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ABSTRACT

In principle, known central limit theorems for stochastic
approximation schemes permit the simulationist to provid
confidence regions for both the optimum and optimizer of
stochastic optimization problem that is solved by means o
such algorithms. Unfortunately, the covariance structure o
the limiting normal distribution depends in a complex way
on the problem data. In particular, the covariance matri
depends not only on variance constants but also on ev
more statistically challenging parameters (e.g. the Hessi
of the objective function at the optimizer). In this paper, we
describe an approach to producing such confidence regio
that avoids the necessity of having to explicitly estimat
the covariance structure of the limiting normal distribution
This procedure offers an easy way for the simulationist t
provide confidence regions in the stochastic optimizatio
setting.

1 INTRODUCTION

Stochastic approximation algorithms are iterative procedur
that permit simulationists to numerically optimize complex
stochastic systems. This class of algorithms exhibits
convergence rate that is typically not faster than of orde
c−1/2, where c is the size of the computer time budget.
Given this relatively slow convergence rate (as compared
most non-random iterative procedures), it is desirable, fro
practical standpoint, to assess the accuracy of the compu
solution at the conclusion of the calculation. Given tha
stochastic approximation algorithms are driven by random
numbers, the most natural means of assessing error is vi
confidence interval (for use when the optimizing decisio
variable is scalar) or, more generally, via a confidenc
region (for use when the optimizing decision variable is
vector-valued).

This paper explores the construction of confidence re
gions for such iterative algorithms. We focus on Robbins
Monro procedures in this paper, although much of the theo
e
a
f
f

x
en
an

ns
e
.
o
n

es

a
r

to
m
ted
t

a a
n
e

-
-
ry

we present has analogs in the setting of Kiefer-Wolfowit
procedures. Section 2 describes a central limit theorem f
the Robbins-Monro algorithm. This central limit theorem
lies at the basis of the confidence region procedures we d
scribe. Specifically, Section 2 discusses a confidence reg
procedure that requires consistent estimation of a certa
covariance matrix, whereas Section 3 describes a more e
ily implemented “cancellation” procedure. In Section 4
we discuss some of our computational experience with th
procedure introduced in Section 3. Finally, Section 5 offer
some concluding remarks.

2 CENTRAL LIMIT THEOREM FOR
STOCHASTIC APPROXIMATIONS

We start by describing the problem setting precisely. Su
pose that our goal is to numerically maximize an objectiv
functionα(θ) over a continuous decision parameterθ ∈ <d .
If α(·) is smooth, it is well known that maximization requires
computing an appropriate rootθ∗ of the equation

∇α(θ∗) = 0 (1)

where∇α(θ) is the gradient ofα(·) at θ ∈ <d . (In this
paper, we take∇α(θ) to be a row vector.) If∇α(θ) can be
numerically evaluated, the rootθ∗ can often be efficiently
computed by (deterministic) gradient-based Newton-typ
algorithms (see, e.g., Luenberger 1984; Gill, et al. 1981

We focus on the case that∇α(·) must be computed by
Monte Carlo sampling. It is well known that simulation-
based algorithms enjoy a much broader range of applicabil
than do methods requiring numerical evaluation of close
form expressions for the expectations involved. Specificall
we assume existence of a family(Z(θ) : θ ∈ <d) of random
vectors that act as unbiased estimators of the gradie
namely

EZ(θ) = ∇α(θ). (2)
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(Note thatZ(θ) is also encoded as a row vector.) A numbe
of different procedures have been proposed in the literat
for obtaining such unbiased estimators of the gradient,
cluding likelihood ratio methods (Glynn 1986, Glynn 1990
infinitesimal perturbation analysis (Glasserman 1991), Co
ditional Monte Carlo (Fu and Hu 1997), and the “push-ou
approach (Rubinstein 1992).

For θ ∈ <d , let

F(dz; θ) = P(Z(θ) ∈ dz)

for z ∈ <d . Given the existence of unbiased estimators f
the gradient, we are naturally led to the consideration o
Robbins-Monro (R-M) algorithm for computingθ∗. Such
a R-M algorithm proceeds by first choosing an initial gue
θ0 for the maximizerθ∗, and subsequently iterates toθn+1
from θn via the recursion

θn+1 = θn + a

n+ 1
Zn+1(θn) (3)

for a > 0, where

P(Zn+1(θn) ∈ dz|θ0, Z1(θ0), · · · , Zn(θn−1)) = F(dz; θn)

for z ∈ <d . (Again, we choose to encode theθn’s as row
vectors.)

We are now ready to describe one of many know
central limit theorems (CLT’s) forθn; see p.147-150 of
Nevel’son and Has’minskii (1973) for a complete proo
For x ∈ <d (encoded as a row vector), let‖x‖ = √xxT be
its Euclidian norm.
Assumption A. The sequence(θn : n ≥ 0) satisfies the
following conditions:

i) ∇α(θ) = (θ − θ∗)H + o(‖θ − θ∗‖) asθ → θ∗;
ii) aH + 1

2I is symmetric and all its eigenvalues ar
negative;

iii) for all ε > 0, supε<‖θ−θ∗‖< 1
ε
∇α(θ)(θ−θ∗)T < 0;

iv) F(·; θ)⇒ F(·; θ∗) asθ → θ∗, where⇒ denotes
weak convergence;

v) there existsε0 > 0 such that(‖Z(θ)‖2 : ‖θ−θ∗‖ <
ε0) is a uniformly integrable family of random
variables;

vi) there existsk <∞ such thatE‖Z(θ)‖2 ≤ k(1+
‖θ‖2).

Recall that for a square matrixB,

exp(B) ≡
∞∑
n=0

Bn

n!

(which is guaranteed to always converge absolutely and
well-defined).
e
-

-
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Theorem 1. Suppose that(θn : n ≥ 0) satisfies (2), (3),
and assumptionA. Then,

n
1
2 (θn − θ∗)⇒ N(0, C)

asn→∞, whereN(0, C) is a multivariate normal random
vector with mean zero and covariance matrixC given by

C = a2
∫ ∞

0
exp((aH + 1

2
I )u)EZ(θ∗)T Z(θ∗)

· exp((aH + 1

2
I )u)du.

Before proceeding further, let us briefly discuss as
sumptionA. Whenα(·) is twice continuously differentiable
(as will typically be the case), i) is immediately satisfied at a
stationary pointθ∗ andH is just the Hessian ofα evaluated
at θ∗. At an isolated maximizerθ∗, H must be negative
definite and symmetric, so thataH + 1

2I will have negative
eigenvalues fora sufficiently large; ii) will then be satisfied
automatically. Condition iii) is a sufficient condition that
guarantees thatθ∗ is a global maximizer ofα(·). Condition
iv) is a mild continuity hypothesis on the distribution of
Z(θ), and condition v) is a technical integrability hypothesis
that is satisfied in great generality. Finally, condition vi) is
an assumption that controls the rate at which the varianc
of ‖Z(θ)‖ grows as‖θ‖ tends to infinity.

Theorem 1 asserts thatθn converges toθ∗ at raten− 1
2

in the number of iterationsn. Furthermore, the error ofθn
is approximately normally distributed whenn is large. The
latter observation suggests the possibility of constructing
confidence regions forθ∗ based on the above CLT.
Proposition 1. Suppose that(θn : n ≥ 0) satisfies the
conditions of Theorem 1 and thatEZ(θ∗)T Z(θ∗) is a non-
singular matrix. IfCn ⇒ C as n→∞, then

n(θn − θ∗)C−1
n (θn − θ∗)T ⇒ χ2

d

asn→∞, whereχ2
d is a chi-square random variable with

d degrees of freedom.
Proof We start by showing thatC is non-singular. The
matrix C can alternatively be represented as the matrix
solution to the equation

(aH + 1

2
I )C + C(aH + 1

2
I ) = EZ(θ∗)T Z(θ∗);

see p. 77-78 of Ljung, Pflug, and Walk (1992). Lyapunov’s
lemma (see p. 133 of Nevel’son and Has’minskii 1973)
establishes thatC is positive definite and therefore non-
singular. Since the matrix inverse functional is continuous
in a (matrix) neighborhood of a non-singular matrix, it
follows from the continuous mapping principle for weak
convergence thatC−1

n ⇒ C−1 asn→∞.
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To continue the argument, we write the quadratic form
n(θn − θ∗)C−1

n (θn − θ∗)T as follows:

n(θn − θ∗)C−1
n (θn − θ∗)T

= n(θn − θ∗)C−1(θn − θ∗)T (4)

+ n(θn − θ∗)(C−1
n − C−1)(θn − θ∗)T .

The continuous mapping principle implies that the firs
term on the right hand side of (4) converges weakly t
N(0, C)C−1N(0, C)T , which is easily seen to have aχ2

d

distribution. On the other hand,

‖n(θn − θ∗)(C−1
n − C−1)(θn − θ∗)T ‖
≤ ‖n 1

2 (θn − θ∗)‖2 · ‖C−1
n − C−1‖. (5)

The first factor on the right-hand side of (5) converge
weakly, by the continuous mapping principle to‖N(0, C)‖2,
whereas the second factor converges weakly to zero. Hen
the product converges weakly to zero, establishing th
the left-hand side of (4) does indeed converge weakly t
N(0, C)C−1N(0, C)T , as desired.2

Thus, ifCn is a consistent estimator forC, the region

{θ : n(θn − θ)C−1
n (θn − θ)T ≤ z}

is an approximate 100(1− δ)% confidence region forθ∗,
provided thatz is selected so thatP(χ2

d > z) = δ. The key
to constructing confidence regions forθ∗ is therefore the
consistent estimation ofC.

As is evident from the formula forC, even whenH
and EZ(θ∗)T Z(θ∗) are known, the numerically evalua-
tion of C is non-trivial. Of course, in practice, bothH
andEZ(θ∗)T Z(θ∗) are generally unknown and must them-
selves be estimated, substantially complicating the task.
the current setting,EZ(θ∗)T Z(θ∗) can be estimated in a
straightforward fashion. In particular, let

6n = 1

n

n∑
i=1

Zi(θi−1)
T Zi(θi−1). (6)

Proposition 2. Suppose thatsup{E‖Z(θ)‖4 : θ ∈ <d} <
∞. If, in addition, (θn : n ≥ 0) satisfies the conditions of
Theorem 1, then

6n→ EZ(θ∗)T Z(θ∗) a.s. asn→∞.

Proof. Let γ (θ) = EZ(θ)T Z(θ) and set Di =
Zi(θi−1)

T Zi(θi−1) − γ (θi−1). Because sup{E‖Z(θ)‖4 :
θ ∈ <d} <∞, it follows that (Di : i ≥ 1) is a sequence of
martingale differences (adapted toθ0, Z1(θ0), Z2(θ1), . . .)
for which sup{Var(Di) : i ≥ 1} < ∞. Consequently,
the martingale(

∑n
i=1Di/i : n ≥ 1) satisfies the condi-
e,
t

n

tions of the Martingale Convergence Theorem (see p. 468
of Billingsley 1995, or ch. 12 of Williams 1991), so
that there exists a finite-valued random variableM∞ such
that

∑n
i=1Di/i → M∞ a.s. asn → ∞. Kronecker’s

lemma (see p. 250 of Loeve 1977) then guarantees tha
n−1∑n

i=1Di/i → 0 a.s. asn→∞. But

6n = n−1
n∑
i=1

Di + n−1
n−1∑
i=0

γ (θi). (7)

ConditionsA iv) and v) ensure thatγ (θ) → γ (θ∗) as
θ → θ∗. In addition, it is known thatθn → θ∗ a.s. as
n→∞ under the conditions of Theorem 1; see p. 93 of
Nevel’son and Has’minskii (1973). Hence,

n−1
n−1∑
i=0

γ (θi)→ γ (θ∗) = EZ(θ∗)T Z(θ∗) a.s.

asn→∞. It follows from (7) that

6n→ EZ(θ∗)T Z(θ∗) a.s. asn→∞.

2

The estimator defined by (6) can be modified (and
possibly improved) by weighting more recent observations
more heavily, rather than weighting all observations equally.

In the setting of Theorem 1, the greater challenge in
constructing a consistent estimatorCn is the estimation of
the matrixH . The (i, j)’th entry of the matrixH is given
by

Hij = ∂2α(θ)

∂θi∂θj
|θ=θ∗ .

A number of the gradient estimation algorithms mentioned
earlier, while capable of producing unbiased estimates of firs
order partial derivatives, do not easily extend to construction
of unbiased estimators for second order partial derivatives
For example, infinitesimal perturbation analysis typically
estimates only first derivatives consistently. One notable
exception is the likelihood ratio method, for which second
derivative estimators are easily constructed.

In general, however, estimation of the second order
partial derivatives requires either a non-trivial extension of
the methods available for estimation of first order partial
derivatives, or use of finite difference estimators in which first
differences of first order derivative estimators are utilized. In
either case, the need to consistently estimate thed(d+1)/2
distinct elements ofH makes constructing a consistent
estimatorCn for C a highly non-trivial exercise.
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3 A GENERAL APPROACH TO CONSTRUCTION
OF CONFIDENCE REGIONS

Given the difficulties associated with consistent estimatio
of the covariance matrixC, we seek an alternative method.
To place our alternative methodology in its appropriat
context, we describe the idea in a more general setting.

Suppose that we wish to compute a parameterα ∈ <d
for which there exists an estimatorαn satisfying a CLT. In
particular, assume:
Assumption B. There exists a symmetric positive definite
matrix 0 such thatn1/2(αn − α)⇒ N(0, 0) asn→∞.

We wish to construct confidence regions forα without
requiring existence of a consistent estimator for0.

The idea is to computeα by simulatingm independent
replications of the estimatorαn (thereby consuming roughly
mn computer time units). Letα1n, α2n, . . . , αmn be the
resultingm copies of the random vectorαn. The natural
estimator forα is thenα(m, n) = 1

m

∑m
i=1 αin. The sample

covariance matrixV (m, n) is given by

V (m, n) = 1

m− 1

m∑
i=1

(αin − α(m, n))T (αin − α(m, n)).

Theorem 2. Under conditionB,

a)
√
mn(α(m, n)− α)⇒ N(0, 0) as n→∞;

b) if m ≥ d + 1, then

m(α(m, n)− α)T V (m, n)−1(α(m, n)− α)
⇒ d(m− 1)

m− d F(d,m−d)

as n → ∞, whereF(d,m−d) is an F distributed
random variable with(d,m−d)degrees of freedom.

Proof. Part a) of Theorem 2 is a simple consequence of th
continuous mapping principle. For part b) of Theorem 2
we note that ifN1(0, 0), . . . , Nm(0, 0) arem independent
and identically distributed random vectors with distribution
N(0, 0), then the random matrix

1

m− 1

m∑
i=1

Ni(0, 0)− 1

m

m∑
j=1

Nj(0, 0)

T

·
Ni(0, 0)− 1

m

m∑
j=1

Nj(0, 0)


is almost surely non-singular (sincem ≥ d + 1); see p.208
of Searle (1982).

Because the matrix inverse functional is continuous i
a neighborhood of any non-singular matrix, the following
function g : <mn → < is almost surely continuous in a
neighborhood of(N1(0, 0), . . . , Nm(0, 0)):

g(x1, . . . , xm) = 1

m

m∑
j=1

xj ·
 1

m− 1

m∑
l=1

(xl − 1

m

m∑
j=1

xj )
T (xl − 1

m

m∑
j=1

xj )

−1

· 1

m

m∑
j=1

xTj .

The continuous mapping principle then yields the secon
result. 2

Theorem 2 applies immediately to the construction o
confidence regions for stochastic approximations. Su
pose that we independently replicate the stochastic appro
imation m times, thereby yieldingm independent copies
θ1n, θ2n, . . . , θmn of the random vectorθn. Put

θ(m, n) = 1

m

m∑
i=1

θin,

Ṽ (m, n) = 1

m− 1

m∑
i=1

(θin − θ(m, n))T (θin − θ(m, n))

and set

3mn(z) =
{
θ : (θ(m, n)− θ)Ṽ (m, n)−1(θ(m, n)− θ)T

≤ zd(m− 1)

m− d
}
.

Proposition 3. Assume the conditions of Theorem 1, an
suppose thatEZ(θ∗)T Z(θ∗) is non-singular. Ifm ≥ d+1,
then

P(θ∗ ∈ 3mn(z))→ 1− δ
asn→∞, wherez is selected so thatP(F(d,m−d) ≤ z) =
1− δ.

The proof is an easy application of Theorem 2. Propo
sition 3 asserts that3mn(z) is (for largen) an approximate
100(1− δ)% confidence region forθ∗. In contrast to the
confidence region approach of Section 2 (in whichC was
consistently estimated), this procedure can be easily imp
mented. Note that the current procedure is essentially
“cancellation procedure”, in the terminology of Glynn and
Iglehart (1990).

One additional advantage of the current approach is th
it requires the simulationist to runm independent replications
of the stochastic approximation, providingm independent
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estimators of the maximizerθ∗. These multiple independent
re-starts of the stochastic approximation procedure perm
the simulationist to test the question of whether the da
collected is consistent withα(·) having a unique local maxi-
mizer. This question is of great importance from an applie
standpoint, since global maximization is typically the sim
ulationist’s objective. We shall pursue this important issu
in an expanded version of this paper.

4 COMPUTATIONAL RESULTS

In this section, we test the confidence region procedu
proposed in Section 3 on two different examples. The firs
involves a scalar decision parameter, whereas the seco
example concerns a two-dimensional vector of decisio
parameters.

4.1 Model 1

The first model is an M/M/1 queue with arrival rateλ = 1
and mean service time

θ ∈ 2 = [0.05,0.95].

Therefore, the service timeV has densityfθ (x) =
exp(−x/θ)/θ . The goal is to minimize

α(θ) = w(θ)+ 1

θ
, (8)

wherew(θ) is the mean steady-state sojourn time per cus
tomer in the system associated with parameterθ . It can
be shown thatw(θ) = θ/(1− θ). Thus the optimal value
θ∗ = 0.5. Figure 1 shows the shape ofα(θ) on the interval
[0.05,0.95]. This model appeared in L’Ecuyer, Giroux, and
Glynn (1994).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25
α(θ) = w(θ)+1/θ

θ

α(
θ)

Figure 1: Objective Function of Model 1
t

d

We implemented the Robbins-Monro algorithm using
likelihood ratio technique to estimate the derivative; see
L’Ecuyer and Glynn (1994) for detail on constructing the
likelihood ratio derivative estimator for this model. The
initial point θ0 is uniformly chosen from the interval. The
step parametera in (3) is set to 0.1, and the simulation
budget at iterationn is set to be proportional to

√
n (such

simulation time allocation has been shown to be empiricall
efficient in L’Ecuyer, Giroux, and Glynn (1994).)

Table 1 summarizes the numerical results of the sim
ulation runs. The confidence level is 95%, and the 95%
confidence interval for the coverage probability is estimate
from 100 replications. The coverage probabilities are rea
sonably close to the nominal level of 95%, and exhibit som
degree of convergence to their nominal level asn grows
larger. (See, in particular, the results reported form = 5.)
Althoughn seems not have significant affect on the coverag
accuracy, longn does narrow the confidence interval, i.e.,
the variation ofθi is smaller.

Table 1: Numerical Summary of Model 1. The Ideal
Coverage Probability Is 0.95

m = 3 m = 5
n CI for coverage prob. CI for coverage prob.
64 0.87± 0.066 0.54± 0.098
128 0.86± 0.068 0.66± 0.093
256 0.90± 0.059 0.82± 0.076
512 0.89± 0.062 0.74± 0.086
1024 0.86± 0.068 0.80± 0.079
2048 0.86± 0.068 0.87± 0.066

4.2 Model 2

The second model is an M/M/1 queue with arrival rate
λ ∈ [1,2.5] and service rateµ ∈ [3.5,6]. Thus, the service
time V has densityfµ(x) = µexp(−µx) and the inter-
arrival timeU has densityfλ(x) = λexp(−λx). The goal
is to minimize

α(λ, µ) = w(λ,µ)+ 1

λ
+ µ

4
, (9)

wherew(λ,µ) is the mean steady-state customer sojour
time for the system associated with arrival rateλ and and
service rateµ. Again, it can be shownw(λ,µ) = 1/(µ−λ),
so that the optimal value(λ∗, µ∗) = (2,4). The shape of
α(λ, µ) is displayed in Figure 2.

Again, we implement the Robbins-Monro algorithm
using the likelihood ratio gradient estimation algorithm.
The initial (λ0, µ0) is chosen uniformly from the rectangle
([1,2.5], [3.5,6]). The step parametera in (3) is set to
0.5, and the simulation budget at iterationn is set to be
proportional to

√
n.
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α(λ,µ)=w(λ,µ)+1/λ+µ/4
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Figure 2: Objective Function of Model 2

Table 2 summarizes the numerical results of the simula
tion runs. Again, the confidence level is 95%, and the 95%
confidence interval for coverage probability is estimate
from 100 replications. Again, the empirical evidence is in
reasonably close agreement with the theory developed
Section 3.

Table 2: Numerical Summary of Model 2. The Ideal
Coverage Probability is 0.95

m = 3 m = 5
n CI for coverage prob. CI for coverage prob.
64 0.97± 0.034 0.89± 0.062
128 0.93± 0.050 0.89± 0.062
256 0.95± 0.043 0.88± 0.064
512 0.91± 0.056 0.93± 0.050
1024 0.96± 0.039 0.90± 0.059
2048 0.96± 0.039 0.91± 0.056

The simulation results from these two models sugge
that the procedure described in Section 3 is a pragma
approach for constructing confidence intervals/regions fo
stochastic approximation algorithms.

5 CONCLUDING REMARKS

In this paper, we have offered an approach to the constru
tion of confidence regions for stochastic approximation algo
rithms of Robbins-Monro type. A principal advantage of ou
proposed methodology is the ease with which it can be im
plemented from a practical standpoint. An additional featur
of our proposed method is that its requirement to simula
multiple independent replications of the stochastic approx
mation procedure offers the simulationist an opportunity t
test the question of whether the stochastic approximatio
has indeed converged to a global optimizer (as opposed
-
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convergence to a local optimizer). We intend to pursue th
question at greater depth in future work.

In future work, we hope to study the following issues
concerning extensions of the methodology developed in th
paper as well as extensions of other methods for simulati
optimization:

1. Extend the theory and body of computational expe
rience to the class of Kiefer-Wolfowitz algorithms;

2. Extend the theory and body of computational ex
perience to the averaging algorithms proposed b
Polyak and Juditsky (1992), as well as Kushne
and Yin (1997);

3. Develop theory and algorithms to address the si
uation in which the gain constanta is chosen (in-
advertently) so small that the matrixaH + (1/2)I
has possible positive eigenvalues.
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