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ABSTRACT

This article introducesmulti-formalismmodelling andmeta-
modelling to facilitate computer assisted modelling and
simulation of complex systems. To aid in the automatic
generation of multi-formalism modelling and simulation
tools, formalisms are modelled in their own right, at a meta
level, within an appropriate formalism. This approach is
implemented in the interactive tool ATOM3 (A Tool for
Multi-formalism Meta-Modelling). This tool is used to
describe formalisms commonly used in the simulation o
dynamical systems, as well as to generate custom tools
process (create, edit, simulate, …) models expressed in t
corresponding formalism. ATOM3 relies on graph rewriting
techniques to perform the transformations (modelled a
graph grammars) between formalisms as well as for othe
tasks, such as code generation or simulator specification

The Finite State Automata (FSA) formalism is used to
demonstrate the concepts of meta-modelling as well as mod
transformation (in particular, simulation of FSA models).

The issue of a neutral model exchange and re-use form
is addressed in the context of meta-modelling. Core XML
is proposed as a standard external format. Thanks to t
power of the meta-modelling approach, DTD, XMLSchema
and XSLT specifications may be replaced by models, exte
nally represented in core XML, in appropriate formalisms
(Entity Relationship for syntax and Graph Grammar for
transformation respectively).

1 INTRODUCTION

Modelling complex systems is a difficult task, because suc
systems often have components and aspects whose str
ture as well as behaviour cannot be described in a sing
comprehensive formalism. Examples of commonly use
formalisms are Differential-Algebraic Equations (DAEs),
Bond Graphs, Petri Nets, discrete event system speci
cation (DEVS), Entity-Relationship diagrams, and State
-
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Charts. Several approaches to modelling complex system
are possible:

• A single super-formalism may be constructed which
subsumes all the formalisms needed in the system
description. This is not possible nor meaningful
in most cases, although there are some example
of formalisms which span several domains (e.g.,
Bond Graphs for the mechanical, hydraulic and
electrical domains.)

• Each system component may be modelled using th
most appropriate formalism and tool. To investigate
the overall behaviour of the system, co-simulation
can be used. In this approach, each componen
model is simulated with a formalism-specific sim-
ulator. Interaction due to component coupling is
resolved at the trajectory (simulation data) level.
The co-simulation engine orchestrates the flow of
input/output data in a data-flow fashion. In this
approach, questions about the overall system ca
only be answered at the level of input/output (state
trajectory) level. It is no longer possible to answer
higher-level questions which could be answered
within the formalisms of the individual compo-
nents. Furthermore, there are speed and numer
cal accuracy problems for continuous formalisms,
in particular if one attempts to support compu-
tationally non-causal models. The co-simulation
approach is meaningful mostly for discrete-event
formalisms. It is the basis of the DoD High Level
Architecture (HLA)<hla.dmso.mil> for sim-
ulator interoperability.

• In multi-formalism modelling, as in co-simulation,
each system component may be modelled using
the most appropriate formalism and tool. How-
ever, a single formalism is identified into which
each of the component models may be symboli-
cally transformed (Vangheluwe 2000). Obviously,
the system properties which we wish to investigate
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must be invariant under the transformations. The
formalism to transform depends on the question
to be answered about the system. The Formal
ism Transformation Graph (see Figure 1) suggest
DEVS (Zeigler, Praehofer, and Kim 2000) as a uni-
versal common modelling formalism for simulation
purposes (generating input/output trajectories).

It is easily seen how multi-formalism modelling subsumes
both the super-formalism approach and the co-simulatio
approach.

Although the model transformation approach is con-
ceptually appealing, there remains the difficulty of inter-
connecting a plethora of different tools, each designed for
particular formalism. Also, it is desirable to have problem-
specific formalisms and tools. The time needed to develo
these is usually prohibitive. This is why we introduce meta-
modelling, whereby the different formalisms themselves, a
well as the transformations between them are modelled
This pre-empts the problem of tool incompatibility. Ideally,
a meta-modelling environment must be able to generate cu
tomized tools for models in various formalisms provided the
formalisms are described at the meta-model level. Whe
these tools rely on a common data structure to internally
represent the models, transformation between formalism
is reduced to the transformation of these data structures.

In this article, we present ATOM3, a tool which im-
plements the ideas presented above. Using Finite Sta
Automata as an example, we demonstrate the use of met
modelling to specify and automatically generate an FSA
modelling and simulation tool. To allow tool-neutral ex-
change and re-use of models, XML is proposed as a
external model storage format. As meta-models are mode
too, there is no need for a dedicated syntax such as DTD
or XMLSchema to describe formalism syntax.

2 MULTI-FORMALISM MODELLING

Complex systems are characterized not only by a larg
number of components, but above all by the diversity of
these components (and the feedback interaction betwee
them). For the analysis and design of such complex system
it is not sufficient to study the individual components in
isolation. Properties of the system must be assessed b
looking at thewholemulti-formalism system.

In Figure 1, a part of the “formalism space” is depicted
in the form of aFormalism Transformation Graph(FTG).
The different formalisms are shown as nodes in the graph
The arrows denote a behaviour-preserving homomorphi
relationship “can be mapped onto”, using transformations
between formalisms. The vertical dashed line is a division
between continuous and discrete formalisms. The vertica
dotted arrows denote the existence of a solver (simulatio
kernel) capable of simulating a model.
-
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3 META-MODELLING

As stated in the previous section, one of the characteristic
of complex systems is the diversity of their components
Consequently, it is often desirable to model the differen
components using different modelling formalisms. This is
certainly the case, when inter-disciplinary teams collaborat
on the development of a single system. A proven metho
to achieve the required flexibility for a modelling language
that supports many formalisms and modelling paradigms i
to model the modelling language itself (Honeywell 1999).
Such a model of the modelling language is called a meta
model. It describes the possible structures which can b
expressed in the language. A meta-model can easily be ta
lored to specific needs of particular domains. This require
the meta-model modelling formalism to be rich enough to
support the constructs needed to define a modelling lan
guage. Taking the methodology one step further, the meta
modelling formalism itself may be modelled by means of
a meta-meta-model. This meta-meta-model specificatio
captures the basic elements needed to design a formalis
Table 1 depicts the levels considered in our meta-modellin
approach. Formalisms such as Entity-Relationship diagram
are often used for meta-modelling. To be able to fully spec
ify modelling formalisms, the meta-level formalism may
have to be extended with the ability to express constraint
(limiting the number of meaningful models). For example,
when modelling a Determinsitic Finite StateAutomaton, dif-
ferent transitions leaving a given state must have differen
labels. This cannot be expressed within Entity-Relationshi
diagrams alone. Expressing constraints is most elegant
done by adding a constraint language to the meta-modellin
formalism. Whereas the meta-modelling formalism fre-
quently uses a graphical notation, constraints are concise
expressed in textual form. For this purpose, some system
(Gray, Bapty, and Neema 2000), including ATOM3 use the
Object Constraint Language OCL<www.omg.org> used
in the UML.

Figure 2 depicts the structure we propose for a meta
modelling environment. ATOM3 was initialized using a
hand-coded Entity-Relationship meta-meta-model. As th
Entity-Relationship formalism can be described in an Entity-
Relationship model, the environment could be bootstrapped

3.1 Meta-Modelling FSA in ATOM 3

ATOM3 is a tool written in Python<www.python.org>
which uses and implements the meta-modelling concep
presented above.

The main component of ATOM3 is the Kernel. This
module is responsible for loading, saving, creating and
manipulating models, as well as for generating code. By
default, a meta-meta-model is loaded when ATOM3 is in-
voked. This meta-meta-model allows us to model meta
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DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Figure 1: Formalism Transformation Graph

Table 1: Meta-Modelling Levels
Level Description Example

Meta-Meta-
Model

Model used to specify modelling
languages

Entity-Relationship Diagrams,
UML class Diagrams.

Meta-Model Model used to specify simula-
tion models

Finite State Automata, Ordinary
differential equations (ODE).

Model The description of an object in
a certain formalism

f ′(x) = − sinx, f (0) = 0 (in
the ODE formalism)

meta-meta
model

meta-model
processor

meta-model
user
input

a model of a class of models (the formalism MF)
semantics within formalism MMF
describes: structure and constraints

a model in formalism MF

-create
-delete
-verify (local, global)

meta-model
processor model

user
input

a model of a class of models (the formalism F)
semantics within formalism MF
describes: structure and constraints

a model in formalism F

-create
-delete
-verify (local, global)

MMF

MF

F

(ER)

(ER)

(FSA)

Figure 2: Proposed Working Scheme for a Meta-Modelling Environment
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models (modelling formalisms) using a graphical notation.
For the moment, the Entity-Relationship formalism extended
with constraints is available at the meta-meta-level. When
modelling at the meta-meta-level, the entities which may
appear in a model must be specified together with their
attributes. We will refer to this as the semantic information.
For example, to define the Deterministic Finite Automaton
Formalism, it is necessary to define both States and Trans
tions. Furthermore, for States we need to add the attribute
name and type (initial, terminal or regular). For Transitions,
we need to specify the condition that triggers it. This is
shown in Figure 3. Note how the “current” entity is present
to facilitate model simulation.

Name type=String init.val
isInitial type=Boolean in
isFinal type=Boolean init

FSAState current

FSATransition

points_to

Figure 3: FSA Meta-Model (ER+Constraints)

In general, in ATOM3 we have two kinds of attributes:
regular andgenerative. Regular attributes are used to iden-
tify characteristics of the current entity. Generative attributes
are used to generate new attributes at a lower meta-leve
The generated attributes may be generative in their own
right. Both types of attributes may contain data or code
for pre and post conditions. Thus, in our approach, we can
have an arbitrary number of meta-levels as, starting at one
level, it is possible to produce a generative attribute at the
lower meta-level and so on. The meta-chain ends when a
model has no more generative attributes. Attributes can be
associated with individual model entities as well as with a
model as a whole.

Many modelling formalisms support some form of cou-
pled or network models. In this case, we need to connec
entities and to specify restrictions on these connections. In
our finite automaton example, States can be connected t
Transitions, although this is not mandatory. Transitions can
also be connected to States, although there may be State
without incoming Transitions. In ATOM3, in principle,
all objects can be connected to all other objects as wel
as to themselves. Usually, a meta-meta-model is used t
specify/generate constraints on these connections. Using a
Entity-Relationship meta-meta-model, we can specifycar-
dinality constraints in the relationships. These relationships
i-
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will generate constraints on object connection at the lower
meta-level.

The above definitions are used by the Kernel to generat
the Abstract Syntax Graph nodes. These nodes are Pytho
classes generated using the information at the meta-meta
level. In the meta-meta-model, it is also possible to specify
the graphical appearance of each entity of the lower meta
level. This appearance is, in fact, a special kind of generative
attribute. For example, for the Deterministic Finite State
Automaton, we have chosen to represent States as circle
with the state’s name inside the circle, and Transitions as
arrows with the condition on top. That is, we can specify
how some semantic attributes are displayed graphically. We
must also specify connectors, that is, places where we ca
link the graphical entities. For example, in Transitions we
have specified connectors on both extremes of the arc an
in States on 4 symmetric points around the circle. Further
on, connection between entities is restricted by the specifie
semantic constraints. For example, a Transition must be
connected to two States. The meta-meta-model generates
Python class for each graphical entity. Thus, semantic an
graphical information are separated, although, to be able t
access the semantic attributes’ values both types of classe
(semantic and graphical) have a link to each other.

Using the FSA meta-model information, ATOM3 al-
lows editing of syntactically correct FSA models. As an
example, an FSA recognizing even binary numbers (the
input is a sequence of 0s and 1s) is shown in Figure 4
Actually, this figure already shows the first step of a graph
grammar specified FSA simulator (asking the user for the
input sequence).

3.2 Graph Grammars

Both for modelling and simulation purposes it is neces-
sary to transform (structure as well as attributes) of mod-
els. The Graph Grammars formalism (Dorr 1995) allows
us to model model transformations. In analogy to string
grammars, graph grammars can be used to describe grap
transformations, or to generate sets of valid graphs. Grap
grammars are composed of rules, each mapping a graph o
the left-hand side to a graph on the right-hand side. When
a match is found between the left-hand side of a rule and
a part of an input graph, this subgraph is replaced by the
right-hand side of the rule. Rules may also have a condition
that must be satisfied in order for the rule to be applied, as
well as actions to be performed when the rule is executed
A rewriting system iteratively applies matching rules in the
grammar to the graph, until no more rules are applicable.

The use of a model (in the form of a graph grammar)
of graph transformations has some noteworthy advantage
over an implicit representation (embedding the transforma
tion computation in a program) (Blonstein, Fahmy, and
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Grbavec 1996). The main advantages using a model o
graph transformations can be summarized as follows:

• It is an abstract, declarative, high level represen-
tation.

• The theoretical foundations of graph rewriting sys-
tems may assist in proving correctness and con
vergence properties of the transformation tool.

On the other hand, the use of graph grammars is constraine
by efficiency. In the most general case, subgraph isomor
phism testing is NP-complete. However, the use of smal
subgraphs on the left hand side of graph grammar rules
as well as using node labels and edge labels can great
reduce the search space.

Since we store simulation models as graphs, it is pos
sible to express the transformations shown in the FTG a
well as simulation-transformations at a meta-level, as grap
grammars.

In a graph grammar, entities are labelled with numbers
In our case, entities are both states and transitions. If tw
nodes in a left hand side and a right hand side have th
same number, that means that the node must not disappe
when the rule is executed. If a number appears in a LHS
but not in a RHS, that means that the node must be remove
when applying the rule. If a number appears in a RHS bu
not in a LHS, that means that the node must be created
the rule is applied.

For subnode matching purposes, we should specify th
value of the attributes of the nodes in the LHS that will
produce a matching. In all the rules in our case, all the
attributes have the value of〈ANY 〉, which means that any
value will produce a matching. It is also needed to specify
the value of the attributes once the rule has been applie
and the LHS has been replaced by the RHS. This is don
by specifying attributes in the RHS nodes of the rule. If no
value is specified, and the node is not a new node (the lab
appears in the LHS), by default it will keep its values. This
is denoted by〈COPIED〉. It is also possible to calculate
new values for attributes, and we certainly must do this if
a new node is generated when replacing the LHS by th
RHS.

Here, we describe the operational semantics of the
FSA formalism by means of a Graph Grammar model.
Executing the Graph Grammar on a particular FSA mode
and input segment will result in a simulation trace. The
graph grammar is depicted in Figure 5. The user construct
an FSA model in AToM3 as shown in the even binary
number recognizer model of Figure 4. As an initial action,
the user is prompted to provide an input segment (“010” in
this case). Rule 1 identifies the initial state of the model
creates a “current” node and lets it point to the initial state
Subsequently, Rules 2 and 3 “match” a transition pattern
(between different states or in a self-loop respectively) and
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the current input and re-write the model appropriately. The
simulation continues until no more rules match. This process
is depicted in Figure 6 for the even binary number recognizer
FSA example with “010” as input segment.

4 XML REPRESENTATION

By default, AToM3 saves models as Python scripts. This
removes the need to parse the model as this is taken care of b
the Python interpreter. Formalism-specific syntax checks
are done upon reading. They are based on information
from the (ER + constraints) meta-model of the formalism
the model being loaded is expressed in.

For model exchange and re-use purposes (possibly ove
the WWW), a neutral format is required. XML seems
the most viable candidate. XML is a base-language for
expressing arbitrary, structured data in text form. It consists
of several modules: core syntax, meta-syntax, linking, style-
bindings, …Of these only the core syntax is common to
all XML applications. Applications can choose to omit the
other modules if they don’t need them. All attributes in
XML are by default string valued, although the meta-syntax
is able to restrict that.

As depicted in Figure 7, it is sufficient to hand-craft
a lexical analyser and parser for “core XML” syntax as
described by Bert Bos in<http://www.w3.org/XML/
9707/XML-in-C> .

The core XML grammar in pseudo-EBNF is given
below:

document: prolog element misc*;
prolog: VERSION? ENCODING? misc*;
misc: COMMENT | attribute_decl;
attribute_decl: ATTDEF NAME attribute+ ENDDEF;
element: START attribute* empty_or_content;
empty_or_content:

SLASH CLOSE | CLOSE content END NAME? CLOSE;
content: (DATA | misc | element)*;
attribute: NAME (EQ VALUE)?;

Literals are appropriately defined in the lexical specifica-
tion <http://www.w3.org/XML/9707/scanner.
l> . The full Bison specification is available at<http:
//www.w3.org/XML/9707/parser.y>

The core XML syntax accepts any nested combination of
<tag> ...</tag> or < ... /> constructs. Rather than
using DTDs or XMLSchema to specify formalism-specific
valid syntax, we propose a more expressive ER+constraint
model. Note how such a meta-model (of formalism F)
is a model in its own right and can be saved in XML
format. One a model’s syntax has been checked, it can b
transformed (simplified, simulated, converted into another
formalism, …). Transformations are again modelled, most
likely in the Graph Grammar formalism. Transformation
models can again be saved and shared in XML format.
Note how transformation specifications such as XSLT are
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Figure 4: FSA Model, Binary Digit Sequence Input
easily expressed in this framework. Ultimately, we need
to save the model under study in the neutral XML format.
Output generation is nothing but another transformation
and can as such again be explicitly modelled. The whole
scenario is depicted in Figure 7. The approach can easily
be extended to read and write custom modelling language
such as Modelica (Elmqvist et al. 1999).

5 CONCLUSIONS

In this article, we have presented an approach for modelling
complex systems. Our approach is based on Meta-Modelling
and Multi-Formalism modelling, and is implemented in
the tool ATOM3. This code-generating tool, developed
in Python, relies on graph grammars and meta-modelling
techniques and supports hierarchical modelling.

The advantages of using such an automated tool fo
generating customized model-processing tools are clear
instead of building the whole application from scratch, it
is only necessary to specify – in a graphical manner – the
kinds of models we will deal with. The processing of such
models can be expressed by means of graph grammars,
the meta-level. Our approach is also highly applicable if
we want to work with a slight variation of some formalism,
where we only have to specify the meta-model for the new
formalism and a transformation into a “known” formalism
(one that already has a simulator available, for example)
s

r
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at

.

We then obtain a tool to model in the new formalism, and
are able to convert models in this formalism into the other
for further processing.

A side effect of our code-generating approach is that
some parts of the tool have been built using code generated by
itself (bootstrapped): one of the first implemented features
of AToM3 was the capability to generate code, and extra
features were added using code thus generated.

As there is a need for a neutral model exchange format,
we have presented XML and its integration in the meta-
modelling framework.

ATOM3 is being used to build small projects in a
Modelling and Simulation course at the School of Computer
Science at McGill University.
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