
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A WEB-READY HiMASS: FACILITATING COLLABORATIVE, REUSABLE, AND DISTRIBUTED MODELING
AND EXECUTION OF SIMULATION MODELS WITH XML

Thorsten S. Daum

HiMASS
Hierarchical Modeling and Simulation Systems

2 Goethe Street
Binghamton, NY 13905, U.S.A.

Robert G. Sargent

Department of Electrical Engineering
and Computer Science

Syracuse University
Syracuse, NY 13244, U.S.A.

f

g

n.

s

t

g

t

ABSTRACT

We investigate the use of XML as an open, cross-platform,
and extendable file format for the description of hierarchical
simulation models, including their graphical representations
initial model conditions, and model execution algorithms.
We present HiMASS-x, an XML-centered suite of soft-
ware applications that allows for cross-platform, distributed
modeling and execution of hierarchical, componentized, and
reusable simulation models.

1 INTRODUCTION

This paper discusses the benefits of using the Extensible
Markup Language (XML, see Bray et al. 2000) in a new ver-
sion of HiMASS, the Hierarchical Modeling and Simulation
System. An older prototype, called HiMASS-j, was com-
pletely implemented in Java (Eckel 1998) and used Java
source code and proprietary binary data formats. (An intro-
duction to HiMASS-j can be found in Daum and Sargent
(1997, 1999, 2001) and an in depth discussion in Daum
(1998).)

This new version of HiMASS will be called HiMASS-x
and it consists of two applications. HiMASS Modeler is
a powerful graphical user interface (GUI) that provides vi-
sual interactive modeling (VIM) capabilities for hierarchical
discrete event simulation (DES) models. HiMASS models
use the Hierarchical Control Flow Graph (HCFG) Model
paradigm (Fritz and Sargent 1995, Sargent 1997.) The othe
application, HiMASS Engine, provides implementation of
simulation algorithms for HCFG models.

Section 2 gives a brief overview of the HCFG Model
paradigm, a hierarchical model paradigm for DES that in-
cludes flexible hierarchical modeling and reuse of model
elements (MEs.)

Section 3 list a few properties of XML that are useful
for HiMASS.
,

r

Section 4 discusses the hierarchical decomposition o
HCFG models. An approach to using XML to aid the mod-
eling process is given. As it is often desirable to specify
certain aspects of model behavior in a high level program-
ming language, an approach that integrates programmin
code into XML is presented. To a large extent, HiMASS-x
removes language dependence from the model specificatio
Furthermore, HiMASS-x allows for model documentation
to be easily generated.

Section 5 briefly discusses the benefits of using XML
for the VIM aspects (Sargent and Daum 1998) of a model,
which provides access to VIM specifications for different
applications.

Section 6 discusses the impact of using XML on the
implementation of Experimental Frames.

Section 7 discusses the use of XML in the HiMASS
Engine, allowing for a pluggable, arbitrary combination of
local and distributed resources such as Experimental Frame
and ME libraries.

Section 8 contains the conclusions.

2 THE HCFG MODEL PARADIGM

HCFG Models define a modeling paradigm for discrete even
simulation modeling. Conceptually, HCFG Models consist
of a set of independent, encapsulated, concurrently operatin
(Atomic) Components where each (Atomic) Component
has its own thread of control and the Components interac
with each other solely via message passing. Two primary
objectives for HCFG Models are: (i) to facilitate model
development by making it easier to develop, maintain, and
reuse models and MEs and (ii) to support the flexible and
efficient execution of models.

In an HCFG Model, the model Components and their
interconnections (i.e., the Channels) are specified via a
Hierarchical Interconnection Graph (HIG). A HIG is a hier-
archical structure which allows a modeler to specify model
Components hierarchically by supporting the concept of



Daum and Sargent

l

s

s

“coupling” together existing model Components to form
new model Components. Each model has exactly one HIG

The basic building block in the HIG is the model Com-
ponent. Model Components are encapsulated entities whic
have an external view and an internal view. The externa
view is the interface of the Component, which describes how
the Component can interact with other Components. The
internal view describes the implementation of the Com-
ponent. From the external view, all model Components
have the following attributes: a name (instance name), a
type (type name), a set of input ports, and a set of outpu
ports. (Internal views are covered below.) The distinction
between “instance” and “type” is significant. If multiple
model Components are “instances” of the same type o
Component, then those Components all share the same typ
definition.

HCFG Models use two different classes of model Com-
ponents: Atomic and Coupled. An Atomic Component
(AC) is an independent, encapsulated, concurrently opera
ing entity whose behavior is specified via a corresponding
Component behavior specification, which gives the AC’s
internal view.

Coupled Components (CCs) are encapsulated mode
Components formed by coupling together other Component
(atomic and/or coupled) to form new Components. CCs
do not have behavior specifications. The internal view of
a CC is the view from inside the Component but outside
all enclosed sub components. The internal view of a CC is
specified via a “Coupled Component Specification (CCS)”.
A CCS specifies (i) a set of sub components which are
coupled together to form a new CC type and (ii) how those
sub components are interconnected.

Each AC is encapsulated and has an HCFG, a set o
(local) variables including a (local) simulation clock, and a
point of control (POC). The behavior of each type of AC is
specified by an HCFG, which is state based. An HCFG is a
hierarchical structure which allows a modeler to specify an
AC’s behavior by recursive decomposition of its state space
into a disjoint set of encapsulated partial behaviors called
Macro Control States (MCSs) (pronounced “max”). A MCS
is specified via a MCS specification structure, which is an
augmented directed graph where the nodes are (other) MCS
and/or control states. A control state (CS) is a formalization
of the “process reactivation point” (Cota and Sargent 1992
Zeigler 1976). (The POC moves from CS to CS and the
movement of the POC gives the thread of control of an
AC.) Edges leaving MCSs in the augmented graphs have n
attributes while edges leaving CSs have three attributes:
condition, a priority, and an event. The condition specifies
when an edge can become a candidate for traversal by th
POC, the priority is used to break time ties when more than
one edge exiting a CS is a candidate for traversal at the sam
simulation time, and the event is executed whenever tha
edge is traversed via the POC during simulation execution
.

h
l

t

f
e

t-

l
s

f

s

,

o
a

e

e
t
.

An AC changes state when that AC’s POC moves over an
edge exiting its current CS to an adjacent CS (causing the
event on that edge to be executed) in that AC’s HCFG. The
simulation execution algorithm moves the POC of each AC.
Sequential, parallel, and distributed simulation executional
algorithms exist for HCFG Models (Cota and Sargent 1990).
Priorities need to be assigned to the ACs for the sequentia
simulation execution algorithm to handle time ties of events
among ACs. (See Daum 1998 for further discussion of AC
priorities.)

Each HCFG Model has a model tree. A model tree
consists of a HIG tree and a HCFG tree for each AC.
The HIG tree contains the hierarchical relationships of the
components where the leaf nodes are ACs, the internal node
are the CCSs of the CCs, and the root node is the CCS
of the top CC that encloses the entire HCFG Model. An
HCFG tree contains the specification structures of the MCSs
in an AC’s HCFG as its nodes and its root MCS enclose
the entire behavior specification of that AC. In the model
tree, each leaf node of the HIG tree has that AC’s HCFG
tree. Thus a model tree shows the two-tiered hierarchical
structure of an entire HCFG Model.

MEs in the HCFG Model paradigm include CCs, ACs,
MCSs, edge conditions, and events. These MEs have type–
instance relationships and share importance characteristic
such as reusability.

3 PROPERTIES OF XML

XML is a data format for structured information interchange.
It was developed as a restricted form of the Standardized
Markup Language (SGML) with several design goals:

• Straightforward usability over the Internet.
• XML documents can be processed by readily avail-

able, standardized software.
• XML documents can be easily transformed.
• XML documents are human-readable.

One major extension of XML over SGML is that the
XML specification not only specifies the syntax of XML
documents, but also the behavior of programs processing
XML.

Software developers seeking to access, modify, or gen-
erate XML documents can rely on software packages that are
freely available for virtually any platform and that behave
in predictable ways due to the standardized XML specifica-
tion. Traditionally, developing and sharing new data formats
frequently presented significant software engineering chal-
lenges, requiring detailed syntax specifications as well as
extensive programming efforts. Using XML, it is sufficient
to agree on a set of XML tags and their meaning in the
given context and programming to integrate new formats is
kept to a minimum.



Daum and Sargent
4 HIERARCHICAL MODELING

As modelers build more complex models, hierarchical mod-
eling becomes an important issue. Hierarchical modeling
provides the ability to partition a model specification into
components which in turn can be recursively partitioned
into (sub) components, resulting in a hierarchical specifica-
tion structure of the model (Daum 1998, Daum and Sargent
1999.)

Partitioning models into hierarchical sub components
can be crucial for the manageability of complex models.
Without hierarchical specification structures, it can be a
challenge to develop and present large models, which may
contain hundreds of components. Hierarchical modeling
allows for the specification of a model at different levels of
abstraction, which can help in the verification and validation
of a model.

This hierarchical decomposition of models leads to a
model which is specified as a number of trees of encapsulate
MEs, where only the leaf nodes contain arbitrary code
specifying model behavior. All other MEs merely contain
sub elements, information on how these are interconnected
and mechanisms for passing values of ME variables and
parameters up and down the model tree.

Traditional modeling systems typically specify such
non-leaf MEs in either an internal, proprietary data format
or in a high level programming language. The first approach
sacrifices inter-operability with systems that do not under-
stand the particular data format, and the second approac
ties the model to a particular programming language, which
may limit the choice of simulation engines, data collection
and data presentation tools, etc.

The HiMASS-j prototype used both approaches. During
model development, all MEs were saved by the HiMASS
Modeler GUI in a binary, proprietary format. This made
it extremely difficult to share models with other tools for
applications such as model presentation and documentation
For model execution, the HiMASS-j GUI would generate
the model specification as Java source code, which could
then be compiled into an executable model. Figure 1 shows
a trivial CC in the HiMASS Modeler GUI and Table 1
shows the corresponding Java source code generated b
HiMASS-j.

While this approach presents some “openness” (i.e.,
developers can read and manipulate the Java source an
do not have to use the GUI to specify MEs), the model
specification is still tied to the Java language. Furthermore,
using a high level programming language to describe a ME
that merely serves as a container for variables, sub elements
and their interconnections, is unnecessarily complex. The
need to recompile the model (or parts thereof) after every
change made with the GUI can also slow rapid model
development.
d

,

h

.

y

d

,

Figure 1: Simple CC with Sub Components

Table 1: CC Specification in Java Source Code

Filename: SimpleCC.java

import himass.sim;

public class SimpleCC extends CC {
Sink sink;
Source src;
Server svr;

public SimpleCC(int t1, int t2) {
add("src", src = new Source(t1), 1);
add("svr", svr = new Server(t2), 5);
add("sink", sink = new Sink(), 10);

}

protected void connect() {
connect(svr.out, sink.in);
connect(src.out, svr.in);

}
}

4.1 Language Independent Model Elements

With HiMASS-x, MEs are saved in XML. Table 2 shows
the same simple CC saved in XML format. It shows
the type definition of a CC named “SimpleCC”. The ME
contains three ACs as sub elements “src”, “svr”, and “sink”,
which are connected by two channels. When an instance of
“SimpleCC” is invoked, it passes two integer parameters to
two of its child AC’s. Figure 2 shows how these parameters
can be specified in the HiMASS Modeler GUI.

In this example, the type definitions of the AC’s are
provided by an external ME type library (which is not
shown.) It is possible to include the type definition of a
sub element inline by defining a<children> element
inside the<ac> element or to dynamically load a ME
type definition over the network, by adding aref attribute
referencing the URL of the type to the<ac> element. This
feature allows for greater flexibility than the Java source



Sargent

ly

c-
h
L

-

-

re

s

.
e
x-
nt

-

)
l

Daum and

Table 2: CC Specification in XML
Filename: SimpleCC.xml

<me type="cc" name="SimpleCC">
<children>

<ac name="src" type="Source" priority="1">
<param name="t1" type="int" pass="t1"/>

</ac>
<ac name="svr" type="Server" priority="5">

<param name="t2" type="int" pass="t2"/>
</ac>
<ac name="sink" type="Sink" priority="10"/>

</children>
<connections>

<channel from="src.out" to="svr.in"/>
<channel from="svr.out" to="sink.in"/>

</connections>
</me>

Figure 2: HiMASS Parameter Editor

code solution, as there, ME types must always be define
as separate Java class files.

This XML definition is the functional equivalent of the
previous Java class definition. The XML can be created
with the HiMASS Modeler GUI, but also with a standard
XML editor or even a simple text editor. XML files can be
shared with and modified by other developers without the
need for any specialized software.

4.2 Model Documentation

One of the benefits of XML is the availability of free,
standardized software that allows for the easy transformatio
of XML documents. By applying a style sheet to an XML
document, its data can be converted into a web page,
printable document, or almost any other format. This allows
one to easily generate documentation for a model, ME, o
ME library–directly from the XML-encoded specification.

Figure 3 shows a partial screen shot of a web page (in
HTML format) that was generated by applying an XSLT
(Clark 1999) style sheet to the ME type definition in Table 2.

The XSLT style sheet for generating HTML docu-
mentation from model specifications is available online at
<http://himass.com/wsc02 >.
d

n

a

r

Figure 3: Web Page Generated from CC Definition

4.3 Behavior Specification

While the hierarchical structure of a model can be adequate
expressed using the hierarchical properties of XML, HCFG
model specifications can also contain arbitrary code to spe
ify the behavior of edge conditions and event routines. Suc
code can simply be inserted between the appropriate XM
elements.

Figure 4 shows how an exponential delay can be mod
eled as a reusable MCS using the VIM capabilities of the
HiMASS Modeler GUI and Figure 5 shows how arbitrary
code can be specified, e.g., for a time delay condition. Ta
ble 3 shows an XML-formatted exponential time delay edge
condition.

Constructs such as class and variable declarations a
still XML-encoded. Often, these constructs have differ-
ent syntaxes in different programming languages and thu
make cross-language development difficult. Keeping them
in XML maintains language independence to a large extend
Only arbitrary expressions that, e.g., compute values, ar
inserted as they would appear in source code. Such e
pressions are often source-code compatible across differe
programming languages. Thereturn ... ; expression
in the exponential delay condition above, e.g., can be com
piled both by a Java and a C++ compiler. In addition, low
level routines such as this are often part of a (pre-compiled
component library and do not have to be specified by mode
developers.

http://himass.com/wsc02
http://himass.com/wsc02


r
y

d

e

ss

.

Daum and

Figure 4: HiMASS Modeler GUI for Exponential Delay
MCS

Figure 5: HiMASS Modeler GUI for Time Delay Condition

Table 3: Exponential Time Delay Edge Condition
Filename: ExpDelayCond.xml

<me type="time-condition" name="expDelay">
<var type="double" name="mean"/>
<code return="double">
return -1 * mean * Math.log(nextDouble());
</code>

</me>

5 VISUAL INTERACTIVE MODELING

HiMASS provides a powerful GUI for the VIM of MEs,
as well as entire models. With HiMASS-x, the graphical
information describing the layout of MEs is stored in an
XML-based vector graphics format. (In HiMASS-j, GUI
information was stored in a proprietary binary format, that
was based on Java serialization and that was not guarantee
to work across different versions of Java.)

When GUI information is saved in XML, it can be
interspersed with the structural information of the model.
This is useful when executable models must display graph
ical information during or after the simulation run. As
general tools for XML-based graphics formats exists, it is
straightforward to extract graphical model information for
documentation or advertising purposes. It is also possible
to use other software packages to create or process HCF
models.
Sargent

d

-

G

6 EXPERIMENTAL FRAME

HiMASS supports the Experimental Frame (EF) concept
(Zeigler 1976) for the specification of a model’s experimental
conditions (see Daum and Sargent 2001.) An EF can specify
values such as the mean rate of arrivals or the seeds fo
the pseudorandom number generators. EFs are usuall
implemented as one or several sets of(key, value)pairs,
wherekeys are the unique identifiers of the (model and other)
attributes that can be specified through the EF andvalues
are the numerical, string, or other values that are assigne
to these attributes upon EF initialization. EFs are usually
stored in files independent from the model which are loaded
by the simulation software during model initialization. The
values provided by an EF are assigned to the appropriat
model attributes either as part of model initialization or
before each of the attributes is accessed for the first time
during model execution.

Prior to utilizing XML, HiMASS-j used a proprietary,
binary data format for EFs. That practice was unsatisfactory
in two regards. The EF file format was based on serialized
Java objects and was not guaranteed to be usable acro
different versions of the Java platform. Due to the binary
nature of the old EF file format, it was impossible to manually
inspect or manipulate EF files.

HiMASS-x uses XML for the specification of EFs. Al-
though a comprehensive GUI is provided that allows for the
interactive specification of values for the EF, model devel-
opers can use their favorite XML or text editor to quickly
change a value in the EF between simulation experiments

Figure 6 shows how the HiMASS Modeler GUI is used
to specify the EF for the trivial model used in this paper
and Table 4 shows the XML representation of this EF.

Figure 6: HiMASS EF Dditor

Table 4: EF Specification in XML
Filename: SimpleEF3.xml

<ef name="simple" id="3">
<cc name="simpleCC">

<param name="t1" type="int" value="17"/>
<param name="t2" type="int" value="30"/>

</cc>
</ef>



Daum and Sargent

t

d

f

s

h
l
.

t

The structure of an EF file closely resembles the struc-
ture of a model definition file and it is thus intuitive to read
and manipulate. EF files can be processed, e.g., to genera
documentation, in the same way as model definition files.

7 MODEL EXECUTION

The HiMASS-x Engine is used to execute HCFG simulation
models. It utilizes XML to set up and run simulation
experiments. Table 5 shows the XML file for a simulation
experiment.

The file specifies the model to be “simpleModel”. Since
the<model> element has nourl attribute, the model itself
will be loaded locally.

Table 5: XML Simulation Experiment File
Filename: SimpleExec.xml

<himass>
<source type="me" name="simple"

url="http://himass.com/1.0/simple.xml"/>
<model name="simpleModel">

<sim algo="seq" lang="java"/>
<root type="SimpleCC" source="simple"/>
<ef name="simple" id="1"/>
<ef name="simple" id="2"/>
<ef name="simple" id="3"/>

</model>
</himass>

7.1 Remote ME Libraries

ME type specifications can be loaded from a remote ME
library, if the model file contains no type specifications for
referenced MEs. The location of the ME library is specified
by the<source> element. It is possible to specify several
ME libraries or none at all, if all ME types are fully specified
in the model.

7.2 Simulation Algorithm and Experiments

The<sim> element selects the HCFG simulation algorithm
and the execution language. Using XML makes it easy
to “plug in” different simulation algorithms for the same
HCFG model, without having to recompile. Specifying the
execution langue is useful when ME libraries for several
languages (e.g., Java and C++) are available. The<root>
element specifies which of the available CCs should be
the top-level CC, i.e., the root of the model tree. The
type definition of this root CC recursively references all
MEs used in the model and how they are interrelated, so
that the simulation engine can dynamically build a runtime
representation of the model. Thesource attribute specifies
that the CC should be loaded from the ME library specified
above.
te

For this experiment, the model will be executed three
times with three different EFs as specified by the different
<ef> elements. Instead of listing individual EFs, it is also
possible to give a range of EF files that should be used. I
is also possible to load one, several, or all EF files from a
remote source.

8 CONCLUSIONS

We presented a new approach to modeling, managing, an
executing HCFG models. The consistent use of XML
reconciles formerly disparate data formats. The use o
XML is beneficial in several ways.

Since XML is an open, standardized format for which
several free, high-quality software packages exist, it become
feasible to access HCFG models, ME repositories, and EF
files independently from HiMASS-x. Models and other
components of an HCFG system can be easily shared wit
other users and systems. As XML is human-readable, mode
data cannot get locked into any particular software package
Modelers can be confident that they will be able to access
their models and data in the future.

Because XML was designed to be run over the Interne
and standard XML processing software was developed with
that goal in mind, HiMASS-x resources can be accessed
remotely with very little effort. Distributed capability lever-
ages the full potential of ME libraries and is crucial for the
implementation of distributed simulation algorithms.

Using XML allows the specification of a standard for-
mat for HCFG models that is independent from any partic-
ular software implementation. Leveraging freely available,
ready-to-use XML software finally can cut down signifi-
cantly on the software development effort.

The complete files used in this paper and
other relevant resources are available online at
<http://himass.com/wsc02 >.

REFERENCES

Bray T., J. Paoli, C.M. Sperberg-McQueen, and
E. Maler, editors. 2000. Extensible Markup
Language (XML) 1.0 Second Edition. World
Wide Web Consortium. Available online via
<http://www.w3.org/TR/2000/REC-xml-20001006 >

[accessed March 31, 2002].
Clark J., editor. 1999. XSL Transformations (XSLT)

1.0 World Wide Web Consortium. Available online
via <http://www.w3.org/TR/xslt > [accessed
March 31, 2002].

Cota, B. and R. Sargent. 1990. Simulation Algorithms for
Control Flow Graphs. CASE Center Technical Report
9023. Syracuse University, Syracuse, New York.

http://himass.com/wsc02
http://himass.com/wsc02
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt


Daum and Sargent

n

.

-
)

.
s

s

Cota, B. and R. Sargent. 1992. A Modification of the
Process Interaction World View.ACM Trans. Model.
Comput. Simul., 2, 2, 109–129.

Daum, T. 1998. An Investigation into Specifying HCFG
Models Using Visual Interactive Modeling.Graduate
Thesis. Otto von Guericke University, Magdeburg,
Germany.

Daum, T. and R. Sargent. 1997. A Java Based System
for Specifying Hierarchical Control Flow Graph Mod-
els. In: S. Andradottir, K.J. Healy, D.H. Withers, and
B.L. Nelson, eds.,Proc. of the 1997 Winter Simulation
Conference, 150–157, IEEE, Piscataway, New Jersey.

Daum, T. and R. Sargent. 1999. Scaling, Hierarchical Mod-
eling, and Reuse in an Object-Oriented Modeling and
Simulation System. In: P.A. Farrington, H. Black Nem-
bhard, D.T. Sturrock, and G.W. Evans, eds.,Proc. of
the 1999 Winter Simulation Conference, 1470-1477,
IEEE, Piscataway, New Jersey.

Daum, T. and R. Sargent. 2001. Experimental Frames in a
Modern Modeling and Simulation System.IIE Trans.,
33, 3, 181–192.

Eckel, B. 1998. Thinking in Java. Upper Saddle River,
New Jersey: Prentice-Hall.

Fritz, D. and R. Sargent. 1995. An Overview of Hierarchical
Control Flow Graph Models. In: C. Alexopoulos,
K. Kang, W. Lilegdon, and D. Goldsman, eds.,Proc.
of the 1995 Winter Simulation Conference, 1347–1355,
IEEE, Piscataway, New Jersey.

Sargent, R. 1997. Modeling Queueing Systems Using
Hierarchical Control Flow Graph Models.Mathematics
and Computers in Simulation, 44, 237-249.

Sargent, R. and T. Daum. 1998. Visual Interactive Modeling
in a Java-based Hierarchical Modeling and Simulation
System. In: P. Lorenz and B. Preim, eds.,Proc. of
Simulation und Visualisierung ’98, 1–17, Society for
Computer Simulation International, Ghent, Belguim.

Zeigler, B. 1976. Theory of Modelling and Simulation.
New York, N.Y.: Wiley.

AUTHOR BIOGRAPHIES

THORSTEN S. DAUM is the principal developer of Hi-
MASS. He was a director and co-founder at Xmlify, a
Silicon Valley corporation specializing in XML-centered
data conversion technology. He holds a graduate degree i
computer science with a focus on simulation from Otto von
Guericke University in Magdeburg. His interests include
discrete event simulation, Object Oriented methodology,
and XML. He was a visiting researcher with the Simulation
Research Group and CASE Center at Syracuse University
His e-mail address is<tdaum@himass.com >.

ROBERT G. SARGENT is a Professor Emeritus of Syra-
cuse University. He received his education at The University
of Michigan. Dr. Sargent has served his profession in numer
ous ways and has been awarded the TIMS (now INFORMS
College on Simulation Distinguished ServiceAward for long-
standing exceptional service to the simulation community
His current research interests include the methodology area
of both modeling and discrete event simulation, model val-
idation, and performance evaluation. Professor Sargent ha
published extensively and is listed inWho’s Who in America.
His e-mail address is<rsargent@syr.edu > and his web
page is<www.cis.syr.edu/srg/rsargent >.

tdaum@himass.com
mailto:tdaum@himass.com
rsargent@syr.edu
mailto:rsargent@syr.edu
www.cis.syr.edu/srg/rsargent
http://www.cis.syr.edu/srg/rsargent

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 634
	02: 635
	03: 636
	04: 637
	05: 638
	06: 639
	07: 640


