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ABSTRACT we present has analogs in the setting of Kiefer-Wolfowitz

procedures. Section 2 describes a central limit theorem for
In principle, known central limit theorems for stochastic the Robbins-Monro algorithm. This central limit theorem
approximation schemes permit the simulationist to provide lies at the basis of the confidence region procedures we de-
confidence regions for both the optimum and optimizer of a scribe. Specifically, Section 2 discusses a confidence region
stochastic optimization problem that is solved by means of procedure that requires consistent estimation of a certain
such algorithms. Unfortunately, the covariance structure of covariance matrix, whereas Section 3 describes a more eas-
the limiting normal distribution depends in a complex way ily implemented “cancellation” procedure. In Section 4,
on the problem data. In particular, the covariance matrix we discuss some of our computational experience with the
depends not only on variance constants but also on even procedure introduced in Section 3. Finally, Section 5 offers
more statistically challenging parameters (e.g. the Hessian some concluding remarks.
of the objective function at the optimizer). In this paper, we
describe an approach to producing such confidence regions2 CENTRAL LIMIT THEOREM FOR
that avoids the necessity of having to explicitly estimate STOCHASTIC APPROXIMATIONS
the covariance structure of the limiting normal distribution.
This procedure offers an easy way for the simulationist to We start by describing the problem setting precisely. Sup-
provide confidence regions in the stochastic optimization pose that our goal is to humerically maximize an objective

setting. functiona () over a continuous decision parametes ).

If () is smooth, itis well known that maximization requires
1 INTRODUCTION computing an appropriate roét of the equation
Stochastic approximation algorithms are iterative procedures Va(@®*) =0 1)

that permit simulationists to numerically optimize complex
stochastic systems. This class of algorithms exhibits a where Va(9) is the gradient ofx(-) at8 € %¢. (In this
convergence rate that is typically not faster than of order paper, we také&/ «(9) to be a row vector.) IV« (6) can be
¢~Y2 wherec is the size of the computer time budget. numerically evaluated, the roét can often be efficiently
Given this relatively slow convergence rate (as compared to computed by (deterministic) gradient-based Newton-type
most non-random iterative procedures), it is desirable, from algorithms (see, e.g., Luenberger 1984; Gill, et al. 1981).
practical standpoint, to assess the accuracy of the computed  We focus on the case th&(-) must be computed by
solution at the conclusion of the calculation. Given that Monte Carlo sampling. It is well known that simulation-
stochastic approximation algorithms are driven by random based algorithms enjoy a much broader range of applicability
numbers, the most natural means of assessing error is via athan do methods requiring numerical evaluation of closed-
confidence interval (for use when the optimizing decision form expressions for the expectations involved. Specifically,
variable is scalar) or, more generally, via a confidence we assume existence of a familg(¥) : 6 € R?) of random
region (for use when the optimizing decision variable is vectors that act as unbiased estimators of the gradient,
vector-valued). namely
This paper explores the construction of confidence re-
gions for such iterative algorithms. We focus on Robbins-
Monro procedures in this paper, although much of the theory
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(Note thatZ(0) is also encoded as a row vector.) A number

Theorem 1. Suppose that6, : n > 0) satisfies (2), (3),

of different procedures have been proposed in the literature and assumptio\. Then,

for obtaining such unbiased estimators of the gradient, in-
cluding likelihood ratio methods (Glynn 1986, Glynn 1990),
infinitesimal perturbation analysis (Glasserman 1991), Con-
ditional Monte Carlo (Fu and Hu 1997), and the “push-out”
approach (Rubinstein 1992).

For o € %9, let

F(dz;0) = P(Z(0) € dz)

for z € 9. Given the existence of unbiased estimators for
the gradient, we are naturally led to the consideration of a
Robbins-Monro (R-M) algorithm for computing®. Such

a R-M algorithm proceeds by first choosing an initial guess
0o for the maximizem*, and subsequently iterates g, 1
from 6,, via the recursion

‘9n+l =06, + _Zn+1(6n)

+1 3

a
n
for a > 0, where

P(Zn410y) € dzlbo, Z1(00), - - -, Zn(0n-1)) = F(dz; 6,)

for z € %4, (Again, we choose to encode thg's as row
vectors.)

We are now ready to describe one of many known
central limit theorems (CLT'’s) fol,; see p.147-150 of
Nevel'son and Has'minskii (1973) for a complete proof.
Forx € % (encoded as a row vector), lgt|| = v/xx7 be
its Euclidian norm.

Assumption A. The sequencéd,
following conditions:

: n > 0) satisfies the

i) Va(®) = (@ —0%*H +o(]|0 — 6*|) asf — 6*;

i) aH + %I is symmetric and all its eigenvalues are
negative;

iii) forall ¢ > 0, SUR._ g+ <1 Va(0)®—-6%T < 0;

iv) F(;0)= F(-;0%) asf — 0*, where= denotes
weak convergence;

v) there existsg > 0 suchthat|Z(0)|? : |6—6*| <
go) is a uniformly integrable family of random
variables;

vi) therze existsk < oo such thatE || Z(0)|1% < k(1 +
1611%).

Recall that for a square matrig,

S n

exp(B) = 0
n=0 "

n% (6, — 6%) = N(O, C)

asn — oo, whereN (0, C) is a multivariate normal random
vector with mean zero and covariance matéixgiven by

C= aZ/OO expi(aH + 2D EZ©%) Z(6%)
=a* | >
-exp((aH + %I)M)d”-

Before proceeding further, let us briefly discuss as-
sumptionA. Whena () is twice continuously differentiable
(as will typically be the case), i) isimmediately satisfied at a
stationary point* and H is just the Hessian af evaluated
at 6*. At an isolated maximize6*, H must be negative
definite and symmetric, so tha# + %1 will have negative
eigenvalues fou sufficiently large; ii) will then be satisfied
automatically. Condition iii) is a sufficient condition that
guarantees that* is a global maximizer of(-). Condition
iv) is a mild continuity hypothesis on the distribution of
Z(0), and condition v) is a technical integrability hypothesis
that is satisfied in great generality. Finally, condition vi) is
an assumption that controls the rate at which the variance
of ||1Z(6)| grows as||@| tends to infinity.

Theorem 1 asserts thét converges t@* at raten—2
in the number of iterations. Furthermore, the error @,
is approximately normally distributed whenis large. The
latter observation suggests the possibility of constructing
confidence regions fo#* based on the above CLT.
Proposition 1. Suppose that6, : n > 0) satisfies the
conditions of Theorem 1 and th&Z6*)7 Z(6*) is a non-
singular matrix. IfC,, = C asn — oo, then

n(Oy —65C 10, — 09T = 42

asn — oo, wherey? is a chi-square random variable with

d degrees of freedom.

Proof We start by showing tha€ is non-singular. The
matrix C can alternatively be represented as the matrix
solution to the equation

1 1 EAVA *
(aH + EI)C + C(aH + EI) =EZ(0") Z(0");

see p. 77-78 of Ljung, Pflug, and Walk (1992). Lyapunov’s
lemma (see p. 133 of Nevel'son and Has’minskii 1973)
establishes thaC is positive definite and therefore non-
singular. Since the matrix inverse functional is continuous
in a (matrix) neighborhood of a non-singular matrix, it

(which is guaranteed to always converge absolutely and be fojlows from the continuous mapping principle for weak

well-defined).
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To continue the argument, we write the quadratic form
n, —0*)C, (6, — 6T as follows:

NG —0*)Cy (0 — %)
= n, —05Cc 1o, — %"
+n(0, —0*)(C;t— 76, — 09T,

(4)

The continuous mapping principle implies that the first
term on the right hand side of (4) converges weakly to
N(0,C)CIN(0, C)T, which is easily seen to have &
distribution. On the other hand,

76, — 6)(Cyt — ™16, — 67|
1
<|InZ@, — 9% IC, 1 — 7. (5)

The first factor on the right-hand side of (5) converges
weakly, by the continuous mapping principle|ty (0, C) |12,
whereas the second factor converges weakly to zero. Hence,
the product converges weakly to zero, establishing that
the left-hand side of (4) does indeed converge weakly to
N(0,C)C™IN(, C)T, as desiredD

Thus, if C, is a consistent estimator far, the region

6 :n6, —6)C 10, —0)T <z}

is an approximate 1QQ — §)% confidence region fof*,
provided that; is selected so tha‘l’(xj > z) = 4. The key
to constructing confidence regions fet is therefore the
consistent estimation af.

As is evident from the formula fo€, even whenH
and EZ(©0*)T Z(6*) are known, the numerically evalua-
tion of C is non-trivial. Of course, in practice, botH
andEZ(*)T Z(9*) are generally unknown and must them-
selves be estimated, substantially complicating the task. In
the current settingE Z(0*)" Z(6*) can be estimated in a
straightforward fashion. In particular, let

1 n
Zp =) Zi0i-0 Zi-). (6)

i=1

Proposition 2. Suppose thasugE||Z(®)|* : 6 € R?} <
oo. If, in addition, (6, : n > 0) satisfies the conditions of
Theorem 1, then

2, — EZ©O"TZ(©0*) a.s. asn — oo.

Proof. Let y(0) EZ®)TZ@®) and set D;
Zi(0;-1)" Zi(6i—1) — y(0;i—1). Because SUE|Z(®)|* :
6 € R} < oo, it follows that(D; : i > 1) is a sequence of
martingale differences (adapted dg, Z1(60), Z2(01), . ..)
for which sugvVar(D;) : i > 1} < oo. Consequently,
the martingale(>"/_; D;/i : n > 1) satisfies the condi-
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tions of the Martingale Convergence Theorem (see p. 468
of Billingsley 1995, or ch. 12 of Williams 1991), so
that there exists a finite-valued random variablg, such

that ) 1 Di/i > My as. asn — oo. Kronecker’s
lemma (see p. 250 of Loeve 1977) then guarantees that
n1Y"  D;/i — 0as. am — oo. But

n n—1
Zp=n"tY Di+n Tty vy 6. 7
i=1 i=0

ConditionsA iv) and v) ensure thay () — y(0*) as

0 — 6*. In addition, it is known that, — 6* a.s. as

n — oo under the conditions of Theorem 1; see p. 93 of
Nevel'son and Has'minskii (1973). Hence,

n—1
Yy O) > y(0*) = EZ(0")7Z2(6) as.
i=0

asn — oo. It follows from (7) that

S, — EZO"TZ0* as. am — .
|

The estimator defined by (6) can be modified (and
possibly improved) by weighting more recent observations
more heavily, rather than weighting all observations equally.

In the setting of Theorem 1, the greater challenge in
constructing a consistent estimaigy is the estimation of
the matrixH. The (i, j)'th entry of the matrixH is given

by
%)
Y 36,00,

lo=o* -

A number of the gradient estimation algorithms mentioned
earlier, while capable of producing unbiased estimates of first
order partial derivatives, do not easily extend to construction
of unbiased estimators for second order partial derivatives.
For example, infinitesimal perturbation analysis typically
estimates only first derivatives consistently. One notable
exception is the likelihood ratio method, for which second
derivative estimators are easily constructed.

In general, however, estimation of the second order
partial derivatives requires either a non-trivial extension of
the methods available for estimation of first order partial
derivatives, or use of finite difference estimators in which first
differences of first order derivative estimators are utilized. In
either case, the need to consistently estimate/ther 1) /2
distinct elements ofH makes constructing a consistent
estimatorC,, for C a highly non-trivial exercise.
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3 A GENERAL APPROACH TO CONSTRUCTION
OF CONFIDENCE REGIONS

Given the difficulties associated with consistent estimation
of the covariance matrix’, we seek an alternative method.
To place our alternative methodology in its appropriate
context, we describe the idea in a more general setting.

Suppose that we wish to compute a parameterhi?
for which there exists an estimatay, satisfying a CLT. In
particular, assume:
Assumption B. There exists a symmetric positive definite
matrix I' such that'/2(«, — o) = N(0,T) asn — oo.

We wish to construct confidence regions fowithout
requiring existence of a consistent estimator for

The idea is to compute by simulatingm independent
replications of the estimatas, (thereby consuming roughly
mn computer time units). Letv1,, @z, ..., oy, be the
resultingm copies of the random vectar,,. The natural
estimator forx is thena(m, n) = %Z;"zla,-n. The sample
covariance matriX/ (m, n) is given by

1 m
Vn,n) = ———=% (i — an,m) (@in — am, n).
i=1

Theorem 2. Under conditionB,

a) J/mn(x(m,n) —a)= N(O,T) asn — oo;
b) if m >d+1, then

m(a(m,n) — a)TV(m, n)fl(ot(m, n) —ao)
dim —1)

Fam—
—; fam-a

asn — oo, where Fy ,,—q) is an F distributed
random variable witlid, m—d) degrees of freedom.

Proof. Part a) of Theorem 2 is a simple consequence of the
continuous mapping principle. For part b) of Theorem 2,
we note that ifN1(0, ), ..., N, (0, ") arem independent
and identically distributed random vectors with distribution
N(O, T'), then the random matrix

T

1 m 1 m
m——lz N; (0, F)—ZZN]'(O, )
i=1 j=1
N; (0, T) ! iN'(O I
L ’ m]=l J ’

is almost surely non-singular (sinee> d + 1); see p.208
of Searle (1982).

function g : ™" — N is almost surely continuous in a
neighborhood of N1(0,T), ..., N, (0, IN)):

1 m
g(x1, ... xp) = ;ij :
j=1
1 < 1« 1« -
pra DB At BEN R et DEN
=1 j=1 j=1

m

The continuous mapping principle then yields the second
result. O

Theorem 2 applies immediately to the construction of
confidence regions for stochastic approximations. Sup-
pose that we independently replicate the stochastic approx-
imation m times, thereby yieldingn independent copies

01, 024, . .., O, Of the random vectof,. Put
1 m
0m,n) = = _Zem,
i=1
l m
Vm,m) = ——= 3 (O = 00n, )" Oin — 0(n, m))
- i=1
and set

A (2) = {9 S (O@m,n) — OV (m,n) 2O, n) — )"

<zd(m—l)}.
- m-—d

Proposition 3. Assume the conditions of Theorem 1, and
suppose thak Z(6*)” Z(#*) is non-singular. lfim > d +1,
then

PO" € Apn(2)) > 138

asn — oo, wherez is selected so thaP (Fg m—q) < 2) =
1-3.

The proof is an easy application of Theorem 2. Propo-
sition 3 asserts that,;,, (z) is (for largen) an approximate
100(1 — )% confidence region fof*. In contrast to the
confidence region approach of Section 2 (in whi¢twas
consistently estimated), this procedure can be easily imple-
mented. Note that the current procedure is essentially a
“cancellation procedure”, in the terminology of Glynn and
Iglehart (1990).

One additional advantage of the current approach is that

Because the matrix inverse functional is continuous in itrequires the simulationist to rumindependent replications
a neighborhood of any non-singular matrix, the following of the stochastic approximation, providimg independent

373



Hsieh and Glynn

estimators of the maximizér. These multiple independent

We implemented the Robbins-Monro algorithm using

re-starts of the stochastic approximation procedure permit likelihood ratio technique to estimate the derivative; see

the simulationist to test the question of whether the data
collected is consistent witda(-) having a unique local maxi-
mizer. This question is of great importance from an applied
standpoint, since global maximization is typically the sim-
ulationist's objective. We shall pursue this important issue
in an expanded version of this paper.

4 COMPUTATIONAL RESULTS

In this section, we test the confidence region procedure
proposed in Section 3 on two different examples. The first

L'Ecuyer and Glynn (1994) for detail on constructing the
likelihood ratio derivative estimator for this model. The
initial point 6p is uniformly chosen from the interval. The
step parametex in (3) is set to 0.1, and the simulation
budget at iteratiom is set to be proportional t¢/n (such
simulation time allocation has been shown to be empirically
efficient in L'Ecuyer, Giroux, and Glynn (1994).)

Table 1 summarizes the numerical results of the sim-
ulation runs. The confidence level is 95%, and the 95%
confidence interval for the coverage probability is estimated
from 100 replications. The coverage probabilities are rea-

involves a scalar decision parameter, whereas the secondsonably close to the nominal level of 95%, and exhibit some

example concerns a two-dimensional vector of decision
parameters.

4.1 Model 1

The first model is an M/M/1 queue with arrival rate= 1
and mean service time

0 € ® =[0.05,0.95].

Therefore, the service tim&/ has density fy(x)
exp(—x/0)/6. The goal is to minimize

1
a@) =w@)+ —,

: ®)

wherew(0) is the mean steady-state sojourn time per cus-
tomer in the system associated with paraméterlt can
be shown thatv(0) = 6/(1 — 6). Thus the optimal value
6* = 0.5. Figure 1 shows the shape®f?) on the interval
[0.05, 0.95]. This model appeared in L'Ecuyer, Giroux, and
Glynn (1994).

a(6) = w(B)+1/6

25 T

20

151 q

a(®)

0 I I I I I I I I I
0.1 0.2 0.3 0.7 0.8 0.9

Figure 1: Objective Function of Model 1
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degree of convergence to their nominal levelragrows
larger. (See, in particular, the results reportedfos 5.)
Althoughn seems not have significant affect on the coverage
accuracy, long: does narrow the confidence interval, i.e.,
the variation of9; is smaller.

Table 1: Numerical Summary of Model 1. The Ideal
Coverage Probability Is 0.95

m=3 m=>5
n ClI for coverage prob| ClI for coverage prob
64 0.87 4 0.066 0.5440.098
128 0.86+ 0.068 0.66+ 0.093
256 0.90+ 0.059 0.82+0.076
512 0.89+ 0.062 0.7440.086
1024 0.86+ 0.068 0.80+ 0.079
2048 0.86+ 0.068 0.87+ 0.066
4.2 Model 2

The second model is an M/M/1 queue with arrival rate
A € [1, 2.5] and service ratg € [3.5, 6]. Thus, the service
time V has densityf,,(x) = pexp(—ux) and the inter-
arrival time U has densityf; (x) = A exp(—Ax). The goal
is to minimize

"

1
a()\" /’L) = U)()\., I’L) + -+ R

A4 ©

wherew (X, n) is the mean steady-state customer sojourn
time for the system associated with arrival ratend and
service rate.. Again, it can be showw (1, u) = 1/(u—2),

so that the optimal valué *, u*) = (2,4). The shape of
a(A, u) is displayed in Figure 2.

Again, we implement the Robbins-Monro algorithm
using the likelihood ratio gradient estimation algorithm.
The initial (Ao, uo) is chosen uniformly from the rectangle
([1,2.5],[3.5,6]). The step parameter in (3) is set to
0.5, and the simulation budget at iterationis set to be
proportional to./n.
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Figure 2: Objective Function of Model 2

Table 2 summarizes the numerical results of the simula-
tion runs. Again, the confidence level is 95%, and the 95%
confidence interval for coverage probability is estimated
from 100 replications. Again, the empirical evidence is in
reasonably close agreement with the theory developed in
Section 3.

Table 2: Numerical Summary of Model 2. The Ideal
Coverage Probability is 0.95

m=3 m=>5

n ClI for coverage prob| ClI for coverage prob

64 0.97+0.034 0.89+ 0.062

128 0.93+ 0.050 0.89+ 0.062
256 0.95+ 0.043 0.88+ 0.064
512 0.91+ 0.056 0.93+ 0.050
1024 0.96+ 0.039 0.90+ 0.059
2048 0.96+ 0.039 0.91+ 0.056

The simulation results from these two models suggest
that the procedure described in Section 3 is a pragmatic
approach for constructing confidence intervals/regions for
stochastic approximation algorithms.

5 CONCLUDING REMARKS

In this paper, we have offered an approach to the construc-
tion of confidence regions for stochastic approximation algo-
rithms of Robbins-Monro type. A principal advantage of our

proposed methodology is the ease with which it can be im-
plemented from a practical standpoint. An additional feature
of our proposed method is that its requirement to simulate
multiple independent replications of the stochastic approxi-
mation procedure offers the simulationist an opportunity to

test the question of whether the stochastic approximation

Glynn

convergence to a local optimizer). We intend to pursue this
question at greater depth in future work.

In future work, we hope to study the following issues
concerning extensions of the methodology developed in this
paper as well as extensions of other methods for simulation
optimization:

1. Extend the theory and body of computational expe-
rience to the class of Kiefer-Wolfowitz algorithms;

2. Extend the theory and body of computational ex-
perience to the averaging algorithms proposed by
Polyak and Juditsky (1992), as well as Kushner
and Yin (1997);

3. Develop theory and algorithms to address the sit-
uation in which the gain constaatis chosen (in-
advertently) so small that the mati# + (1/2)1
has possible positive eigenvalues.
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