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ABSTRACT 

We examine the performance and accuracy of simulating 
M/G/1 queues when the service time is Pareto distributed 
with shape parameter, alpha, between one and three.  Two 
applications of this problem are in insurance risk and tele-
communications.  When  2 < alpha <= 3, the theoretical 
distribution of the sample averages of the queue waiting 
times is a stable distribution.  When alpha <= 2, the mean 
waiting time does not exist.  We provide a modified quan-
tile simulation method, which is able to solve harder prob-
lems than existing  methods;  in addition, it requires less 
memory, and allows the user to emphasize accuracy or 
execution time.  We also give numerical examples for 
other heavy-tailed distributions, such as the lognormal.   
 
1 INTRODUCTION 
 
This paper discusses the performance of M/G/1 (G~Pareto) 
queues over a range of Pareto shape parameter values (α-
values) and provides insight on overcoming the difficulties 
of simulating these queues.  We provide a modified quan-
tile simulation method, which is able to solve harder prob-
lems than existing  methods;  in addition, it requires less 
memory, and allows the user to emphasize accuracy or 
execution time. 
 For our problem, there are two main difficulties:  simu-
lating the queue waiting time distribution and calculating the 
accuracy of our results.  Simulating queueing systems with 
Pareto service times is hard.  The value of α significantly 
affects the rate of convergence to steady state.  This leads to 
simulations requiring many observations and long run times.  
Although large sample sizes and long execution times are 
typical of many interesting problems reported in the litera-
ture, simply simulating the system longer may not work.  
This is because for low α-values, simulation outcome statis-
tics converge very slowly. 
 Another difficulty is that the distribution of the sample 
mean queue waiting times is not the same for all α-values.  
Depending on the parameter value, sample mean queue 
waiting times converge to different distributions or do not 

 

converge at all.  For 3 ≤ α, the distribution of these sample 
means converges to a normal distribution.  In these cases, 
the Central Limit Theorem and traditional confidence in-
terval calculations apply.  For 2 < α < 3, the distribution of 
the sample averages of queue waiting times converges to a 
stable distribution.  Here, traditional confidence intervals 
do not apply.  For α ≤ 2, the mean queue waiting time does 
not exist.  We modify an existing quantile estimation 
method finding solutions across a broader range of parame-
ters, requiring less memory, and giving users flexibility to 
make accuracy and execution time trade-offs. 

Our M/P/1 queues have a single-server and the interar-
rival times and service times are independent with inter-
arrival times exponentially distributed with mean 1/λ and 
service times Pareto distributed with mean 1/µ.  We as-
sume the capacity of the queue is infinite and the queueing 
discipline is first-come first-served.  Harris (1968) showed 
that the Pareto distribution could be derived as a gamma 
mixture of exponentials leading to the distribution, 
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where α is the shape parameter that measures the tail-
thickness of the distribution and θ is a shift parameter.  The 
density is given by, 
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Although there are several forms of this distribution, we 
use a one-term Pareto defined over the nonnegative real 
numbers with the shift parameter value θ  = 1.  
 A distribution has a power-tail if the tail of the distri-
bution decays geometrically in the limit.  That is, 
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where c is a constant and a(x)~b(x) means 
lim ( ) / ( ) 1
x

a x b x
→∞

= .  The Pareto distribution  has a power-

tail a = α. 
 Cohen (1982) provides additional information by 
proving an important relationship between the moments of 
the service-time distribution and the moments of the queue 
waiting-time distribution for an M/G/1 queue.  He shows 
that the distribution of the queue waiting times has one less 
moment than the service-time distribution.  For Pareto ser-
vice-time distributions with 2 < α ≤ 3, both the mean and 
variance of the service-time distribution exist, but only the 
mean of the queue waiting-time distribution exists.  Of par-
ticular importance to our research is that for Pareto service-
time distributions with α ≤ 2, the mean queue waiting time 
does not exist.  
 The tail asymptotics of the M/G/1 queue are well 
known.  If G is heavy-tailed, then (e.g., Sigman 1999)  
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where Ge(x) is the equilibrium distribution of G.   For ex-
ample, if G is a Pareto distribution, then it follows that: 
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A well-known random variable that describes the con-

vergence of sample averages to their expectation is, 
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From the Central Limit Theorem, 
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is normally distrib-

uted N (0,σ2).   
If the variance is infinite, then we cannot use this re-

sult.  Feller, 1971, defined the general case of (3) as 
 

    ( ),φκ −= nn AnZ                                   (4) 

 
where κ = 1-1/η, η is the tail index of the distribution, and 
φ  is the true mean of the distribution.  We use η instead of 
the more traditional α in this definition to avoid confusion 
with the Pareto shape parameter α.  These two parameters 
are related with η = α -1, for 2 < α ≤ 3.  When the Xis fol-
low a power law (equation (1), with a= η) and 1 < η  ≤ 2, 
then

∞→n
nZ

lim

is a stable distribution S1 (η, β, γ, δ).   

 Chen and Kelton (1999) seek to improve the large 
storage and processing costs associated with fixed sample-
sized, quantile estimation.  Their method has an iteration 
phase and a replication phase and requires multiple sam-
pling and sorting.  However unlike fixed sample-sized, 
quantile estimation, Chen and Kelton’s (1999) algorithm 
only keeps a small number of the sample values while 
counting all observations.  It therefore has fewer observa-
tions to sort.  The method brackets the quantile estimate by 
a pair of bounds and at each iteration increases the sample 
size.  By taking an initial sample large enough to capture 
the desired quantile and controlling the constriction of the 
bounds, their method obtains the shape and values of the 
distribution near the desired quantile.  They then use repli-
cation to find the final quantile estimate and confidence in-
terval.  We improve their algorithm to solve additional 
problems, while requiring less memory, and allowing the 
user to emphasize accuracy or execution time.   
 When sampling outcomes from any system, their in-
dependence becomes important.  A characteristic of queue-
ing problems is that successive sampled queue waiting 
times are not independent.  A well-known recursion, Lind-
ley’s formula (Gross and Harris 1998), relates the queue 
waiting time (Wq) of the nth customer to the n+1st customer 

 
   Wq(n+1) = Max (0,Wq(n) + Sn – Tn),                 (5) 

 
where Sn is the service-time of the nth customer and Tn is 
the interarrival time between the nth and the n+1st cus-
tomer.  Clearly these waiting times are not independent 
unless each arriving customer finds the queue empty.  Our 
results address this dependence.   
 
2 A MODIFIED METHOD TO  

SIMULATE QUANTILES 
 
Quantile estimation depends on point estimators obtained 
by order statistics.  Let X1, X2, ⋅⋅⋅ Xn be sampled random 
variables from a continuous distribution F(x) or density 
function f(x).  Let xp denote the pth quantile having the 
property, F(xp) = Pr (X ≤ xp) =  p (0 < p < 1). 
 If Y1, Y2, ⋅⋅⋅ Yn are the order statistics corresponding to 
the Xi’s from n observations, then a point estimator for xp 
based on the order statistics is the sample pth quantile, 

 npp yx =ˆ , where  z  denotes the integer ceiling (round-

up) of the real number z, and  npy  is the npth smallest of Y1, 

Y2, ⋅⋅⋅ Yn.. 
 Statistically, the queue waiting time process of simula-
tions is nonstationary and autocorrelated.  These character-
istics usually prevent using traditional statistics.  However, 
we can use order statistics to overcome the lack of inde-
pendence if the random variables are derived from a φ-
mixing process.  A φ-mixing process is a stochastic process 
where a distant future event is approximately independent 
of its present and past events (Billingsley 1999).   
 Quantile estimates from φ-mixing processes are as-
ymptotically unbiased and may be averaged.  Sen (1972) 
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showed that quantile estimates based on order statistics 
have a limiting normal distribution if three conditions are 
satisfied:  

 
1. The sampled process {Xi} is φ-mixing. 
2. The cumulative distribution function F(x) is abso-

lutely continuous. 
3. The density function f (x) is finite, positive, and ab-

solutely continuous for all x  = F-1(t) and 0 < t < 1. 
 

 It is not hard to see that successive queue waiting 
times from a M/P/1 queue is a φ-mixing process for utiliza-
tions less than one (ρ < 1).  From Gross and Harris (1998), 
the probability that the system is idle equals 1-ρ.  There-
fore, with probability one, at some time the queue will 
empty.  When the queue is empty, the queue waiting time 
is zero, and from Lindley’s equation (5), the preceding 
waiting times are independent of the following waiting 
times.  When the probability mass at zero is removed, the 
M/P/1 queue’s continuous arrival-time and service-time 
densities lead to the distribution of positive, real queue 
waiting times meeting conditions two and three from Sen.   

Our quantile estimation method determines the re-
quired simulation run length using an iterative process and 
is a modification of a method developed by Chen and Kel-
ton (CK)(1999).  Figure 1 illustrates the initial sampling 
and the iteration flow of the method.   

 

Flow of Sampling, Storage, Bounds, and Counters
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Figure 1:  Initial Sampling and Iterations 
for the CK Method 

 
The algorithm begins with an initial sample of random 

variables sufficiently large to include the true but unknown 
desired quantile.  For clarity, we designate this array of val-
ues as the memory buffer.  From this sample, the method 

calculates an intermediate quantile estimate px̂  and then 

encloses the unknown true pth quantile by calculating upper 
and lower bounds (xlb and xub, respectively).  The bounds are 

located by position relative to .ˆ px  Before beginning the it-

eration phase, the number of observations below the lower 
bound position is added to a counter (obs_below) and the 
number of observations above the upper bound position is 
added to another counter (obs_above). 

The method then performs several iterations (Figure 1, 
Iteration Flow), where only observations between xlb and 
xub are stored.  If the sampled random variables are not be-
tween xlb and xub, the method increments upper or lower 
counters.  For each iteration, the method increases the 
memory buffer, resamples to fill the buffer, increments 
counters, and establishes new bounds.  The bounds calcu-
lated from the previous iteration become the largest and 
smallest values in the memory buffer for the current itera-
tion.  The program uses these bounds to screen sampled 
random variables for inclusion in the memory buffer, and 
as the method progresses, these bounds contract about the 
true but unknown quantile. 

After some empirical stopping criteria are met, the 
method saves upper and lower bounds, the size of the 
memory buffer and sets the counters to zero.  It then sam-
ples until the memory buffer is filled, keeping track of the 
number of samples that lie outside the bounds.  This proc-
ess (the replication phase) is repeated up to seven times to 
obtain confidence intervals.   

We investigated several modifications to the CK 
method.  We call our method the Modified-Chen-Kelton 
(MCK) method.  The intent of our modifications was to in-
crease the problem space over which quantile estimates are 
possible, to generate unbiased quantile estimates, and to 
maintain or improve the processing time and accuracy. 
 Our modifications construct the upper and lower 
bounds at different rates, relax the stopping criteria in the 
iteration phase, and eliminate a possible quantile estimator 
bias in the replication phase. 

First, we wanted to constrict the lower and upper 
bounds as quickly as possible around the true but unknown 
quantile value.  This would decrease the method’s time in 
the iteration phase.  M/P/1 queue waiting times have a pre-
ponderance of small observations. We can use this infor-
mation to constrict the lower bound faster than the upper 
bound.  By applying different weights to find the two 
bounds, we can independently converge on the true quan-
tile value from below and above and end the iteration 
phase sooner than the CK method.   

Obtaining close bounds in a short period of time is in 
conflict with one of the heuristic stopping criteria of the 
CK method.  Therefore, our method eliminates the stop-
ping criteria requiring no monotonic increase or decrease 
in the quantile estimate based on the previous four itera-
tions.  The reason we do this is that sometimes our method 
has already obtained candidate bounds before the fourth 
iteration.  Performing additional iterations to perform this 
check unnecessarily uses computation time in the iteration 
phase.  Our results show that the processing time used to 
achieve this stopping criteria is better spent in the replica-
tion phase, where each replication contributes to reducing 
the width of the confidence interval. 
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In the CK method’s replication phase, the quantile es-
timate is set to the nearest bound value if it is outside of the 
array.  This biases the estimate.  In our modification, we 
linearly extrapolate from the memory buffer data and 
bound positions to obtain a quantile estimate when this cir-
cumstance arises.   
 Both methods use a precision criterion (designated 
EPS > 0).  The methods use this factor during the iteration 
phase to check convergence of the distribution and during 
the replication phase as a decision criteria to make addi-
tional replications.  The role of the EPS is to affect the set-
ting of the confidence interval.  Setting EPS too low will 
cause numerous iterations.  This can lead to the algorithm 
terminating due to insufficient memory.  Setting EPS too 
high results in large confidence intervals.  Our experiments 
have shown us that we obtain confidence intervals that are 
an order of magnitude lower than the EPS setting, and that 
for a fixed desired confidence interval half-width, as α de-
creases and/or the desired quantile increases, the EPS value 
should increase.  For our example problem (α  = 1.5 and 
we desire an estimate of the 90th quantile), if we want a 
confidence interval half-width of approximately one, then 
we set EPS to approximately ten. 
 Figure 2 shows the lower and upper bounds and the 
quantile estimates of both methods as the algorithms pro-
gress.  For this illustration, we set the upper weight to 0.51 
and the lower weight to 0.24 for comparison with the CK 
method.  The MCK method meets the stopping criteria af-
ter four iterations and the final estimate is based on five 
replications.  The 90th quantile estimates ( 90x̂ ), 90% confi-

dence interval (CI) half-widths, and execution times (X-
time) for the MCK and CK methods are 90x̂ = 1085.1, CI = 

1.07, X-time = 4.9 hours; and 90x̂ =1085.4, CI = 1.31, X-

time = 5.17 hours respectively.  Thus, for this example, our 
modifications provide a tighter CI half-width in less time.     

 

Convergence of the 90th Quantile Estimate
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Figure 2:  Convergence of the 90th Quantile Estimate 
with Upper and Lower Bounds (MCK Method);  α = 
1.5; Initial Bounds Percentage = +/- 0.1*p 
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3 NUMERICAL RESULTS 
 
We executed numerous simulations and collected data on 
each method’s memory storage requirements, 90% CI half-
widths, average sample sizes, and execution times.  Our 
method requires less memory and generally has a narrower 
CI for a given sample size.  Figures 3-4 plot our results.  
Figure 3 shows the significant advantage of the MCK 
method’s lower memory buffer requirements for all cases 
considered.  Since the MCK method uses less memory, we 
can solve harder problems and/or estimate multiple quan-
tiles in one simulation run.  Later, we show that for low α–
values or high quantile estimates, the CK method fails, 
where MCK does not. 
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Figure 3:  Memory Buffer Size Versus Sample Size for 
Various MCK and CK Cases 

 
Figure 4 illustrates the MCK method’s narrower 90% 

confidence interval half-widths.  The preponderance of 
these values are better than those obtained by the CK 
method.  This result is true even though the CK method bi-
ases its quantile estimates by restricting them to values 
within the memory buffer.  Considering our performance 
criteria of memory storage, execution time and CI half-
width, our method provides a distinct improvement.     

  

90% Confidence Interval Half-Width Versus
Sample Size for Various MCK and CK Cases
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Figure 4:  90% Confidence Interval Half-Width Versus 
Sample Size for Various MCK and CK Cases 
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We augment these results with guidelines for weight se-
lection.  As the Pareto shape parameter decreases and/or the 
desired quantile gets larger, increase the upper weight and 
decrease the lower weight.  If the priority is a short execution 
time, increase the difference between the weights and specify 
less precision.  If increased accuracy is the goal, decrease the 
difference between the weights and specify more precision. 

We have shown that our method has advantages over 
the CK method for one specific case (α = 1.5, 90th quan-
tile).  Now we argue that these advantages hold over a 
wider class of problems.  In particular, the advantages be-
come greater for higher quantiles.  In addition, for some 
problems, the CK method abnormally terminates due to in-
sufficient memory, where the MCK does not.   
 We designed and conducted a number of experiments 
to compare the performance between our method and the 
CK method.  We varied the Pareto shape parameter from 
1.1 to 1.9 in 0.1 increments and simulated to obtain the 
90th, 95th, and 99th quantiles.  For these experiments, we 
kept constant the queue utilization, the precision, the initial 
bounds, and the initial memory buffer array size.  We used 
our weight-setting rules to set the upper and lower weights 
for the MCK method.  The CK method prescribes no rules 
for parameter selection, but our experience suggested that 
we select large values to capture the true but unknown 
quantile.  In order to provide a close comparison, we ex-
perimented by incrementally lowering these CK values, but 
often the quantile estimate was outside of the memory 
buffer and the simulation terminated. 
 Table 1 shows the quantile estimates for each case. 
While the MCK method solves problems throughout the 
range, the CK method cannot for α–values less than 1.5 for 
any quantile.  This is because the CK method exceeds the 
available computer memory.  The MCK method finds solu-
tions using all α–values for the 90th and 95th quantiles, and 
for the 99th quantile when the α–value is greater or equal to 
1.7.  For α–values smaller than 1.7, the MCK method ex-
ceeded the available memory for estimating the 99th quantile. 

 
Table 1: CK and MCK Method Solution Performance (α-
values:  1.1-1.9; Quantiles:  90th, 95th, and 99th) 

Method:       CK MCK CK MCK CK MCK 
α-

value 
90th Quantile 95th Quantile 99th Quantile 

1.1 X 352,549 X 929,314 X X 
1.2 X 94,818 X 267,756 X X 
1.3 X 17,760 X 59,468 X X 
1.4 X 3,701 X 11,754 X X 
1.5 1,084 1,084 3,356 3,362 X X 
1.6 422 422 1,174 1,175 X X 
1.7 205 205 502 503 X 2,674 
1.8 118 118 261 260 X 1,231 
1.9 77 77 153 153 X 649 

 
 For α–values greater than or equal to 1.5, we can 
compare the two methods.  Figure 5 shows the MCK 
method’s improvement in memory usage over the CK 
method.  Over these experiments, the MCK method 
achieved a 38% average fractional reduction in memory 
usage and a 42% average fractional CI half-width reduc-
tion compared to the CK method. 

Next, we modified our experiments to increase the 
chance of both methods obtaining a solution.  We did this 
by decreasing the memory buffer increment factor (from 
10% to 1%) in the iteration phase (Chen and Kelton used a 
memory buffer increment factor of 10% in their research) 
and performed the experiments for the most difficult case 
(the 99th quantile).  Both quantile estimation methods ar-
rived at solutions, but the MCK had an average 83% nar-
rower fractional CI half-width and performed on average 
56% faster than the CK method.  These results were based 
on four cases, α–values 1.1 to 1.4.  Thus, we see signifi-
cant benefits from using the MCK method for low α–
values and quantile estimates far into the tail of M/P/1 
queue waiting-time distributions. 
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Figure 5.  CK and MCK Memory Performance (α-
values:  1.5-1.9, 95th Quantile) 

 
Finally, Table 2 illustrates our method applied to the log-

normal distribution (logN) and M/M/1 queue waiting times. 

 
Table 2:  MCK (CK) Method Performance for Various 
Distributions 

Case 90th 
Quantile 

90th  
Quantile 
MCK (CK) 

90% CI 
Half-Width 
MCK (CK) 

Processing Time 
(Hours)/Buffer 
Size MCK (CK) 

LogN  
Mean 
0.901 
Var 
17.4 

1.845 1.884 
 
 
 

(2.115) 

0.075 
 
 
 

(0.145) 

0.18/ 
732,050 

 
(0.276/ 
974,359) 

Pareto 
α=2.1  
ρ=0.8 

1.9936 1.99377 
 
 

(1.99296) 

0.0016 
 
 

(.0017) 

0.032/ 
805,255 

 
(0.029/ 
805,255) 

M/M/1 
λ=0.75  
ρ=0.75 

8.06 8.05 
 
 

(8.07) 

0.012 
 
 

(0.058) 

0.496/ 
133,100 

 
(0.013/ 
161,051) 
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In summary, the MCK quantile estimation method is 
an improvement over existing methods.  It uses less mem-
ory and allows the user to adjust parameters for increased 
accuracy or shorter execution time.  Our rules for weight 
selection reflect our insight into the method’s operation 
and are easy to apply.  The MCK method also performs 
well for test cases of known distributions, providing confi-
dence for our quantile estimates of the unknown distribu-
tion of M/P/1 queue waiting times. 
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