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ABSTRACT 

M/G/1 queues, where G is a heavy-tailed distribution, have 
applications in Internet modeling and modeling for insur-
ance claim risk.  The Pareto distribution is a special heavy-
tailed distribution called a power-tailed distribution, and 
has been found to serve as adequate models for many of 
these situations.  However, to get the waiting time distribu-
tion, one must resort to numerical methods, e.g., simula-
tion.  Many difficulties arise in simulating queues with 
Pareto service and we investigate why this may be so.  
Even if we are willing to consider truncated Pareto service, 
there still can be problems in simulating if the truncation 
point (maximum service time possible) is too large. 

1 INTRODUCTION 

Queueing theory has long been employed to study conges-
tion problems in a myriad of application areas.  In some 
applications of queueing theory, the usual assumptions that 
made queueing analyses so productive (e.g., Poisson arri-
vals and exponential-type holding times) clearly do not 
hold.  Two cases in point are in modeling traffic on the 
Internet and modeling financial claims on insurers.  In 
these cases, very low probability of extremely high service 
values can arise (e.g., insurance claims as a result of the 9-
11 terrorist attacks).  Fowler (1999) details heavy-tailed 
distributions occurring in Internet traffic, at five of the 
seven OSI protocol levels: FTP transfers (application level) 
and session durations/size (session level) are among these.  
Data indicate that the Pareto distribution well describe 
these service times.  Further, heavy-tailed distributions also 
play a significant role in portfolio and insurance models, 
where claim sizes can take on extremely large values (it 
can be shown that the probability of eventual ruin is the 
same as the stationary tail waiting probability for an M/G/1 
queue, where the service times are Pareto random variables 
(Juneja et al. 1999)). 

 

2 HEAVY-TAILED DISTRIBUTIONS  

AND THE PARETO 

A cumulative distribution function, F(x), has a power tail if 
there exists positive constants c and a such that for 
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That is, the tail decays geometrically in the limit (as op-
posed to the more familiar exponential decay of the expo-
nential, and gamma, for example).  Power-tail distributions 
are a subset of a broader class of distributions whose tails 
decay more slowly than exponential, i.e., 
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This broader class is referred to as heavy-, fat- or long-
tailed distributions, and include the lognormal and the 
Weibull (with shape parameter <1).  These latter distribu-
tions have tails that decay more slowly than any exponen-
tial, but not as slowly as the Pareto, so that a power-tailed 
distribution is also a heavy-tailed distribution, but not nec-
essarily the reverse. 

The one-parameter (shape) version of the Pareto CDF 
is given by 
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where α is the shape parameter. The corresponding density 
function is 
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and it is straightforward to show that the Pareto is indeed a 
power-tailed distribution.   

A major consequence of power-tailed behavior is the 
disappearance of moments. It is easy to see that for a 
Pareto to have its kth moment, E [Xk], we need α > k. If α > 
1, then the mean, E [X], is 
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and if α > 2, it follows that 
 

 
)1)(2(

2
][ 2

−−
=

αα
XE . 

 
Thus, no matter what the value of the parameter α, a Pareto 
random variable cannot have all its moments and hence 
does not have an analytic Laplace transform, which renders 
standard queueing analysis of M/G/1 impossible. Numeri-
cal methods which approximate the required Laplace trans-
form (e.g., the Transform Approximation Method – TAM, 
Shortle et al. 2002) work well in many cases. However, 
TAM cannot be used for queueing networks; hence the re-
quirement for simulation. 

3 SIMULATION PERFORMANCE IN 
ESTIMATING MEAN QUEUE  
WAIT FOR M/P/1 

To investigate how accurately we can simulate queues with 
Pareto service (the M/P/1 queue), we consider  α values 
greater than 2.  This allows comparison with theoretical re-
sults obtained from the Pollaczek-Khintchine (PK) formula 
(see Gross and Harris 1998, p. 212) as both mean and vari-
ance exist for the Pareto in this region and thus allows us to 
obtain results from the PK formula for the mean wait in 
queue, Wq.  Figure 1 (all figures and tables appear at the 
end of the text) shows runs from ARENA simulations of 
varying run lengths for five Pareto service α values from 
2.020202 to 3.5, yielding a range of coefficients of varia-
tion (CVs) from 1.53 to 10. We see that the closer  α is to 
2, the worse the percent error from the theoretical PK value 
for mean wait, Wq.  For α greater than three, the simula-
tion appears quite accurate, even for fairly small run 
lengths, but for α values in the low 2s, even run lengths as 
long as 20,000,000 transactions still produce sizable error.  
Crovella and Lipsky (1997) observed difficulties in esti-
mating the mean of a heavy-tailed distribution with shape 
parameter α less than 1.7. However, in simulating Wq for 
an M/P/1, the variance is also needed; Sees (2001) showed 
that problems of simulating Wq for M/P/1 queues arise 
when α is less than 2.7. 

Since for any finite simulation run length, there is al-
ways a maximum value of the random variables generated, 
we, in actuality, are simulating a truncated Pareto service 
distribution.  It has also been argued that there is always a 
maximum file size or claim amount so, in reality, we are 
always dealing with truncated distributions.  Therefore, we 
next turn our attention to the truncated Pareto distribution 
and consider M/PT/1 queues, where service times are trun-
cated Pareto to gain insight as to what the problem may be 
in the poor results in simulating M/P/1 queues with α val-
ues near 2, and whether simulation does a better job for 
M/PT/1 than for M/P/1. 

4 THE TRUNCATED PARETO DISTRIBUTION 

Considering the untruncated Pareto CDF of equation (1), 
we see that P{X<T} = F(T)=1–1/(1+T) α, so that the trun-
cated CDF becomes: 
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The first two moments of the truncated Pareto are: 
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Figure 2 illustrates, for the α=2.083333 case how the 

truncated Pareto approaches the untruncated Pareto as the 
truncation point increases.  Note the untruncated Pareto 
CV is 5 for this case and the first of the three graphs of the 
figure shows that it is not until the truncation point be-
comes greater than 1010, does the CV get close to the 
untruncated value of 5 (note the log scale on the figure’s x-
axis).  Further, the second and third graphs of the figure 
show the problem is really with the truncated variance 
slowly converging to the untruncated value.  The mean 
converges rather quickly (at about 103, which is still about 
3 orders of magnitude greater than the untruncated mean 
itself which is about .92).  Figure 3 shows that the conver-
gence slows as α gets near 2.  This illustrates that even dis-
carding a very, very small piece of the untruncated Pareto 
tail can have a significant effect in trying to simulate the 
M/P/1 queue.  For example, for this case (α = 2.083333), 
F(103)=.99999944 so that the tail being discarded is on the 
order of 10–7, but yields a CV of approximately 3, a 40%
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% Error in Simulating Mean Queue Wait, Wq
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Figure 1: Percent Error in Simulating Mean  Queue Wait 
  
 
difference from the untruncated value of 5!  Figure 4 com-
pares the complementary CDF (tail values) of the Pareto, 
Lognormal, Weibull and Gamma all with the same mean 
and variance for a CV=6.403 (the Pareto α here is 2.05).  
We see that for the Pareto (the heaviest of the heavy-tailed 
distributions) to dominate the non-heavy-tailed Gamma, 
the value of the variate is about 200 times the mean, and 
for the Pareto to finally dominate the Lognormal, the vari-
ate is about 7000 times the mean.  

We next look at how Wq for the truncated Pareto com-
pares with that of the untruncated Pareto (M/PT/1 vs M/P/1) 
as the truncation point increases.  Figure 5 shows that one 
needs very high truncation points before the truncated Wq 
nears the untruncated Wq, especially as α gets closer to 2. 

5 ADDITIONAL SIMULATION RESULTS 

Figure 6 shows Wq vs run size for M/P/1 cases where 
α=2.25, 2.083333 and 2.020202 (CV=3, 5 and 10).  Again, 
as in Figure 1, simulation falls far short of estimating the PK 
values, even for run lengths of over 25 million transactions.  
But, if we take the maximum service time generated for each 
run, and compare simulation results with PK results for the 
M/PT/1, with the truncation point T equal to the maximum 
service time generated, the results track quite well.  Table 1 
shows the maximum service times generated for the 30 mil-
lion run lengths, the tail probabilities (1-CDF) discarded be-
yond the truncation point and the resulting CVs in compari-
son to the untruncated CVs. Again we see the effect of the 
very small truncated tail on the CV actually attained. 

It is interesting to see how close we could theoretically 
come in simulating the M/P/1 by seeing what the maximum 
service time that could be potentially generated, assuming 
long enough run length.  The number of significant digits of 
the ARENA random number generator (ARENA 5.0) is 12 
or 13 digits.  Table 2 shows the maximum service time pos-
sible (a random number drawn consisting of 12 or 13 .9s) and 
the maximum CV attainable compared to the untruncated 
CV.  Table 3 shows that even if we could get 14 or 15 digit 
significance in generating 0-1 random numbers, we still fall 
far short of the untruncated CV. Again we see the extreme 
effect of discarding a miniscule tail for α values near 2. 

6 CONCLUSIONS 

The tail of the Pareto distribution significantly affects the 
performance of simulating mean queue wait in an M/P/1 
queue.  Very, very small tail probabilities can cause great 
errors in estimating mean queue wait, Wq, for Pareto shape 
parameter α ≤ 2.25 (CV ≥ 3).  Since any simulation run is 
really a truncated M/PT/1, if we are really interested in Wq 
for the untruncated M/P/1, we can run into limitations im-
posed by the significant digits of the random number gen-
erator.  Many argue that in reality, there is no such thing as 
an untruncated distribution since, for example, there is al-
ways a maximum value for service time (say a maximum 
file length or a maximum claim size).  However, if the 
maximum is extremely high, there may still be problems in 
simulating distributions such as the Pareto, if one is inter-
ested in estimating mean performance measures. 
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Pareto CV vs Truncation Point (alpha=2.083333)
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Figure 2: Convergence of Truncated to the Untruncated Pareto for α=2.083333 
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Pareto CV vs Truncation Point (alpha=2.25)
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Figure 3: Convergence of Truncated to the Untruncated Pareto for Various α  
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Distribution Tail Comparisons: Mean=.952, CV=6.403
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Figure 4: Heavy-Tailed Distributions and the Pareto 
 

Table 1: Maximum Service Times Generated for 30M Run Lengths 

alpha Max ST-30M Run F(max ST) 1 - F(max ST) CV(untrnctd) CV Attained 
2.25 3358.0 0.999999988358003 1.16420E-08 3 2.6748 

2.083333 6430.6 0.999999988358651 1.16413E-08 5 3.2978 
2.05 7416.1 0.999999988358203 1.16418E-08 6.4 3.4720 

2.020202 8458.1 0.999999988358421 1.16416E-08 10 3.6474 
 

Table 2: Limits of the Random Number Generator 

alpha F(T):12 digit Max T (ST) Max CV F(T):13 digit Max T (ST) Max CV 
Untrunctd 

CV 
 Arena RN  Attainable Arena RN  Attainable  

2.25 0.99999999999900 215444.59 2.8892 0.99999999999990 599400.42 2.9146 3 
2.083333 0.99999999999900 575446.27 3.9096 0.99999999999990 1737544.51 4.0174 5 

2.05 0.99999999999900 713941.48 4.2380 0.99999999999990 2194812.14 4.3839 6.4 
2.020202 0.99999999999900 870972.25 4.5876 0.99999999999990 2722281.74 4.7795 10 

 
Table 3: Extending the Limits of the Random Number Generator 

RN Digits CV Untruncated CV Untruncated CV Untruncated CV Untruncated 

 (αααα=2.25) (αααα=2.25) (αααα=2.083333) (αααα=2.083333) (αααα=2.05) (αααα=2.05) (αααα=2.020202) (αααα=2.020202) 

12 2.889 3 3.910 5 4.238 6.4 4.588 10 

13 2.915 3 4.017 5 4.384 6.4 4.779 10 

14 2.934 3 4.113 5 4.518 6.4 4.960 10 

15 2.949 3 4.199 5 4.640 6.4 5.130 10 
 



Gross, Shortle, Fischer, and Masi 
 

M/Ptrunc/1:Wq vs Truncation Point (alpha=2.25)
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Figure 5: Wq vs. Truncation Point 
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Queue Waits-alpha=2.25: Sim vs Theor.
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Queue Waits - alpha=2.083333: Sim vs Theor.
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Figure 6: Simulated vs. Theoretical Wq 
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