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ABSTRACT

In this paper, we present a variance minimization (VM)
procedure for rare event simulation in tandem queueing
networks. We prove that the VM method can produce a zero
variance. The VM method is suitable to compute optimal
importance sampling (IS) parameters for small scale tandem
networks. For large scale tandem networks we propose a
sub-optimal IS (SOIS) method, which projects the optimal
biased transition probabilities of the corresponding small
scale system into those of a large scale system. In othe
words, we establish an efficient IS method for a large scale
system by zooming into a small scale system and then
projecting our findings into the large scale system. The
numerical results show that our SOIS method can produce
accurate results with very short CPU time, while many other
methods often require much longer.

1 INTRODUCTION

The Monte Carlo (MC) method is commonly used to evaluate
the performance of a system or network. MC simulations can
produce accurate performance estimates, provided that th
number of simulation trials is sufficiently large. However,
this condition can be severe. For example, for a 95%
confidence interval of[2P/5,8P/5], whereP denotes the
probability we want to estimate, the standard MC approach
requires at least 108 simulations trials forP = 10−7 (see
Orsak and Aazhang 1984).

A fast simulation technique, known as importance sam-
pling (IS), has been developed to reduce the number of sim
ulation trials, providing substantial run-time savings when
determining the performance of communication systems and
networks. A comprehensive literature overview of IS in dig-
ital communications and a summary of the main techniques
can be found in Smith et. al. (1997).

A key paper which popularized the usage of IS in bit
error rate estimation is due to Shanmugan and Balaban
(1980). This paper described the idea that IS biases the
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noise density function, so that more samples can be take
from important regions (that is, the regions that cause errors)
The method used is to scale the original noise density to
increase the probability of simulation samples taken from
the important regions.

It is commonly known that most IS techniques come
with a price. The greatest difficulties in obtaining an effi-
cient IS method are (a) finding a good way to bias system
uncertainties (such as the noise density function); and (b
optimizing system parameters. It has been shown that, in
many cases, the computation and experiments required fo
achieving an efficient IS method may be more complicated
than the original problem. Thus, this implies that we have
to find simple and efficient IS algorithms.

Analytical methods are often used to simplify simulation
tasks. For example, in bit error probability (BEP) estimation
we can compute conditional BEP and the true BEP can be
then estimated by averaging over the conditional BEP (Wei
1995a). This method has been widely used by engineer
in practice without knowing its connection with the IS
concept. In Wei (1995b), it was showed that the method is
conditional optimal, thus we called it the optimal conditional
importance sampling (OCIS) method. OCIS is optimal under
the condition that only certain system parameters can be
biased. Several applications can be found in Wei (1995a)
Wei (1996), and Wei and Schlegel (1995).

The OCIS method cannot be extended to stochastic sys
tems. It is generally a difficult problem to construct an IS
method for stochastic systems with a large-scale state spac
Sadowsky (1990) proposed an efficient IS method to sim-
ulate the Viterbi decoder, and Devetsikiotis and Townsend
(1993) presented a system independent method for simu
lating communication networks. Similarly, in the field of
efficient simulation of network and reliability models, sev-
eral interesting IS-based methods have also been propose
for estimating steady state availability and the mean time
to failure (Smith et. al 1997, Glasseman and Kou 1995,
Parekh and Walrand 1989, and Heidelberger 1995).
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First used by Cottrell (1983) the theory of large devia-
tions techniques (LDT) was developed to design an efficien
IS simulation method in the communication field. This work
has been developed into a coherent simulation methodolo
through a series of papers by Sadowsky, Bucklew, and man
others.

In a queueing system with finite buffers, some propor
tion of the customers arriving at a queue is lost due to buffe
overflows. While this number will be small in a properly
dimensioned system, it is of interest because there is ofte
a large cost associated with such a loss. For example
a computer network, the queue customer may be a pack
of data, and the system must arrange for re-transmissio
of lost packets. The rarity of customer loss makes direc
simulation costly interms of computer time. For some sim
ple systems, such as anM/M/1 queue, it is possible to
calculate analytically the mean time to overflows, so tha
simulation is unnecessary. However, for some complex sy
tems, the analytical computation is not generally possible
and simulation is often used to fulfill the task.

Based on a heuristic application of LDTs, Parekh an
Walrand (1989) established efficient IS estimators for th
overflow probabilities in various Jackson networks. By sim
ply changing the arrival rate and a smallest service rate
the system, their estimators can be several orders of ma
nitude faster than direct simulations. Glasserman and Ko
(1995) studied the asymptotic efficiency of these method
and showed that in certain parameter regions the estimat
is asymptotic optimal (in term of bounded relative error),
while in other regions it is not. Unlike the single queue, the
boundaries on the state spaces in queueing networks ma
it much more difficult to construct an effective IS estimator
and to analytically compute the overflow probability.

In this paper, we will first show the method derived by
Wei and Wei (2000) can produce zero variance estimatio
We then propose a sub-optimal IS (SOIS) method to deal wit
rare-event estimation for a large scale Markov system. Th
SOIS contains two unique steps: Zoom-in and Projection
In words, we deal with a large scale Markov system by
zooming-in into a small size system first and then projectin
the results obtained for the small system into the large syste
for simulation.

This paper is organized as follows. In Section 2, we
formulate the problem of estimating a rare event in queuein
networks. In Section 3, we revisit the VM method and the
key results in Wei and Wei (2001). In Section 4 we introduce
near optimal IS methods based on a minimization procedu
for twoM/M/1 queues in tandem. Finally, we show severa
numerical results in Section 5 and conclude the paper
Section 6.
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2 PROBLEM FORMULATION

Consider a discrete time Markov chainR = (Xt , t =
0,1,2, . . . ) of the queue length at the epoch of arrivals
and departures of the queue. DenoteF as a set of states
that the total buffer size has reached. The setF may contain
just one state as in theM/M/1 queue, or a number of states
as in Jackson networks.

Define a cycle as the duration starting with an empty
system and ending at the instant that the system, for the first
time, either becomes empty again (type I cycle) or reaches
the overflow statesF (type II cycle) as shown in Figure
1. Let τ0 be the first passage time returning to the initial
empty state andτF be the first passage time to the overflow
buffer size, both under the assumption that the system starts
empty. Now, our task is to estimateEP [τF ], the expected
value ofτF or the mean time to buffer overflow. Since we
are only interested in the first passage toF , we can model
F as a set of absorbing states.

t

Xt

Type I Type II
N

Figure 1: Realization ofXt

Let α = P(τF < τ0) be the probability thatXt reaches
F before returning to 0 given that the system starts empty.
We then have (Parekh and Walrand 1989)

EP [τF ] ≈ EP [τ0]

α
. (1)

For stable systems,EP [τ0] can be easily estimated by
the Monte Carlo simulations due to short passage time of
the type I cycle. The difficult part in estimatingEP [τF ] is
the estimation ofα since the type II cycle is a rare event.
So from now on, our primary concern will be on how to
estimateα.

3 VARIANCE MINIMIZATION TECHNIQUE

In this section, we will first review the importance sampling
principle for the problem shown in the previous section.
We then present key results in Wei and Wei (2001) which
include the variance minimization (VM) method. Lastly,
we prove the VM method produces zero variance.
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3.1 Importance Sampling Principle

Define

Vk = 1A(Yk) (2)

whereYk = [Xk,0, Xk,1, . . . ] is a sample path in cyclek,
A is the set of sample paths from initial empty state to the
setF , 1A(.) is a zero-one indicator of eventA. If event
A happens, then the indicator is one; otherwise, it is zero
Denote the likelihood ratio during cyclek by

Wk =
τk−1∏
t=0

p(Xk,t+1|Xk,t )
qt (Xk,t+1|Xk,t ) (3)

whereτk is the length of pathk from empty state to the buffer
size state,p(.) andqt (.) denote the measures induced by the
corresponding transition matricesP and Qt , respectively.
For standard MC simulation, the system is simulated with
the original distributionP, i.e., Qt = P. For IS simulation,
the system is simulated according toQt and the value ofα
is estimated by

α̃ = V1 ·W1+ V2 ·W2+ · · · + Vn ·Wn

n
(4)

wheren denotes the total number of simulation trials. The
estimator in (4) is unbiased, if the simulation samples are
i.i.d.. The variance of̃α can be derived as

σ 2
α̃ =

EQ[(Vk ·Wk)
2] − α2

n
. (5)

The relative error under IS is

E(̃α) =
√
EQ[(Vk ·Wk)2] − α2

nα2 . (6)

The optimal IS (OIS) method proposed in Wei and
Wei (2001) can be applied here to estimateα. OIS de-
scribes the method to find the biased transition probability
Qt that minimizes the variance of the estimator, that is,
min

(
EQ[(Vk ·Wk)

2]). Then, the standard IS method is
applied to estimate the value ofα. In Wei and Wei (2001),
we see that such a minimization essentially forces the sam
ple trajectoriesYk associated with the likelihood ratioWk

to all belong to the type II cycle. Therefore the variance
minimization procedure can be simplified as

min
(
EQ[(Vk ·Wk)

2]
)
= min

(
EQ[Wk

2]
)
. (7)

If the minimum variance is zero, then the simulation
is not needed. We can compute the value ofα following
just one path. However, if the variance is not zero, then we
.

-

still need simulation. We will show in this section that our
method will always be a zero-variance estimator. Thus, it
is not adequate to call it OIS. From now on, we call it the
variance minimization method. Now, let us revisit the key
results in Wei and Wei (2001).

3.2 Key Results in Wei and Wei (2001)

For a given observation lengthL we can model the Jackson
network as a trellis diagram. LetxL denotex given time
lengthL. Clearly, we haveα = limL→∞ αL.

Lemma For given nonnegative reala1, a2, ..., aJ , we
have

argxk min
0≤xj≤1

{ J−1∑
j=1

aj

xj
+ aJ

1−∑J−1
j=1 xj

}
=

√
ak∑J

j=1
√
aj
,

(8)

min
0≤xj≤1


J−1∑
j=1

aj

xj
+ aJ

1−∑J−1
j=1 xj

 =
 J∑
j=1

√
aj

2

(9)

for k = 1, . . . , J . In this paper we use superscript (o) to
denote the optimal value.

Algorithm for Variance Minimization (VM).The opti-
mal IS transition probability matrixQ(o)

t , which minimizes
EQ[(Wk)

2]|L, can be computed by the following procedures:

1 Set t = L and set the vectorωt =
[ω(0)t , . . . , ω

(S−1)
t ] in such way thatω(i)t = 1 if

i ∈ F ; ω(i)t = 0 otherwise, whereS is the total
number of states.

2 Set t = t − 1. Update each element inωt as
follows. Select thei− th element inωt , i.e.,ω(i)t .
Find out all paths (say a total ofJ paths) from
statei in time t leading to statesj1, . . . , jJ in time
t + 1. Then updateω(i)t as

ω
(i)
t = min

qt (j1|i),...,qt (jJ |i)

(
J∑
k=1

p2(jk|i)ω(jk)t+1

qt (jk|i)

)
.

(10)
According to the previous LEMMA, we have

ω
(i)
t =

(
J∑
k=1

√
p2(jk|i)ω(jk)t+1

)2

(11)

and the optimal values ofqt , denoted asq(o)t , are

q
(o)
t (jk|i) =

√
p2(jk|i)ω(jk)t+1∑J

k=1

√
p2(jk|i)ω(jk)t+1

. (12)
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3 Repeat Step 2 untilt = 0. EQ[(Wk)
2]|L = ω(X0)

0 ,
whereX0 is the initial empty state.

Other Key Results.We showed that the optimal values
for Qt are unique. We proved if the system can be modeled as
a transient Markov chain, then limL→∞ q(o)1 (j |i) = p(j |i).
That is, the optimal biased transition probability matrix will
converge to the original transition probability matrix. In
other words, the optimal IS estimator is reduced to the
Monte Carlo estimator.

One might induce that the optimal IS estimator for the
overflow probability will also be the Monte Carlo estimator
if the above result is true. In fact the induction is not true.
In order to estimate the value ofα we will focus on type
II cycles. Thus, in the trellis the paths back toF will be
deleted, but we do not increase the probability of the other
path to one. This results in that the chain is not Markovian
anymore, since the sum of all transition probabilities is
not equal to one. However, we are still able to construct
efficient IS methods.

3.3 Proof of Zero Variance

The proof is easy. Letπt = [π(0)t , . . . , π
(S−1)
t ]. For t = L

we set it in such way thatπ(i)t = 1 if i ∈ F ; π(i)t = 0
otherwise. We then recursively updateπt for t = L−1, L−
2, . . . ,1 as

π
(i)
t =

J∑
k=1

p(jk|i)π(jk)t+1 . (13)

Whent = 0, π(X0)
0 is actually the sum of probabilities of all

possible paths fromX0 to F during the observation period
L. Thereforeπ(X0)

0 is the overflow probability fromX0 to
F, i.e.,

αL = π(X0)
0 . (14)

From equations (11) and (13), It is obvious thatπ
(i)
t =

√
ω
(i)
t .

Therefore

α2
L = ω(X0)

0 = EQ[(Wk)
2]|L. (15)

WhenL→∞, we haveα2 = EQ[(Wk)
2].

This tells us that the variance is always zero even when
L is finite. Since the estimator’s variance is zero,α can
also be calculated byα = Wk for any pathk from an initial
empty state to the overflow state F.

4 SOIS FOR TANDEM NETWORKS

It has been shown in Glasseman and Kou (1995) that the
PW method may not be asymptotic optimal. In this section,
we will introduce suboptimal IS methods to estimate the
overflow probability for tandem networks.

4.1 System Description

Figure 2 shows a simple Jackson network in which two
M/M/1 queues are cascaded together. Letλ+µ1+µ2 = 1.
Customers arrive to the network at rateλ, and can depart
the system only after passing consecutively through two
servers operating at ratesµ1 and µ2, respectively. We
assumeλ ≤ µ2 ≤ µ1. If a server is busy, the arriving
customer awaits service at the buffer associated with that
server. An overflow occurs whenever the total number
of customers in the system exceeds the combined buffer
capacity,N , of the 2 servers. We estimate the probability
of overflow before the system returns to the empty state
given that the system is initially empty.

λ µ µ1

Two queues in tandem
Figure 2: Jackson Networks

Let s = (s1, s2) represent the number of customers,
including the one in service, at server 1 and server 2,
respectively. This queueing system can be modeled as an
embedded Markov process with a state space,s ∈ R2.
The overflow condition is represented by states inF =
[s : s1+ s2 > N − 1]. Its transition probabilities are

p(1,0|0,0) = 1 (16)

p(s1+ 1,0|s1,0) = λ

λ+ µ1
, (17)

p(s1− 1,1|s1,0) = µ1

λ+ µ1
, (18)

p(1, s2|0, s2) = λ

λ+ µ2
, (19)

p(0, s2− 1|0, s2) = µ2

λ+ µ2
, (20)

p(s1+ 1, s2|s1, s2) = λ, (21)

p(s1− 1, s2+ 1|s1, s2) = µ1, (22)

p(s1, s2− 1|s1, s2) = µ2, (23)
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4.2 SOIS Methods

In this subsection, we will first present an example to
illustrate how to use the VM method to compute the optima
change of measure for a smallN . We then present SOIS
for largeN .

If N is a small value, we can use the VM method in
subsection 3.2 to compute the optimal change of measur
Now we use a simple 2 server tandem network as an examp
Similar to the case ofM/M/1 queues, theM/M/1 tandem
2-server queue can be represented by a trellis (see Figu
4). We have excised the path returning to the initial state
Now, according to the VM method, we trace recursively
back from any state in F to minimize the costω(j)t subject
to maximizing the one step transition probabilityq(o)t (j |i).
Figure 4 shows the numerical results for the queue wit
λ = 0.05, µ1 = 0.5, µ2 = 0.45,N = 3, andL = 9.

We can easily run the VM method for a largeL until all
optimal transition probabilities converge. WhenN is large,
the VM method is limited due to the memory requiremen
to store allω(i)t values. However, we found that for large
N the optimal change of measure converges to a stab
value rapidly. Therefore, based on the optimal change
measures computed for a reasonableN , we can establish a
sub-optimal IS method for a large scale system.

4.2.1 Sub-Optimal IS Method (SOIS)

1. Establish the embedded Markov chain and compu
the transition probabilities given in subsection 4.1

2. Build a Monte Carlo simulation program for sim-
ulating the overflow probability based on the em-
bedded Markov model.

3. Compute the optimal change of measures for
reasonably small value ofN and run it for a large
L until the values converge.

4. Project the optimal transition probabilities with a
smallN into those with a largeN .

5. Run the program in Step 2 with the biased transitio
probabilities and the likelihood ratio.

Clearly, in SOIS we only need to add in Steps 3 and 4 i
the Monte Carlo simulation. Now let us see how to appl
SOIS to simulate the overflow probability for a Jackson
network with 2M/M/1 queues in tandem withλ = 0.05,
µ1 = 0.5, µ2 = 0.45,N = 30.

In Step 3, we compute the optimal change of measur
based on the same network exceptN = 10. ForL = 50
the first 5 digits of all values after the decimal point have
converged. It only took 0.03 second of CPU time on a
400MHZ PC. It took 19.73 seconds of CPU time using th
same PC for theL = 300 andN = 30 case.
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Figure 3 shows how to project the optimal change of
measures with a smallN (sayNs = 10) to those with a large
N (sayN = 30), whereTs(s1, s2) denotes the transition
probabilities from state(s1, s2) for the small system. There
are many ways to project the optimal change of measures
Two options, called SOIS1 and SOIS2, are shown in Figure
3, whereK0 = b(Ns/2)c,K = b(Ns + 2 − s2)/2c, bxc
represents the largest integer smaller than x.
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Transition probabilities for N=30

Ts (0,0)

Optimal transition probabilities for Ns=10

Optimal transition probabilities for Ns=10

Transition probabilities for N=30

(a) SOIS1

(b) SOIS2

T
s (0,N

s)
T

s (0,N
s)

Ts(K0,0)

K0

K

Ts (1,Ns-1)

Ts (1, Ns-1)

Ts (1,s2) for 0<s2<Ns

Ts(K,s2) for 0<s2<Ns-1

Figure 3: Probability Projection for a Tandem
Network in SOIS

In Figure 5, we present several biased transition prob-
abilities of SOIS1 (lines) based on the optimal case with
L = 50 andN = 10. We also present the optimal case for
L = 300 andN = 30 (points) for comparison. We focus
on those near the boundary. The others converge to thos
given in Parekh and Walrand (1989), i.e., swapping the
values betweenλ andµ2. We found whenλ is small, this
method provides a good prediction of the optimal change
of measures for a large scale system, i.e., SOIS1. Howeve
whenλ is large, the better way is to fill those places using
the element in the middle of each row, i.e., SOIS2.

Clearly, the advantages of the SOIS methods are (a) i
catches the boundary effect easily; (b) it is largely based on
the Monte Carlo simulation; (c) it is easy to apply to many
different systems. The only thing an engineer needs to do
is to implement Step 3. As we will see in the next section,
the efficiency of the SOIS methods is much better than the
method in Parekh and Walrand (1989). The disadvantage
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Figure 4: Optimal Change of Measures for an TwoM/M/1 Tandem Network withλ = 0.05,
µ1 = 0.5, µ2 = 0.45,N = 3, andL = 9
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are (a) it is hard to apply for asymptotical analysis, while the
LDT method is much easier; (b) it is limited to simulation
using the embedded Markov model. The method in Parekh
and Walrand (1989) can be easily used in the other types o
simulations, for example, the simulation based on Possio
exponential distributions. However, the simulation based
on the embedded Markov model is much faster and simpler
So the SOIS method can be viewed as a complementar
method for the method in Parekh and Walrand (1989).

5 NUMERICAL RESULTS

In this section, we will present numerical results for two
types of Jackson networks. In the simulation, the normalized
standard deviation is estimated by equation (6), rewritten
here

E#(α) =
√√√√E#

Q[(Vk ·Wk)2] − (α#)2

n
(
α#
)2 (24)

where

α# = V1 ·W1+ V2 ·W2+ · · · + Vn ·Wn

n
. (25)
f
n

.
y

E#
Q[(Vk ·Wk)

2] = V1 ·W2
1 + V2 ·W2

2 + · · · + Vn ·W2
n

n
.

(26)

For the MC estimator, we haveWk = 1. All simulations were
produced by an IBM Thinkpad 240X notebook computer
(500MHz). Here, MC denotes for the Monte Carlo method,
VM denotes our variance minimization calculation, PW
represents the method used in Parekh and Walrand (1989
SOIS1 and SOIS2 denote the proposed suboptimal metho
with different filling procedure,n denotes the total number
of simulation trials,ns denotes the number of trials which
hit the target state, andNs denotes the value of N in the
small system.

For the VM method, we need to run it several times with
different L values to make sure it has converged. Typically,
we selectL = 10×N , L = 50×N , andL = 250×N . For
others, we set the required normalized standard deviation b
5%. The value ofE#(α), is calculated every 500 simulation
trials for MC and PW, every 100 simulation trials for SOIS.
We select a small value for SOIS, sinceE#(α) for SOIS
is much less sensitive to the seed values of the random
number generator. The simulation is terminated for MC,
PW, and SOIS methods, if the estimated value ofE#(α) is
below 5% for three random seeds or the total number o
simulation trails reaches 107.
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In Table 1 we compare several simulation methods. We
will focus on those cases which the PW method may not
be able to deliver an efficient estimation result.

Firstly, let us study a tandem network with a smallλ. In
Table 1, we show the SOIS method can produce an accurate
estimation within 3 seconds of CPU time. We also find
the estimated standard deviation (E#(α)) is very sensitive
to the seed values used in the random number generator.

Table 1: Simulation Efficiency Comparison
Parameters λ = 0.05, µ1 = 0.5, µ2 = 0.45,

N = 30, Ns = 10
methods PW SOIS2 VM

n 1654500 1000 2
ns 1556593 all all
L -- 2500 300,1500

E#(α) 4.7% 2.6% 0
CPU times 414.9s 0.91s 7.2s

α 1.72e-27 1.816e-27 1.806e-27

Parameters λ = 0.05, µ1 = 0.5, µ2 = 0.45,
N = 100, Ns = 10

methods PW SOIS2 VM
n 74000 2300 1
ns 69616 all all
L -- 2500 1000

E#(α) 3.6% 3.6% 0
CPU times 64.7s 2.85s 563.3s

α 2.37e-94 3.17e-94 3.01e-94

We studied the above two difficult systems with very
tight requirement (i.e.,E#(α) < 5%). It is often unnecessary
to have such a tight requirement. In Table 2, we show the
results for simulations with a fixed and small value ofn.
We also show the results for several large scale systems
with near one million states.
Table 2: Simulation Efficiency Comparison for Large
State Space Cases

Parameters λ = 0.30, µ1 = 0.35
µ2 = 0.35

N = 300, Ns = 10
methods PW SOIS2

n 10000 300
ns 4649 all
L -- 2500

E#(α) 27.6% 37.8%
CPU times 114.6s 8.3s

α 1.48e-19 2.13e-19

Parameters λ = 0.05, µ1 = 0.5
µ2 = 0.45

N = 300, Ns = 10
methods PW SOIS2

n 10000 300
ns all
L -- 2500

E#(α) 71.6% 4.7%
CPU times 28.7s 1.1s

α 1.12e-285 3.96e-285

6 CONCLUSION AND DISCUSSION

In this paper, we presented a suboptimal IS method (calle
SOIS) based on this variance minimization procedure. Th
key concept is to compute the optimal change of measure
for a system with a small state space and then projec
these optimal values into a system with a large state spac
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For all systems we examined, SOIS performs much better
than all other methods in terms of delivering an accurate
estimation using moderate computation effort. Currently, we
are extending this method for othertypes of applications, such
as QoS in inventory systems, IS for light-intensity analysis
in physics, and software tests in software development.

ACKNOWLEDGMENTS

The authors would like to thank STRICOM for partly sup-
porting this work through the grant no. 16-23-504.

REFERENCES

Cottrell, M. 1983. Large deviations and rare events in the
study of stochastic algorithms.IEEE Trans Automatic.
Control, AC-28 (9): 907-920.

Devetsikiotis, M., and J. K. Townsend. 1993. Statistical
optimization of dynamic importance sampling parame-
ters for efficient simulation of communication networks
IEEE/ACM Trans on Networking1 (3): 293–305.

Glasseman, P., and S. Kou. 1995. Analysis of an Importance
Sampling Estimator for tandem Queue.IEEE/ACM
Trans. On Modeling and Computer Simulation3 (1):
22-42.

Heidelberger, P. 1995. Fast Simulation of rare event in
queuing and Reality Models.IEEE/ACM Trans. on
Modeling and Computer Simulation5 (1): 43-85.

Orsak, G., and B. Aazhang. 1984. Techniques for esti-
mating the bit error rate in the simulation of digital
communication systemsIEEE JSAC, 2, (1): 153–170.

Parekh, S., and J. Walrand. 1989. A Quick Simulation
Method for Excessive Backlogs in Networks of Queues.
IEEE Trans. on Autom. Control34 (1): 54-66.

Sadowsky, J. S. 1990. A new method for Veberti decoder
simulation using importance sampling.IEEE Trans.
on CommunicationsCOM-38, (9): 1341–1351.

Shanmugam, K. S., and P. Balaban. 1980. A modified
Monte-Carlo simulation technique for the evaluation
of error rate in digital communication systems.IEEE
Trans. on Communications, COM-28 (11): 1916-1924.

Smith, P. J., H. Shafi, and H. Gao. 1997. Quick simula-
tion: a review of importance sampling techniques in
communications systemsIEEE JSAC, 15, (5): 597–613.

Wei, L. 1995a. Estimated bit error probability of DS-
SSMA/MPSK with coherent detector on satellite mobile
channel.IEEE JSAC, 13 (2): 250–263.

Wei, L. 1995b. Efficiency of optimal conditional importance
sampling.Electronics Letters, (August): 1322-1323.

Wei, L. and C. Schlegel. 1995. Synchronization require-
ments for multi-user OFDM on satellite mobile and
two-path rayleigh channels.IEEE Trans. on Commu-
nications, COM-43, (Feb./Mar./Apr.): 887–895.
nd Qi

Wei L. 1996. Estimated bit error probability of DS-
SSMA/MDPSK with differential phase detector on
satellite mobile channel.IEE Proceeding I, (commu-
nications), 143 (10): 297–304.

Wei, Y. C., and L. Wei. 2001 Construction of fast recovery
codes using a new optimal importance sampling method
IEEE Trans. Information Theory, 47 (7): 3006-3019.

AUTHOR BIOGRAPHIES

LEI WEI is an Associate Professor at School of Electrical
Engineering and Computer Science, University of Central
Florida. He is currently serving as an Editor for wireless
CDMA systems for IEEE Transaction on Communications.
His research interests include wireless communications, er
ror control coding, importance sampling and fast simulation
techniques, and ultra wide band systems. He is a membe
of IEEE. His e-mail address is<lei@ee.ucf.edu> .

HONGHUI QI is a Visiting Assistant Professor at SEECS,
University of Central Florida. She was an assistant professo
at the Australian National University and University of
Wollongong. Her research interests include multiple acces
for wireless systems, Markov analysis for system/network
modeling, fast simulation, and Internet.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 580
	02: 581
	03: 582
	04: 583
	05: 584
	06: 585
	07: 586
	08: 587


