the same compo-
nent in multiple simulations. In an environment in which
execution time or memory requirements are not a primary
concern, the development cost of new, more optimally tai-
lored components can easily exceed the added overhead of
using of components that do more than is needed for the
new simulation objectives.

Closely related to the principle of using the most ab-
stract model possible is the issue of the accuracy of each
component in a simulation. Both accuracy and execution
overheads can be affected by the simplifying assumptions of
an underlying model. The runtime overhead of a model that
produces more accurate behaviors is generally assumed to be
higher. In some simulations it is difficult to anticipate what
accuracy will be required of various components without
performing sensitivity analysis. Thus during testing, decid-
ing if outputs are sufficiently accurate, causing the simula-
tion to fail a test, can be difficult. While this flexibility in
accuracy is not unique to simulation (it is an issue with nu-
meric methods), it is often an issue in simulations.

3.4 Delayed Component Execution

In simulations, one code component can explicitly cause a
second to execute in two ways, either immediately (at least
in simulation time), or after a simulation time delay, either
time- or state-based. The testing issue this raises is that if
the component execution is scheduled for a future simula-
tion time, a variety of code components that effect the cor-
rectness of the scheduled component may sometimes (due,
say, to random scheduling) execute before it. Ensuring
that in one test case the possibly interfering component
runs in the delay interval while in another test it does not
run can be difficult. This scheduling is typically imple-
mented through two data structures, often called a future
events list (components waiting for a particular simulation
time) and a current events list (components waiting for a
particular state). While these types of delayed invocations
are not unique to simulation, it is unusual and commer-

Overstreet

cially available test generation or monitoring coverage
tools are unlikely to detect this missing test case.

In some sense, this is similar to the forced serialization
of code components that are thought of as executing in
parallel. The simulation executive performs this serializa-
tion when the program is run on a single processor, and the
programmer may not know the how an ordering is selected
by the executive. However, this serialization is typically
deterministic and has little effect on testing complexity
since the same sequence should be used for each run (as-
suming all code used for testing is compiled with the same
compiler). However, when testing code in which other
components may run randomly between the scheduling and
the execution of a particular component, say due to random
scheduling of some event, to continue testing until most
possible order have been tested may be infeasible.

3.5 Use of Nonprocedural Languages

While nonprocedural (also called fourth generation) lan-
guages) are widely used in some application areas (data base
applications, and protocol specifications, for example), they
are frequently used in simulation. This use began early in
the simulation community with the widespread and still
common use of GPSS. Similar newer language are also in
wide use in simulation and include, for example Arena
(Swets and Drake 2001), Extend (Krahl 2001), and Pro-
Model (Harrell and Field 2001). (Some have been incor-
rectly advertised as allowing modelers to build and run
simulation models without programming; however pro-
gramming in nonprocedural languages, even if the language
is icon rather than text-based, is still tedious and subject to
programmer errors just as with text-based languages).

Since the execution order of components written in
nonprocedural languages are not under the explicit control
of the programmer and are handled implicitly by the lan-
guage designers, building test cases with an objective of
covering possible execution paths requires that the tester
understand many implementation details.

3.6 Effects of Nondeterminism

For many application types, testing is performed by the
tester providing a collection of test cases that consists, at
least conceptually, of pairs: <program inputs, expected
program outputs>. For each test case, the procedure con-
sists of running the program to be tested with the program
inputs, then comparing the actual output produced by the
program with the expected program outputs. Mismatches
indicate an error, either in the program or in the expected
program outputs.

Since many simulations contain stochastic compo-
nents, their specified behavior is really nondeterministic.
Since the stochastic behavior is usually based directly or
indirectly on a random number stream, theoretically a
tester could provide a seed for that stream, but this is often
infeasible. The implication for this discussion is that, since
model behavior is nondeterministic, a single set of inputs
can produce a possibly wide variety of equally correct out-
puts. While this adds to the complexity of testing, it is well
understood in the simulation community; it is usually dealt
with by treating a particular model output as a single ob-
servation from a sample space and statistical analysis of
outputs is needed.

3.7 Similarities to Requirements Analysis

An area of software engineering that has received signifi-
cant attention is analysis of requirements to determine their
correctness. This can be similar to simulations written in
nonprocedural languages in that both the simulation pro-
gram and requirements are typically nonprocedural, speci-
fying what a system is to do, but not how it should do it.
Nonprocedural simulation languages, while often requiring
a programming to provide details about some aspects of
the implementation, have a similar goal.

A commonly advocated technique for detecting errors
in requirements specification is the use of formal inspec-
tions described by Fagan (1976). These have been shown
to be cost effective in a variety of application areas but are
labor intensive since they are manual procedures that re-
quire the participation of experienced and trained person-
nel. Formal inspections can be used for most artifacts pro-
duced in a software development process, including
requirements, designs, code and test plans. Their effec-
tiveness and applicability in the simulation domain should
be similar to other software development areas.

The software engineering community is developing
tools to partially automate analysis of requirements since
inspections can be tedious and problems easily overlooked.
A standard technique for analyzing requirements is to use
simulation to generate behaviors. For this reason, the use
of executable specifications have been advocated in some
areas. This allows the specifier to observe the behavior,
that can be generated by the specifications. If any incor-
rect behaviors are observed, it is assumed that the require-
ments are in error. Many types of incorrect behaviors can
be revealed through watching the sequence of actions pro-
duces by the simulation. While the simulation can rarely
produce all possible sequences of behaviors that are consis-
tent with the specification, use of simulation is regarded as
useful for revealing errors. Note that if the requirements
are executable, coverage issues similar to what has been
discussed arise. Determining that sufficient simulating has
occurred to ensure that all important and feasible behaviors
have been observed is the same problem as determining
when an implementation has been adequately tested. It
also has the same the similar oracle problem.

reet
Overst

3.8 Static Analysis

Another approach for discovering errors in requirements is
through the use of static analysis techniques. Forms of
static analysis are performed by many compilers (for ex-
ample, flagging of some initialized variables or unused
functions), but only as an incidental activity to code gen-
eration. Tools such as Lint for C demonstrate that static
analysis can be a useful tool for software developers when
dealing with source code. Static analyzers for require-
ments can check for such properties as consistency and
completeness (Heimdahl and Leveson, 1995; Chan et al.
1998) or reachability of identified global states (Holzmann
1987). To do so, the requirements must be expressed in a
formal language. Analysis tools can also used to assist in
construction of test data and compare the consistency of
designs with requirements (Adrion 1982). Atlee and
Gannon (1991) have used static analysis of event-oriented
requirements specifications to check safety requirements.

Several authors, to establish important characteristics
of simulations, have explored static analysis of the simula-
tion implementation. Several characteristics of model
specifications can be established through static techniques.
Some of these analyses may identify problems with the
specification; for example lack of connectedness (see
Overstreet, et al. (1994) for definitions and discussion).
Likewise other analysis can provide potentially useful in-
formation to a modeler that the modeler can use to confirm
that some correct characteristics exist or identify problems.
For example data flow techniques (determining what lines
of code use or modify particular variables, directly or indi-
rectly) can by used to identify causality (what can trigger
specific events). The modeler can then judge whether eve-
rything that should appear does or that items that should
not appear are omitted; see Overstreet et al. (1994).

While automated determination of many characteris-
tics related to the correctness of model specifications are
either intractable or NP-hard; (see, for example, Overstreet
1982, Jacobson and Yŭcesan 1995, Page and Opper 1999)
others have developed tractable solutions, for example, see
Yŭcesan and Jacobson (1996). These algorithms are typi-
cally conservative, that is, if they cannot conclude that an
important property holds for a component, they assume it
does not. For example, in performing data flow analysis, if
source is not available for a component or the analysis is
inconclusive, typically an analyzer will conclude that com-
ponent both uses and changes the value of a variables of
concern just to be safe. Thus in many cases the results are
often of little use.

3.8.1 Reliance on Subject Matter Experts

The correctness assessment of simulation models may rely
in part on statistical analysis of program outputs and other
comparisons with real-world data. While not necessarily
unique to simulation, a standard technique is the use of
subject matter experts (SMEs) who observe the behaviors
to assess the believability of those behaviors. This ap-
proach is similar to a Turing test, discussed in the artificial
intelligence community.

This is really a form of testing and its effectiveness
depends both on making important behaviors visible to
SMEs and the coverage achieved; that is, ideally sufficient
tests should be run so that an SME can observe the full
range of possible model behaviors; the SME is functioning
as a test oracle, identifying some forms of incorrect model
behavior. Our experience in the use of SMEs that they
may not understand the benefits of abstraction and simpli-
fication, often insisting that the model behave like the real
system even when that more realistic behavior does not
contribute to the goals of the simulation.

3.8.2 Data Intensive Models

The correctness of many simulation models depend heavily
on the data that are incorporated into the code, in simple
cases, the numeric values used parameters for speed, range
or parameters of statistical distributions. If a model is data
intensive, determining the correctness, or even the usabil-
ity, of the data can be difficult to determine by testing.

4 SUMMARY AND CONCLUSIONS

In the software engineering community, issues related to
verification and validation are an active research topic.
Finding less expensive ways to determine that software can
be used for its intended purpose is an important focus.
Many proposed techniques are not widely used by software
developers either because their effectiveness has not been
conclusively demonstrated (they may not work outside of
research labs) or the cost effectiveness of the techniques is
unknown. Some proposed techniques may be worth the
additional expense when used for safety critical applica-
tions, but are generally perceived as uneconomical for use
in most application domains.

Too often it seems that available automated techniques
that can help to help with determining the correctness of a
simulation implementation only work for very small or very
simple simulations (where little help is needed) and do not
scale up to large applications where errors are more likely
and correctness assessment is more difficult and often more
crucial. Part of the problem is that to use some of the tech-
niques, the behaviors of the simulation needed to be restated
in a formal language (this can easily cost more that the value
of the answer produced by the simulation), or the runtime
complexity of the technique goes exponentially with the size
of the state space and this size often grows exponentially
with the size of the requirements. So again, the technique
may only work when it is least needed.

Overstreet

Many of the testing techniques developed by the soft-
ware engineering community are used by parts of the simu-
lation community. Manual techniques such as inspections
can be used directly in simulations. Static analysis tech-
niques are promising, but likely need additional develop-
ment before they are useful to significant portions of the
simulation community. Others developments are likely to
be useful to the simulation community if they mature.
These include the testing of distributed and parallel code
and the checking of requirement specifications.

REFERENCES

Adrion, W. R., M. Branstad, J. C. Cherniavsky. 1982.
Validation, verification and testing of computer soft-
ware. ACM Computing Surveys. 14 (2): 159-192.

Atlee, J. and J. Gannon. 1991. State-based model checking
of event-driven systems. ACM SIGSOFT Software En-
gineering Notes. 16 (5): 16-28.

Balci, O., and W. F. Ormsby. 2000. Verification, validation
and accreditation: well-defined intended uses. in Pro-
ceedings of the 2000 Winter Simulation Conference.
ed. J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick. 849-854.

Balci, O. 2001. A Methodology for certification of model-
ing and simulation applications, ACM Transaction on
Modeling and Computer Simulation. 11 (4): 352-377.

Beizer, B. 1990. Software Testing Techniques.. New York:
Van Nostrand Reinhold.

Chan, W., R. Anderson, P. Beame, and D. Notkin. 1998.
Improving efficiency of symbolic model checking for
sate-based system requirements. In Proceedings of the
ACM SIGSOFT International Symposium on Software
Testing and Analysis, Software Engineering Notes, 23
(2): 102-112.

Cleaveland, R. and S. A. Smolka. 1996. Strategic direction
in concurrency research. ACM Computing Surveys. 28
(4): 607-625

Cleaveland, R., J. N. Gada, P.M. Lewis, S. A. Smolka, O.
Sokolsky, and S. Zhang. 1994. The concurrency fac-
tory—practical tools for specification, simulation,
verification and implementation of concurrent sys-
tems. In Proceedings of DIMACS Workshop on Speci-
fication of Parallel Algorithms, Princeton, NJ. 75-90.

Chillarege, R. 1999. Software testing best practices. center
for software engineering, IBM Research, Technical
Report RC 21457.

Fagan, M. 1976. Design and code inspections to reduce er-
rors in program development. IBM Systems Journal.
15 (3): 182-211.

Harrell, C. and K. Field. 2001. Simulation modeling and
optimization using ProModel Technology. In Proceed-
ings of the 2001 Winter Simulation Conference. ed. B.
A. Peters, J. S. Smith, D. J. Medeiros, and M. W.
Rohrer. 226-232.
Heimdahl, M. P. E. and N. G. Leveson. 1995. Complete-
ness and consistency analysis of state-based require-
ments. Proceedings of the International Conference on
Software Engineer. 3-14.

Hetzel, B. 1993. Complete Guide to Software Testing, 2nd
Ed. New York: John Wiley & Sons.

Holzmann, G. J. 1987. Automated protocol validation in
Argos: assertion proving and scatter searching. IEEE
Transaction on Software Engineering. 13 (3) 683-696.

Jacobson, S. H. and E. Yücesan. 1995. On the complexity
of verifying structural properties of discrete event
simulation models. INSEAD Working Paper Series.
TM/95/12.

Krahl, D. 2001. The Extend simulation environment. In
Proceedings of the 2001 Winter Simulation Confer-
ence. . ed. B. A. Peters, J. S. Smith, D. J. Medeiros,
and M. W. Rohrer. 217-225.

Naumovich, G., L. Clarke, and L. Osterweil. 1998. Efficient
Composite Data Flow Analysis Applied to Concurrent
Programs, ACM SIGPLAN Notices. 33 (7): 51-58.

Osterweil, L. et al. 1996. Strategic directions in software
quality. ACM Computing Surveys. 28 (4): 738-750.

Overstreet, C. M. 1982. Model Specification and Analysis
for Discrete Event Simulation, Ph.D. dissertation, Dept.
of Computer Science, Virginia Tech, Blacksburg, VA.

Overstreet, C. M., E. H. Page, and R. E. Nance. 1994.
Model diagnosis using the condition specification:
from conceptualization to implementation. In Proceed-
ings of the 1994 Winter Simulation Conference. ed. J.
D. Tew, S. Manivannan, D. A. Sadowski, and A. F.
Seila. 566-573.

Page, E. and J. M. Opper. 1999. Observations on the com-
plexity of composable simulation. Proceedings of the
1999 Winter Simulation Conference. ed. P. A. Farring-
ton, H. B. Nembhard, D. T. Sturrock, and G. W. Ev-
ans. 553-560.

Roper, M. 1994. Software Testing.. New York: McGraw-
Hill.

Sargent, R. 2000. Introductory tutorials: verification, vali-
dation, and accreditation. In Proceedings of the 2000
Winter Simulation Conference. ed. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick. 50-59.

Sargent, R. 2001. Some approaches and paradigms for
verifying and validation simulation models. In Pro-
ceedings of the 2001 Winter Simulation Conference. .
ed. B. A. Peters, J. S. Smith, D. J. Medeiros, and M.
W. Rohrer. 106-114.

Swets, R., and G. Drake. 2001. The Arena product family:
enterprise modeling solutions. In Proceedings of the
2001 Winter Simulation Conference. . ed. B. A. Peters,
J. S. Smith, D. J. Medeiros, and M. W. Rohrer. 201-
208.

Yang, C., A. Souter, and L. Pollock. 1998. All-du coverage
for parallel programs, In Proceedings of the ACM
SIGSOFT International Symposium on Software Test-

street
Over

ing and Analysis, Software Engineering Notes. 23 (2):
153-162

Yŭcesan, E. and S. H. Jacobson, 1996. Computational is-
sues for accessibility in discrete event simulation.
ACM Transactions on Modeling and Computer Simu-
lation. 6 (1): 53-76.

AUTHOR BIOGRAPHY

C. MICHAEL OVERSTREET is an Associate Professor
of Computer Science at Old Dominion University. A
member of ACM and IEEE/CS, he is a former chair of
SIGSIM, and has authored or co-authored over 80 refereed
journal and conference articles. He received a B.S. from
the University of Tennessee, an M.S. from Idaho State
University and an M.S. and Ph.D. from Virginia Tech. He
has held visiting appointments at the Kyushu Institute of
Technology in Iizuka, Japan, and at the Fachhochschule fŭr
Technik und Wirtschaft in Berlin, Germany. His current
research interests include model specification and analysis,
static code analysis and support of interactive distance in-
struction. Dr. Overstreet’s home page is <www.cs.
odu.edu/~cmo>. He can be reached by e-mail at <cmo
@cs.odue.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 641
	02: 642
	03: 643
	04: 644
	05: 645
	06: 646
	07: 647

