
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

AN EXAMINATION OF IMPLEMENTATION IN EXTEND, ARENA, AND SILK

Sid Redman
Sarah Law

P.O. Box 516

The Boeing Company
St. Louis, MO 63166-0516, U.S.A.

ABSTRACT

This paper provides an examination of different modeling
situations implemented in Extend, Arena, and Silk and
demonstrates how the implementation of the software im-
pact the results and whether these behaviors can be modi-
fied. The modeler being more informed of the methods
implemented can work within the software to more accu-
rately produce the desired outcome. The methods may not
be obvious and often affect the model. This influence may
or may not be significant enough to bring attention to it. It
ends by concluding that the assumptions in the software
should be visible to the modeler to aid in model verifica-
tion and validation.

1 INTRODUCTION

Default assumptions regarding values, processes, and proc-
essing order impact the results of all simulations. Unfortu-
nately, every simulation tool has different defaults and the
modeler may not realize how they affect a model. Because
of this, �identical� models in different tools may produce
different results. Modelers must understand the simulation
language.

In Schriber and Brunner (2001) the basics of how dis-
crete-event simulation software works is discussed. Here
we expand on their work, taking a closer look at three
software packages and how the implementation in the
software affects models.

Each simulation tool has its own terminology for de-
scribing the concepts in discrete event simulation. To pro-
vide clarity and a common ground for comparison, the ba-
sic terms of simulation will follow Schriber and Brunner
(2001).

Sections 2 to 10 use a question-answer format to ex-
amine and compare how Extend, Arena, and Silk handle
different situations. The questions appear at the beginning
of each section and address issues such as: How to select
from multiple queues, What determines the order of simul-
taneous events, When do resource capacity changes take

affect, How to model line swapping, How is multiple re-
source allocation handled, Can an entity yield control with-
out losing control, Can events be rescheduled, How precise
is the clock, How to simulate compound conditions
involving the clock. Section 12 discusses the conclusion.
Appendix A-C provides an introduction to each tool; the
version used, how models are built, and how the code un-
derlying the model is generated.

2 SELECTING FROM MULTIPLE QUEUES

What is the default queue choice? Can it be modified? The
situation is the grocery customer faces multiple checkout
lanes. Which one does he choose to stand in? How is the
decision modeled?

The Extend User�s Guide says that an entity exiting a
block (the grocery aisles) connected to multiple blocks (the
check out lines) with available capacity will arbitrarily go
to any available block. Actually the entity checks each
block based on the order in which it was connected to the
previous block and goes to the first available block that it
finds. Thus, the block that was connected first will receive
all the items from the previous block as long as it has
available capacity. This applies whether the block is a
queue or any other Extend block:

• If the first block connected has infinite capacity,

then other blocks will never receive items. (e.g. if
lane one�s queue is unlimited, then no other lane
will be chosen)

• If no connected blocks have available capacity,
then the entity will be destroyed. (e.g. the cus-
tomer has nowhere to stand in line to check out so
he/she disappears-5)

Rather than relying on connection order to set the

queue choice, you can use a Prioritizer block. Priority is
set using the blocks dialog window, where the block as-
signed the largest value has the lowest priority.

Redman and Law

For an entity to select from multiple queues in Arena,
the modeler must specify a selection order. Predefined se-
lection rules include: cyclic, random, preferred order rule,
and largest number in queue. Specialized logic may be
used to specify the queue choice when needed.

The logic used to select a queue in Silk must be user-
defined. This user-defined logic may depend on queue
length, entity attributes, random distributions, or other rea-
sons. A unique feature of Silk is the ability of an entity to
reside in multiple queues.

When selecting from multiple queues, Silk allows the
user the most flexibility by allowing entities to reside in
multiple queues and allowing entities to choose a queue
based on any logic. Extend�s default setting of destroying
entities when no queue is available warrants a caution be-
cause entities typically do not get destroyed in actual
systems.

3 SIMULTANEOUS EVENT SCHEDULING

If multiple events are scheduled to occur during the same
entity movement phase (EMP), what determines their or-
der? Can this be modified? (e.g. two drivers reach the in-
tersection at the exact same moment. Who goes first?)

When events occur simultaneously in Extend, the
event that is located leftmost in the graphical modeling
window occurs first, giving it priority to resources, queues,
activities, etc. If events are exactly the same distance from
the left edge of the window, the event nearer to the top of
the window receives priority. Even the smallest differ-
ences in alignment within the model window can entirely
change the order of events in the simulation. Figure 1
shows red entities reach the Activity Delay first and thus
exit first because their Generate block is slightly to the left
of the Blue Generate block.

Figure 1: Extend Simultaneous Events

In Arena, the block that was placed first into the model

window occurs first when �simultaneous� events occur.
The model order can be checked, but not modified, by
viewing the SIMAN code.

If simultaneous time-based events are scheduled to oc-
cur in Silk, the event referenced first in the code will occur
first. The order of events can be figured out by viewing
the code. Simultaneous status based events (resource re-
leases, queue changes) occurring at the same time can be
prioritized with an integer priority.

This is one of the areas where the differences between
Arena and Extend can be most clearly seen. Extend allows
the sequence of simultaneous events to be modified by ad-
justing graphical position while Arena does not. The draw-
back with Extend is that a model may return different re-
sults simply because a block was moved slightly,
unknowingly modifying the sequence.

Silk does not separate the user from the model with a
visual interface, therefore it is less confusing when it
comes to sequence of simultaneous events.

4 RESOURCE CAPACITY CHANGES

If a resource capacity change is scheduled to occur at a cer-
tain time, does it change before or after other events occur
in the simulation? (e.g. a drive up window becomes avail-
able at the exact moment a customer arrives. Does the win-
dow open, then the customer can select a lane including the
newly opened lane; or does the customer select a lane, then
the new lane opens?)

Resource capacity changes are scheduled just as other
events in Extend; changes or events will occur in a left to
right, top to bottom order, if they are scheduled simultane-
ously. Extend allows a decrease in a resource to result in
over-utilization until the current process completes.

A change in capacity will occur after other events
scheduled during the same EMP in Arena. Figure 2 shows
that an entity created at the same time a capacity is incre-
mented results in two entities being queued versus one.

Figure 2 Arena Resource Capacity Changes

Arena allows the user to select from the following list

of options to determine how an over-utilized resource is to
be handled.

• �Ignore� starts the time duration of the capacity

change immediately, but allows the busy resource
to finish processing the current entity.

• �Wait� lets the busy resource finish processing
the current entity before time duration of the
schedule changes.

• �Preempt� interrupts the current processing entity,
changes the resource capacity, and starts the time
duration of the schedule change immediately. The

Redman and Law

resource will resume processing the preempted
entity as soon as the resource becomes available.

Resources in Silk have a �setCapacity� method that

can be used to change capacity at any time during the run.
Resource capacity changes occur immediately for idle re-
sources, but not until the next idle state for non-idle re-
sources.

Arena allows the user to select how capacity changes
affect entities being serviced, while Extend has only the de-
fault setting already available. Silk and Extend allow some
flexibility with regard to when the capacity change takes
place, while Arena does not. As seen above, the timing of
resource changes can affect the processing of entities.

5 LINE SWAPPING

Can an entity be removed from one queue and placed into
another? (e.g. check out lane 5 is held up for a price
check. How are customers switching to an unblocked lane
simulated?)

Extend Technical Support recommended three meth-
ods of allowing line swapping. The first is to incorporate a
reneging queue. The queue can be set to renege items
based either on an event or after some amount of time has
elapsed. The reneged entity can then be sent back to the
multiple queue selection process to effectively simulate the
type of line swapping that occurs in banks, grocery stores,
fast food places, etc.

The Queue decision block or custom queue block was
also recommended.

Arena allows items to removed from a queue. Smarts
example 085, Dynamic Queue Priorities, shows how to
remove entities from a queue. The example checks the
queue every minute to see if any entities waiting in the
queue have been there for more than 20 minutes. If so,
Arena removes it and places it into the shortest queue thus
demonstrating line swapping through custom logic.

Silk Queues are objects with arrays of member Entity
objects so entities can be added or removed from any
queue in any order. Users are required to explicitly iden-
tify the entity object to be removed (by rank or object ref-
erence) at the time of removal, so line swapping is simply a
matter of identifying the entity that you would like to
move, and specifying where it should go.

Although not directly supported through existing
modules line swapping is achievable through custom logic.

6 ALLOCATION TO MULTIPLE
RESOURCE NEEDS

When queued items are waiting for multiple resources to
become available, how are the resources allocated? (e.g.
Can a group of two skip ahead in line at the amusement
ride because there is a car with two seats available and the
groups ahead all require more seats or do they have to wait
until they are at the front of the line?)
 Extend provides a Queuing Resource Pool block for
multiple resource allocation. The Queuing Resource Pool
block is combined with one or more Resource Pool
blocks that choose which entities receive their resources.
Multiple Queuing Resource Pool blocks may request the
same resources.

The Resource Pool searches through the queues look-
ing for the first entity that is able to use its currently avail-
able resources. If an entity is waiting for resources in mul-
tiple pools to become available, it will only receive an
allocation of resources when the resources it needs from
each pool are available.

This method of multiple resource allocation can be
dangerous, because if the right number of resources that an
entity needs are never available, no entities may exit out of
the queue. Extend�s Resource Pool does have an �Only
allocate resource pool to the highest ranked Item� option;
however, it is not available when more than one type of re-
source is requested.

Arena, like Extend, allows multiple queues to compete
for resources. Entities may be queued separately if they are
requesting different allocations of resources, or if entities
in different sections of a model are requesting the same re-
source. Because of this, Arena looks through all queues
requesting resources and creates a system queue for all en-
tities requesting resource allocation.

When a resource becomes available for use, Arena
only considers the first entity in all queues; thus no entity
can skip over another. When an entity releases resources,
Arena gives priority to any of the first entities in any queue
that has a first resource request that matches the first re-
source requested by the releasing entity. If none is found
then all the other entities in the group are evaluated again
with the longest waiting serviced first. This method of mul-
tiple resource allocation can create strange patterns where
one queue will empty entirely before items in other queues
will have a chance at the resource.

Silk is similar to Arena if the process-oriented �push�
method of resource allocation is used. However, Thread-
Tec, Inc. encourages users to use the �pull� resource allo-
cation method in which �intelligent� resource entities or a
resource scheduler entity is used to determine multiple re-
source assignments. Thus a model with multiple resource
allocation has essentially no limitation on how resources
could be allocated. Resources can be allocated to the first
item that can utilize all of the available resources, the first
entity in a queue, the highest priority entity, etc.

Silk�s ability to have entities in multiple queues allows
the user to collect statistics on how much time an entity
spends waiting on a particular resource. This can help you
to target bottlenecks in the system and give a more precise
understanding of the system. Neither Extend nor Arena

Redman and Law

allows this type of statistics collection and can meet with
stair step processing of alternating queues.

7 YIELD CONTROL

Can an entity activate another process and wait until the
process completes to be reactivated during the same EMP?
While some methods have been proposed to simulate this
with small delay times, the ability to yield without incre-
menting the clock is considered here because delaying any
amount of time allows the remaining entities at the same
EMP and any other entities scheduled between the small de-
lay time to process before the yielding entity is reactivated.

Extend has a message-based architecture where yield
control occurs constantly. Whenever an entity moves in or
out of a block, messages pass throughout the blocks,
changing and checking the system status. An entity can
create another process or generate an item by posting an
event and outputting some corresponding value to another
block. The original entity can yield and resume using any
series of control logic in Extend.

The Arena Block, Unblock and Proceed blocks are de-
signed for yield control. The Block will remain in place
until it is Unblocked. Each time an entity passes into a
Block, the blockage for the Proceed is incremented by a
specified value (default is one). An Unblock subtracts a
specified value (default is one) from the blockage, if a
blockage exists. If no blockage exists, an error is generated
thus caution must be taken. A Proceed block is blocked as
long as its blockage has a positive value; it is open if the
blockage is zero.

Processor threads control the execution of simulated
entity processes in Silk, making its yield control very simi-
lar to a thread yield within the Java program. Yield control
in Silk can be managed in any number of ways with user
coding, but it is typically done using wait and activate
methods. An entity can halt itself for whatever reason and
be reactivated later by any other class. The halt statement
can be seen in Figure 3.

All three tools provide methods of yield control during
the same EMP thus allowing the modeler to maintain clock
time to insure that no other entities modify the simulation
states during the yield. Arena is limited by offering only
one method.

8 EVENT RESCHEDULING

Can events be rescheduled? (e.g. Painting a part takes two
painter-hours to complete. If one painter is available then
the task is scheduled to complete after two hours. But one
hour later another painter becomes available. The task then
needs to be rescheduled to complete in one and a half hour.
Or can a resource be interrupted when servicing an entity?
(e.g. a higher priority task has arrived)

Figure 3: Silk Yield Control

Blocks rather than items are scheduled in Extend,

which sends messages back and forth whenever an event
occurs in the model. This makes rescheduling an event for
any number of reasons a fairly simple matter. Not only can
events be rescheduled, but also ongoing processes can be
interrupted. Some blocks provide an option for preemp-
tion; others could be interrupted with a Downtime block or
equivalent.

Many blocks have value inputs that can affect the
scheduling of events in a model. For example, the Shift
block can have scheduled shifts that are modified by an in-
put. If the input is less than 0.5, the Shift block turns to off
(rescheduling events for a later time), but if the input is
greater than 0.5, then the scheduled shifts are followed.

The Zap block can be used to reschedule events in
Arena. It removes an entity from the event calendar and
sends it to a block label. The entity to be removed is speci-
fied by its identity number, regardless of where it is in the
model.

In Silk, users cannot directly reschedule events. How-
ever control logic can be used to manipulate events before
or after they enter into the event calendar. Silk has three
lists that can create the next event, two of which are con-
sidered �Potential Events.� Potential Events are:

• A list of entities suspended at �while(condition()

)� waiting for a change in a state variable.
• A list of entities suspended at halt() waiting for

an activate().

The third list is the list of entities at delay () or the fu-

ture events list (FEL). Once an event has entered the FEL
or the current events list (CEL), it cannot be rescheduled,
but it may be tagged and ignored. A duplicated �resched-
uled� event can then be created. Another workaround is to

Redman and Law

prevent events from entering the FEL or CEL until no re-
scheduling would occur in the model, because Potential
Events can be endlessly manipulated.

Extend allows the most control, ease of use, and flexi-
bility in event rescheduling while Arena has one mecha-
nism and Silk none.

9 CLOCK PRECISION

All three tools keep approximately fifteen digits of accu-
racy for time clocks and event calendars allowing for ex-
cellent time keeping.

10 CONDITIONS INVOLVING THE CLOCK

What happens if an entity waits for a compound condition
involving the clock? (e.g. wait until all resources are in
use, or it is exactly 12:00 PM)

In Extend an event must be scheduled to ensure that a
condition is checked at a certain point in time. Conditions
are only checked when events occur in the system. This
occurs because the clock only stops at discrete points and it
is not continuously checking the condition; thus the condi-
tion will be checked only when other events occur in the
system which may or may not be at the desired time.

Arena uses a polled waiting mechanism for compound
conditions that checks conditions at the end of each EMP,
which not ensure a condition will be checked at the exact
clock time that it becomes true, because an EMP may or
may not occur at the specific time.

Silk conditions are checked every time a state variable
change occurs which may affect an Entity waiting at a
�while(condition())� construct. This is closer to the event-
listener design pattern used in object-oriented program-
ming. To guarantee that a condition involving the clock is
checked at the specific time it becomes true, an event must
be scheduled at that time.

For all the tools, special logic must be used to ensure
that a compound condition involving the clock is checked
at a specific time.

11 CONCLUSIONS

Silk, Arena, and Extend can all be used to generate models
of the same system, but as seen, the level of control and
flexibility that a modeler has varies greatly with each. Silk
allows the greatest flexibility and control. Extend and
Arena are removed from the programming environment,
and consist of pre-built constructs that are strung together
to create a model. In both Extend and Arena, the underly-
ing code is accessible, but understanding and modifying it
can be difficult.

All of the tools have been implemented a specific way
which in some cases require the modeler to develop cus-
tom logic. In fact any simulation software will have a spe-
cific implementation requiring study by the user. The
methods employed by the simulation software can be sub-
tle and the impact unnoticed, making it important to under-
stand the tool when creating or using a model. While a
graphical simulation tool can be faster to generate smaller
scale models, documentation was found to not fully ex-
plain implementation, thus requiring multiple conversa-
tions with technical support and test models to exploit the
details. A general programming language with an open
source simulation engine could be faster to review the im-
plementation and develop appropriate modeling logic
without relying on documentation, and technical support.

Regardless of simulation software chosen implementa-
tion cannot be avoided, so it is important to be aware and
understand how the model is affected.

APPENDIX A: EXTEND

Extend (version 5.0.4) provides multiple libraries for both
continuous and discrete event modeling shown in Figure 4
(Image That, Inc. 2000b). The libraries consist of blocks
such as Generate, Delay, and Resource, each of which is
available for drag and drop use in a model.

The blocks are added to the modeling window and
then connected to create the modeling order. Anytime you
are not certain what the simulation order is, you can check
the order under the Model toolbar. Simply click on �show
simulation order� and each block will be numbered to
show where it fits into the simulation.

The visual order of the blocks at the run time sets the
model order. But, non-visual elements may also be used
for scheduling. The code underlying each block is accessi-
ble for reading and writing purposes. Blocks rather than
items schedule events, and items can travel in a �push� or
�pull� fashion.

Figure 4: Extend's Modeling Environment

Redman and Law

APPENDIX B: ARENA

Arena (version 5.0) has a visual interface similar to Extend
where blocks from various libraries are put into a model
window and then connected to create a modeling order
(Rockwell 2000a). Each block represents code that is
added to a SIMAN model.

The model code is created as blocks are added to the
modeling window shown in Figure 5. This can create
some strange coding orders, because once something is
added, its code order never changes. And again, Non-
visual elements are used for scheduling. The SIMAN code
that is generated is available for viewing and can be looked
at to determine the model order.

Generally, items �push� through the simulation, al-
though some blocks (such as remove) can be used to pull
items.

Figure 5: Arena�s Modeling Environment

APPENDIX C: SILK

Silk (version 1.3.01) is an extension to Java with constructs
for generic discrete event simulation such as entity, queue,
and resource (Kilgore 2000). Coding and compiling in a
Java development environment using Silk creates simula-
tion models (see Figure 6). Model order is determined by
the order of the process-oriented simulation code you cre-
ate in the entity �process� method. You can determine the
model order by examining each class carefully, beginning
with the class containing the �main� method. Entities are
scheduled and managed by their own methods (delay, halt,
�while(condition())�) and other entity methods (activate),
allowing �push� and �pull� modeling.

Figure 6: A Silk Model Running in Visual Café 4.0

REFERENCES

Imagine That, Inc. Extend Version 5 Programmer�s Refer-
ence. San Jose: Imagine That, Inc., 2000a.

Imagine That, Inc. Extend Version 5 User�s Guide. San
Jose: Imagine That, Inc., 2000b.

Imagine That, Inc. Frequently Asked Questions. 31 Jan.
2002 <http://www.imaginethatinc.com/ >

Kilgore, Richard A. 2000. �Silk, java and Object-
Oriented Simulation� Proceedings of the 2000 Winter
Simulation Conference, ed. J.A Joines, R.R. Barton,
K. Kang, and P.A. Fishwick, 246-252. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Krahl, David. 2000. �The Extend Simulation Environ-
ment.� Proceedings of the 2000 Winter Simulation
Conference, ed. J.A Joines, R.R. Barton, K. Kang, and
P.A. Fishwick, 280-289. Piscataway, NJ: Institute of
Electrical and Electronics Engineers.

Morelli, Ralph. Java, Java, Java. Upper Saddle River, NJ:
Prentice-Hall, 2000.

Rockwell Software, Inc. Arena Basic Edition Reference
Guide. USA: Rockwell Software, Inc., 2000a.

Rockwell Software, Inc. Arena Professional Edition Ref-
erence Guide. USA: Rockwell Software, Inc., 2000b.

Rockwell Software, Inc. Arena Standard Edition Refer-
ence Guide. USA: Rockwell Software, Inc., 2000c.

Rockwell Software, Inc. Arena Variables Guide. USA:
Rockwell Software, Inc., 2000.

Schriber, T.J. and D.T. Brunner. 2001. �Inside Discrete-
Event Simulation Software: How it works and why it
matters.� Proceedings of the 2001 Winter Simulation
Conference, ed. B.A. Peters, J.S. Smith, D.J.
Medeiros, and M.W. Rohrer, 158-168. Piscataway,
NJ: Institute of Electrical and Electronics Engineers.

Schriber, T.J. and D.T. Brunner. 2000. �Inside Discrete-
Event Simulation Software: How it works and why it
matters.� Proceedings of the 2000 Winter Simulation
Conference, ed. J. A. Joines, R. R. Barton, K. Kang,

Redman and Law

and P. A. Fishwick, 90-100. Piscataway, NJ: Institute
of Electrical and Electronics Engineers.

Schriber, T.J. and D.T. Brunner. 1996. �Inside Simulation
Software: How it works and why it matters.� Pro-
ceedings of the 2000 Winter Simulation Conference,
ed. J. Charnes, D. Morrice, D. Brunner, and J. Swain,
23-30. Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Systems Modeling Corporation. Arena Professional Edi-
tion Reference Guide. Sewickley, PA: Systems Mod-
eling Corporation, 1994.

ADDITIONAL RESOURCES

The Javadocs included with Silk were an important re-
source along with the other documentation included with
the installation. The help references included with each
software package were used extensively to help understand
each program.

AUTHOR BIOGRAPHIES

SID REDMAN is an engineer focusing on advanced sup-
port concepts in Boeing�s Phantom Works the research and
development division. He received his BSME from the
University of Missouri-Columbia. He is a member of Mili-
tary Operations Research Society. His email is <raymond
.s.redman@boeing.com>.

SARAH LAW is a research intern at Boeing and a degree
candidate in Systems Sciences and Mathematics at Wash-
ington University in St. Louis, MO. Her email address is
<sel1@cec.wustl.edu>.

mailto:raymond.s.redman@boeing.com
mailto:raymond.s.redman@boeing.com
mailto:sel1@cec.wustl.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 550
	02: 551
	03: 552
	04: 553
	05: 554
	06: 555
	07: 556

