
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

A RECURSIVE METHOD FOR TRAFFIC MANAGEMENT
 THROUGH A COMPLEX PATH NETWORK

Michael Norman

Brooks-PRI Automation - Planning and Logistics Solutions
5245 Yeager Road

Salt Lake City, UT 84116, U.S.A.

ABSTRACT

Many simulation models contain one or more transport
systems where some type of vehicle, perhaps an AGV, a
fork truck, a shuttle, or a human being, travel along prede-
fined paths. Locations along the paths may specify where
loads carried by the vehicle transfer to or from it, where
some activity takes place requiring the vehicle’s presence,
or where vehicle routing logic executes. This paper fo-
cuses on the last topic, the routing of vehicles along a path
system where alternate paths exist and path selection is de-
termined at so called “routing nodes” based on a dynamic
analysis of traffic congestion along each possible route to-
wards some destination. Other routing nodes further along
each path present more combinations of possible interim
paths. A recursive search algorithm is presented to itera-
tively evaluate each possible route when a vehicle encoun-
ters a routing node. The vehicle is directed along a path
with the least overall congestion towards its destination. A
sample model demonstrating this algorithm implemented
in the AutoMod software is used for illustration. Other
simulation products may have the features to support this
type of vehicle routing control algorithm.

1 AUTOMOD’S PATH MOVER SYSTEM

The AutoMod simulation software contains a material
handling system called the Path Mover, in which vehicles
move along guidepath, carrying loads from pickup loca-
tions to delivery locations (called “control points”). Path
Mover vehicles can represent manually operated lift trucks,
people, or computer-controlled vehicles (any type of
movement system in which vehicles follow a specific path
or route).

By default, AutoMod vehicles in a Path Mover system
use the shortest route between load pickup and delivery
points. Where intersections offering more than one path
segment to another control point exist, the default routing
can be over-ridden by using a built-in “location selection
function”. This function defines the next control point a

vehicle claims in its route, or if the next path segment is
blocked, the transfer (a construct automatically inserted by
AutoMod at path intersections) may offer an alternate path.

1.1 Location Selection Function

Path Mover vehicles automatically call the location selec-
tion function each time they have a choice of determining
the next control point to claim on the way to their destina-
tion. The function provides the opportunity to select from
a list of subsequent control points to the current location
and returns the control point to which the vehicle will
travel next (returning null from the function will direct the
vehicle to take the shortest route to its destination, the de-
fault). The location selection function is a convenient way
to make local decisions for vehicle routing.

begin pm location selection function
 choose a location from among theLocList
 whose remaining space is maximum
 save choice as Vchoiceloc
 return Vchoiceloc
end

The Path Mover code example above uses the location

selection function to route a vehicle via the next control
point with the most remaining space; control points have a
capacity, one unit of which is claimed for each vehicle at-
tempting to travel to or by it, at which time that claim is
released.

1.2 Alternate Timeout

Path Mover vehicles traveling to their destinations via the
shortest path will be delayed any time that path is blocked.
Path Mover systems provide default settings for alternate
path timeout time and alternate type when a possible path
exists. These parameters may be edited as attributes of in-
dividual transfers between sections of path.

The Alternate Time Out is the length of time a vehicle
attempts to take the default path at an intersection before

Norman

taking an alternate route; the system default is 60 seconds,
which may be changed.

When path is drawn, the AutoMod software creates
transfers between intersecting sections of path. The Alter-
nate Type for these transfers is a rule inherited from the de-
fault, but may be individually edited after AutoMod creates
them. The rule choices for Alternate Type are: None,
Round Robin and Branch, with None being the system de-
fault (which defeats alternate routing altogether).

If Round Robin has been selected as the alternate rout-
ing for a transfer at a path intersection, vehicles attempt to
take each intersecting path in the order it was defined, until
a successful transfer is made. If Branch routing is invoked,
vehicles attempt to take the path selected in the transfer’s
Branch select list. If that path is not available, vehicles
take the alternate path selected in the alternate select list
(both select lists present the user with a choice from the set
of each of the possible paths available from that transfer).

The use of “standard” alternate routing techniques of-
fers the advantages of simple editing within AutoMod’s
user interface. If the system path being modeled has single
intersections where alternate path routing takes place, and
that decision is based on Round Robin or Branch methods,
the standard features of alternate path selection are the
most straightforward and should be used. If the next path
segment chosen is based on some other local decision cri-
teria, the location selection function may provide a good
method. A more flexible method may be needed in more
complex situations.

2 SEMICONDUCTOR FAB AMHS PROBLEM

The overhead monorail automated material handling system
(AMHS) in some semiconductor fabrication facilities is an
example of the type of system that might use a more com-
plex routing mechanism to avoid vehicle congestion and
thereby decrease product wait-for-pickup and delivery times.

Figure 1: AMHS Track with Turntable Intersections

Some AMHS tracks include turntables, which act as

“routing nodes” offering a selection of different possible
track segments as vehicles travel between various loca-
tions. Vehicles moving along the unidirectional track may
be redirected at a turntable from the most direct path
(shortest physical track distance) to some other track seg-
ment where less congestion lies ahead. Some systems pro-
vide the use of a flag at each routing node to optionally use
this feature. The remaining path may also be re-evaluated
at each new routing node along the way to the vehicle’s fi-
nal destination to account for changes in congestion that
may have occurred during travel.

3 ROUTING ALGORITHM

A “look ahead” evaluation mechanism for routing of vehi-
cles requires a more complex modeling solution. The
AutoMod software may be used to reroute vehicles to new
interim locations while traveling to a final destination.
This section presents an algorithm for changing the default
route of a vehicle based on downstream congestion on each
possible path segment towards a vehicle’s final destination.

Upon approaching or arriving at a routing node, each
vehicle evaluates a set of possible paths towards a final
destination. This evaluation is done by combining path
segments towards the destination and comparing the
“weighted value” of each potential route. Each path seg-
ment weight is determined by the type of node next en-
countered (for simplicity, in this example all nodes are as-
sumed to be the same type with equal weight) and the
number of vehicle claims currently at that node. Path con-
struction for evaluation is done through a recursive branch-
and-bound type search.

The following subsections describe the decision proc-
ess for the routing algorithm.

3.1 Vehicle Approaching Routing Node

If a vehicle is approaching a node assigned by previous al-
ternate routing, that interim destination is cleared and the
vehicle is reassigned to its final destination. If this node is
also a routing node, the route analysis function will be
called again.

• cancel previous assignment of this node as a tem-
porary destination (from prior routing)

• set vehicle destination to final destination

Original call to Route Analysis Function:

• clear best weight, best path variables
• function passes current location, final destination,

path constructed (initially null), path weight (ini-
tially 0)

Norm

3.2 Route Analysis Function

• increment the recursion level (in case the search
depth is being limited)

Check if this branch (path) of the analysis is complete:

• the location passed is the final destination
• the recursion level has reached a preset depth (the

number of recursions may be set to an arbitrary
value to limit the computation time and the num-
ber of path segments ahead to evaluate)

If so:

• if the path distance to the final destination from

the location under consideration is less than the
total path distance from the current location to the
destination then recalculate the weight of the path
− if the new weight is less than the previously

saved best weight then save this weight as the
new best weight

• decrement the recursion level
• remove the last location from the current path

construction and return

If not:

• determine next adjacent control point to the last

point evaluated
− if it is the current location of the vehicle or

the node from which this search started, then
this search has looped around
! decrement the recursion level
! remove this location from the path under

evaluation
! return

− otherwise insert this location into the path for
evaluation

− call the route analysis function (recurse)
• if all adjacent control points to the last point being

evaluated in the current path have been checked
− decrement the recursion level
− remove the last location from the path under

evaluation
− return

3.3 Search Pattern Example

Assume a vehicle approaches a routing node where four
alternate paths may be taken (lanes 1 – 4), followed by an
intersection of the four paths. This four-lane group is fol-
lowed by a second (lanes 5 – 8) and third (lanes 9 – 12)
four-lane set of alternate paths.
an

The pattern of lane (#) evaluation would be:

1. current location (0) (recursion level 1)
2. 0 + 1 (recursion level 2)
3. 0 + 1 + 5 (recursion level 3)
4. 0 + 1 + 5 + 9 (recursion level 4)
5. 0 + 1 + 5 + 10
6. 0 + 1 + 5 + 11
7. 0 + 1 + 5 + 12
8. 0 + 1 + 6
9. 0 + 1 + 6 + 9
10. 0 + 1 + 6 + 10
11. 0 + 1 + 6 + 11
12. 0 + 1 + 6 + 12
13. 0 + 1 + 7
14. 0 + 1 + 7 + 9
15. 0 + 1 + 7 + 10
16. 0 + 1 + 7 + 11
17. 0 + 1 + 7 + 12
18. 0 + 1 + 8
19. 0 + 1 + 8 + 9
20. 0 + 1 + 8 + 10
21. 0 + 1 + 8 + 11
22. 0 + 1 + 8 + 12
23. 0 + 2 + 5
24. 0 + 2 + 5 + 9
25. 0 + 2 + 5 + 10
26. 0 + 2 + 5 + 11
27. 0 + 2 + 5 + 12

And so on… in general, the number of full path

evaluations will be the product of the number of alternate
paths at each level. The route analysis function is called
somewhat more due to calls made during the construction
of each path. Each evaluation could also reach different
levels depending on whether the path was not getting
closer to the final destination or had looped back on itself.

4 AUTOMOD IMPLEMENTATION

An AutoMod model has been created to demonstrate the
routing algorithm. The path layout (Figure 2) shows how

Figure 2: Example Model Path

the routing alternatives described in the previous section
could be implemented in two areas of a closed loop. Be-
fore entering each of the three sets of four lane groups, ve-

Norman

hicles choose a three-lane path through the entire twelve-
lane section of the path network (note that addition of other
routing nodes between each set of four lanes would pro-
vide the opportunity to re-evaluate conditions and change
the path through the rest of that section).

4.1 Path Mover Vehicle Control

This routing control algorithm can be implemented in the
AutoMod software with 2 functions and about 50 lines of
AutoMod code. The first function is called “decelerate ok”
and is automatically invoked by each vehicle in a Path
Mover system every time the vehicle approaches a control
point. It is typically used to determine whether the vehicle
must stop at that location and if so, needs to begin deceler-
ating. Since the vehicles do not stop in this example ex-
cept to pick up or drop off a load, this function provides an
opportunity to make a routing decision without forcing the
vehicle to stop at a routing node (note code comments be-
low are encapsulated between “/*” and “*/”).

4.2 decelerate ok Function

begin pm decelerate ok function
/* approaching loc set by route function? */
 if stopLoc = theVehicle Anextloc and
 theVehicle Asavejob <> null then begin
 /* set back to final destination */
 set Vtempjob to
 theVehicle current schedjob
 set theVehicle current schedjob to
 theVehicle Asavejob
 cancel Vtempjob
 /* cancel routing move – don’t stop */
 end

 print stopLoc to Vs
 /* approaching routing decision point? */
 if Vs length > Vs index("pick") then begin
 set Vweight to 999999
 set Vpath to null
 set Vorigin to stopLoc
 set Vdest to theVehicle destination
 set VTotDist to
 Vorigin path distance to Vdest
 /* set a new temporary route */
 call route(stopLoc,null,0)
 set theVehicle Apath to Vpath
 end
 if theVehicle Apath size > 0 then begin
 set theVehicle Anextloc to
 theVehicle Apath first
 remove first object from
 theVehicle Apath
 set theVehicle Asavejob to
 theVehicle current schedjob
/* route via chosen best next loc */
 dispatch theVehicle to
 theVehicle Anextloc
 set theVehicle current schedjob to
 theVehicle schedjobs last
 end
 return false /* default - do not stop */
end
Each vehicle carries an attribute containing a list of the
locations for the path chosen. As the vehicle navigates
through the temporary path assigned and each location is
encountered, that location is removed from the list and the
next interim location on the list is assigned. Once the route
has been finished or a new routing node is encountered,
normal control is returned to the vehicle to make its way
‘automatically’ to its destination or a new temporary route
is created and applied.

4.3 route Function

The route function is initially called from the decelerate ok
function, and then recursively calls itself as potential paths
are constructed and analyzed. The control point claims
along each path are used to determine a “weight” to be as-
signed for that path. In this simple example, the least
weight is assumed to be the least congested since fewer
vehicles are currently assigned to pass those points. More
complex route evaluations might include factors for differ-
ent types of stations. For example, these factors could re-
flect typical delay times associated with those locations.
Historical data could be used to tend to migrate vehicles
away from longer path times.

Function parameters in AutoMod act as local variables
to that instance of the function call. Using the parameters
as arguments to the next recursive call allow the paths to
be constructed through a systematic branch-and-bound
type of search while maintaining current calculations of
path weights and temporary starting location references.

begin route function

 /* passed: theLoc, thePath, theWeight */

 if theLoc = Vdest then begin
 set theWeight to 0
/* Vloc is previously assigned eval point */
 set VSubDist to
 Vloc path distance to Vdest
/* route only to another pt closer to dest */
 if VTotDist > VSubDist then begin
 for each Vloc in thePath do begin
 set theWeight to
 Vloc current + theWeight
/* weight of path = number of claims */
 end
 if theWeight < Vweight then begin
 set Vweight to theWeight
/* lowest total weight of path to dest */
 set Vpath to thePath
/* list of locs along best path to dest */
 end
 end
 remove last object from thePath
 set Vpath to thePath
 return true
 end

/* AdjacentLocs returns all adjacent control
points from the current location */

Norm

 for each Vloc in AdjacentLocs(theLoc)
 do begin
 if Vloc = Vorigin then begin
 /* looped around to current loc */
 remove last object from thePath
 set Vpath to thePath
 return false
 end

 /* add loc to path & recurse again */
 insert Vloc into thePath
 call route(Vloc,thePath,theWeight)
 end

 remove last object from thePath
 set Vpath to thePath
 return true
end

5 PERFORMANCE COMPARISON

The example model was first set to use AutoMod default
parameters. Loads were introduced at a location on the
loop every 20 seconds and sent to another location imme-
diately preceding the starting point. Empty vehicles were
simply told to loop around again. With this loading rate
and a total of 50 vehicles, approximately half the vehicles
were being loaded, which provided a good steady-state
case as a baseline. AutoMod automatically routed all vehi-
cles around the loop using the shortest overall path.

For comparison, the loaded vehicles were instructed to
use the route function described in this paper. Empty vehi-
cles continued to use the shortest path around the loop and
therefore created congestion in those lanes. Loaded vehi-
cles chose the least crowded alternate lane in each 4-lane
set. Automatic delays were set up in the lanes based in-
versely on the number of claims on the lane (more claims
lessened the delay time, thereby tending to balance the
number of vehicles in each set of lanes).

Table 1 shows the dramatic improvement in load de-
livery times (since the load introduction rate was well be-
low the capacity of the system, there was very little differ-
ence in the wait for pickup times). It is interesting to note
that by improving the delivery time performance, overall
vehicle utilization declines.

Although these results represent one specific layout and
other operating assumptions, the same type of improvement
would be expected in other larger, more complex path net-
works since avoiding congestion delays reduces average de-
livery time. As in any movement system, specific results
would depend on the given layout and operating methods.

Table 1: Delivery Comparison

 Avg. Delivery
Time

Std.
Dev.

Vehicle
Utilization**

Shortest Path
(all vehicles)

8.12 min. 0.01 51%

Routing
Loaded Cars

4.44 min. 0.04 37%
an

 Delivery time (*) represents the time that vehicles
were in the process of moving with a load – from the time
of pickup until set down.

Vehicle utilization (**) is a simple comparison of the
number of vehicle trips with loads compared to the total
number of trips around the loop (empty vehicles are con-
tinually routed around the loop if no load is present for
pickup).

6 CONCLUSION

Traffic management is a common issue in modeling path
based movement systems. In many cases, only local deci-
sions are required based on conditions immediately down-
stream of an intersection. In those cases, AutoMod provides
two built-in mechanisms for modeling routing of vehicles.

A recursive method of analyzing possible paths may
be useful where complex routing decisions must be made.
Evaluation methods may be incorporated into a systematic
search at each routing node of the path and use current traf-
fic congestion or other preferential information to base de-
cisions. Performance comparisons may then be made test-
ing different route evaluation criteria.

AUTHOR BIOGRAPHY

MICHAEL NORMAN is a Senior Simulation Analyst for
Brooks-PRI Automation - Planning and Logistics Solu-
tions. He has over 14 years experience in simulation mod-
eling using the AutoMod family of products. Michael
holds a B.S. in Industrial Engineering from the University
of Washington, is a Professional Industrial Engineer and a
Senior Member of IIE. His email and web addresses are
<Mike.Norman@brooks-pri.com> and <www.
brooks-pri.com>.

mailto:Mike.Norman@brooks-pri.com
http://www.brooks-pri.com/
http://www.brooks-pri.com/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 537
	02: 538
	03: 539
	04: 540
	05: 541

