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ABSTRACT

We present a new stochastic method for finding the opt
mal alignment of DNA sequences. The method works b
generating random paths through a graph (the edit grap
according to a Markov chain. Each path is assigned a sco
and these scores are used to modify the transition prob
bilities of the Markov chain. This procedure converges t
a fixed path through the graph, corresponding to the op
mal (or near-optimal) sequence alignment. The rules wit
which to update the transition probabilities are based o
Rubinstein’sCross-Entropy Method, a new technique for
stochastic optimization. This leads to very simple and na
ural updating formulas. Due to its versatility, mathematica
tractability and simplicity, the method has great potentia
for a large class of combinatorial optimization problems, in
particular in biological sciences.

1 INTRODUCTION

Sequence alignment is a frequently encountered them
in computational biology. Many biologically important
molecules are linear arrangements of subunits and can the
fore be characterised as sequences. For example, a pro
consists of amino acid residues linked by peptide bonds
a specific order known as itsprimary structure. A protein
can alternatively be characterised as a sequence of larg
subunits calledsecondary structures. Yet another character-
isation of a protein is itstertiary structure: the sequence of
spatial positions and orientations taken by each of its amin
acid residues. In order to study the structural, functiona
and evolutionary relationships amongst biologically simila
molecules, it is often useful to first align the correspondin
sequences. Sequence alignment is also an aspect of sea
ing biological databases to detect homologies and is a k
step in shotgun sequence assembly.

There are various forms of sequence alignment. Align
ments can be made between sequences of the same t
(for example, between the primary structures of proteins) o
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between sequences of different type (for example, alignm
of a DNA sequence to a protein sequence, or of a prot
to a three-dimensional structure).Pairwise alignmentin-
volves only two sequences, whereasmultiple sequence align-
mentinvolves more than two sequences (although the te
sometimes encompasses pairwise alignment also).Global
alignment aligns whole sequences, whereaslocal alignment
aligns only parts of sequences.

Algorithms for sequence alignment have been exte
sively studied. The inaugural paper on the subject is th
of Needleman and Wunsch (1970) and a useful referenc
Gusfield (1997). The many algorithms used for sequen
alignment are here classified asdeterministic, stochastic
or heuristic. Deterministicalgorithms formulate sequence
alignment as an optimisation problem and search determ
istically for a globally optimal alignment. Two examples ar
the dynamic programming approach initiated by Needlem
and Wunsch (1970), and the polyhedral approach initiated
Kececioglu, Lenhof, Mehlhorn, Mutzel, Reinert, and Vin
gron (2000).Stochasticalgorithms also formulate sequenc
alignment as an optimisation problem, but use stochas
optimisation techniques to search for a global optimum
Stochastic algorithms are often faster than determinis
ones, but have the disadvantage that they may return a s
optimal alignment. Two examples are the HMM approac
(Krogh, Brown, Mian, Sjolander, and Haussler 1994) and t
Gibbs sampler approach (Lawrence, Altschul, Boguski, L
Neuwald, and Wootton 1993).Heuristic algorithms differ
from stochastic algorithms in that they use a problem-spec
search method, rather than standard stochastic optimisa
techniques. Heuristic algorithms also may return a su
optimal alignment. A list of examples is given by Pevzne
(1992) (this paper also mentions several key referen
on the dynamic programming approach). The distinctio
between stochastic and heuristic algorithms is admitte
somewhat arbitrary.

The method presented here is a stochastic algorit
for pairwise global alignment. It uses an exciting new tec
nique for stochastic optimisation known as the cross-entro
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method (Rubinstein 1999). This is the first application o
the cross-entropy method to a problem in computation
biology, but we anticipate that this versatile technique wil
find many other uses in this field.

The paper is structured as follows. The remainder o
this introduction provides definitions of some key terms an
notation. Section 2 describes global pairwise alignment
more detail, and in particular describes how alignments ma
be characterised as paths in a graph. Section 3 discus
cross-entropy and combinatorial optimisation via rare even
simulation. Section 4 describes our main algorithm fo
sequence alignment by rare event simulation. In Section
we present some examples and in Section 6 we discuss
merits of the approach and potential directions for furthe
research.

1.1 Definitions and Notation

The definitions and notation introduced here closely follow
Gusfield (1997).

A characteris an element of a set6 called thealphabet.
A tokenis a character or a space. The set of tokens is denot
by 6′. A string S is an ordered list of characters written
contiguously from left to right. (We use the termsstring
andsequenceinterchangeably.) For any stringS, S[i..j ] is
the (contiguous)substringof S that starts at positioni and
ends at positionj of S. In particular,S[1..j ] is theprefix
of S that ends at positioni. For any stringS, S(i) denotes
the ith character ofS.

A (global)alignmentof two stringsS1 andS2 is obtained
by first inserting spaces, either into or at the ends ofS1 and
S2, and then placing the two resulting strings one abov
the other so that every character or space in either string
opposite a unique character or a unique space in the oth
string.

When comparing two characters, we say that the cha
actersmatch if they are identical; otherwise we say they
mismatch. An edit operationon a strings is one of three
operations: asubstitutionof one character for another, an
insertionof a character into or at the end of the string, o
a deletionof a character. Theedit distancebetween two
stringsS1 andS2 is the minimum number of edit operations
needed to transform the first string into the second.

2 SEQUENCE ALIGNMENT

To be useful in applications, an alignment of two sequence
should reflect in some way the commonalities of the se
quences. Some alignments are therefore better than othe
This concept is formalised using ascoring functionto assign
a value to an alignment. LetS1 andS2 be two sequences
of length n1 and n2, respectively, and letT1 and T2 be
sequences of tokens obtained by inserting spaces into
at the ends ofS1 andS2 such thatT1 andT2 are of equal
l
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length l. Let x = (T1, T2) represent an alignment ofS1
andS2. Conceptionally we can view(T1, T2) as a matrix
with 2 rows andl columns where the first row contains
the tokens ofT1 in order and the second row contains the
tokens ofT2 in order. LetV (x) be a scoring function on
the space of all possible alignments. An optimal globa
sequence alignment is then an alignmentx which solves

min
x
V (x) (1)

(or maxx V (x), depending on the nature of the scoring
function.)

Many of the scoring functions encountered in practic
are of the following form. Each columni of the alignment
is assigned a scorev(T1(i), T2(i)), whereT1(i) andT2(i)

are theith tokens ofT1 andT2 respectively andv is the so-
calledscoring matrixdefined over pairs of tokens (elements
of 6′). The score of the alignment is the sum of the colum
scores:

V (x) =
∑
i

v(T1(i), T2(i)) . (2)

An example of a scoring matrix isv(x, y) = 0 if x = y,
otherwisev(x, y) = 1, wherex, y ∈ 6′. In this case, the
minimum score is equal to the edit distance betweenS1 and
S2.

The classic approach to computing optimal alignmen
is via dynamic programming (Needleman and Wunsch 197
Smith and Waterman 1981). Using this approach, the ed
distance can be computed inO(n1n2) time (Gusfield 1997).
The algorithm is outlined below.

Let D(i, j) be the edit distance between the prefixe
S1[1..i] andS2[1..j ]. Note that we allow null prefixes, in
which case eitheri or j is zero (or both). The edit distance
betweenS1 andS2 can then be calculated recursively using
the following relation:

D(i, j) = min[D(i − 1, j)+ 1, D(i, j − 1)+ 1,

D(i − 1, j − 1)+ t (i, j)],

wheret (i, j) is defined to have value 1 ifS1(i) 6= S2(j), and
t (i, j) has value 0 ifS1(i) = S2(j). The initial conditions
on the recurrence are

D(i,0) = i and D(0, j) = j .

The set of alignments realising the minimum score ca
be obtained at the same time by recursively computing th
set of optimal alignments for each pair of prefixes. With
some modifications, the algorithm can be implemented
O(n1n2) complexity (time) andO(n1) space, wheren1 ≤ n2
(Hirschberg 1977).
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Figure 1: Each Alignment Corresponds to a Path
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An alignment can alternatively be characterised as
path through a graph. Given two stringsS1 and S2 of
lengthn1 andn2 respectively, theedit graphfor the strings
is the array of(n1 + 1)(n2 + 1) nodes, each labelled with
a distinct pair(i, j), 0 6 i 6 n1,0 6 j 6 n2 and a set
of horizontal, vertical anddiagonaldirected edges joining
node pairs of the form((i, j), (i, j +1)), ((i, j), (i+1, j))
and ((i, j), (i + 1, j + 1)) respectively. An edit graph is
illustrated in Figure 1. Define analignment paththrough
the edit graph to be a path from node(0,0) to node(n1, n2),
that is, a sequence of edge-joined nodes(0,0), . . . , (n1, n2).
LetX be the space of all alignment paths. There is a one-
one correspondence between alignments ofS1 andS2 and
alignment paths through the edit graph. This correspo
dence may be seen by defining the following isomorphis
mapping an alignment path to an alignment. First numb
the edges of the alignment path in orderk = 1, . . . , l. Then
the kth column of the alignment is determined from th
kth edge of the alignment path in the following manne
for a horizontal edge((i, j), (i, j + 1)), let the column be
(−, S(j+1))′ (“−” means space and “′” indicates transposi-
tion); for a vertical edge((i, j), (i+1, j)) let the column be
(S(i+1), −)′; and for a diagonal edge((i, j), (i+1, j+1))
let the column be(S(i + 1), S(j + 1))′.

Since there is a one to one correspondence betw
alignments and alignment paths it should not cause confus
if the same symbolx is used to represent both objects, an
the same symbolX is used to represent the correspondin
spaces. Moreover, any scoring function for alignments m
be regarded as a scoring function for alignment paths, th
conferring alength to each path. The optimal alignmen
therefore corresponds to the shortest (or longest) alignm
path. For scoring functions of the form (2) one can associa
weights to each edge in the edit graph: for a horizontal ed
((i, j), (i, j+1)) the corresponding weight isv(−, s(j+1));
for a vertical edge((i, j), (i + 1, j)) the weight isv(S(i +
1), −); and for a diagonal edge((i, j), (i + 1, j + 1)) the
a
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weight isv(S(i + 1), S(j + 1)). The score of a given path
is then the sum of the weights on its edges.

3 COMBINATORIAL OPTIMISATION VIA RARE
EVENT SIMULATION

Consider the following minimisation problem. LetX be a
finite set ofstates, and letV be a real function onX . We
wish to find a statex∗ ∈ argminxV (x). In other words, we
wish to findx∗ such that

V (x∗) ≤ V (x), for all x ∈ X . (3)

When the number of states inX is large, simulation be-
comes a viable approach to the above optimisation problem
A possible simulation procedure is described next.

Let f be some probability mass function (pmf) onX
such thatf (x) > 0 for all x. For eachx ∈ X andthreshold
γ ∈ R define

H(x; γ ) =
{

1 if V (x) ≤ γ,
0 if V (x) > γ .

Suppose we wish to estimate

`f (γ ) :=
∑
x

H(x; γ )f (x) = Ef H(X; γ ), (4)

whereX is a random vector andEf denotes the expectation
operator under pmff . Equation (4) indicates how we may
estimatè f (γ ) by simulation: IfX(1), . . . ,X(N) is a random
sample from the pmff then

1

N

N∑
k=1

H(X(k); γ ) (5)
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is an unbiased estimator of`f (γ ).
Now let g be another pmf onX . Observe that

`f (γ ) =
∑
x

H(x; γ ) f (x)
g(x)

g(x) = EgH(X; γ ) f (X)
g(X)

.

(6)
Hence, an alternative way to estimate`f (γ ) is by taking a
random sampleX(1), . . . ,X(N) from g and evaluating the
(unbiased) estimator

1

N

N∑
k=1

H(X(k))
f (X(k))

g(X(k))
. (7)

In simulation jargon, we have usedImportance Sampling
with achange of measureg. The optimal choice forg is de-
termined by the variance of the random variableH(X) f (X)

g(X)
under pmfg. The smaller the variance, the more accurat
our estimate will be. It is not difficult to see that the chang
of measureg̃ that yields the smallest variance is given by

g̃(x) := H(x; γ )f (x)
`f (γ )

. (8)

Under this change of measure the random variab
H(X)

f (X)
g(X)

is constant and equal tòf (γ ).
We can now see the connection with our optimisatio

problem (3). Namely, if we chooseγ = γ ∗, whereγ ∗ is
the minimum ofV , then the best way to simulatèf (γ ∗)
is to generate a random sample from pmfg̃, which in this
case has only positive mass on argminxV (x). Hence, if we
know g̃ then we can solve (3). Moreover, ifγ is close to
γ ∗ then generating samples from the correspondingg̃ will
yield vectorsX for which V (X) is close to the optimal
value (namelyV (X) ≤ γ )).

The obvious problem with (8) is, of course, that we
do not know`f (γ ). We will shortly discuss a way around
this problem.

3.1 Parametric Families

The pmfs discussed above often belong to the same fam
of distributions, e.g.,{f (·;p)} where the parameter vector
p takes values in some subset ofRk, for some fixedk. For
such pmfs let us rewrite (4) as

`p(γ ) =
∑
x

H(x; γ )f (x;p) = EpH(X; γ ), (9)

where we have used a simplified notation in which th
subscriptp replacesf (·;p). Henceforth we will use this
simplified notation when convenient, without further dis-
cussion.
ly

The best way to estimatèp(γ ) via (7) is to use the
change of measurẽg defined as in (8). However, this pmf
may not lie in the parametric familyf (·,p). But we can
still try to choose an “optimal” pmff (·, p̃) in the sense
that thedistancebetween this pmf and̃g is minimal.

3.2 Cross Entropy

There are several ways to measure the distance between
distributions (or pmfs). A particular convenient “distance”
is theCross Entropyor theKullback-Leibler distance. If u
andv are two pmfs, the Cross Entropy is defined as

C(u, v) = Eu log
u(X)

v(X)
.

For estimating (9) we choose the optimal parameterp̃ such
that the Cross Entropy betweenH(·; γ )f (·;p)/`p(γ ) and
f (·; p̃) is minimal. Writing out this cross entropy, it is easy
to see that̃p should be such that

φ(p̃; p, γ ) := Ep H(X; γ ) logf (X; p̃) (10)

is maximal. The power of the Cross Entropy approach
is that the optimal parameter̃p can often be calculated
analytically. We will see an example of this in the next
section, where each component ofp̃ is found to be of the
form

Ep H(X; γ )I{X∈A}
Ep H(X; γ )I{X∈B} ,

whereI{X∈A} andI{X∈B} respectively denote the indicators
of the events{X ∈ A} and{X ∈ B} for someA ⊂ B ⊂ X .
This number typically needs to be estimated. For this w
can use the estimator∑N

k=1H(X
(k)) I{X(k)∈A}∑N

k=1H(X
(k)) I{X(k)∈B}

, (11)

whereX(1), . . . ,X(N) is a random sample from the pmf
f (·;p).

It is important to note that the estimator above is onl
of practical use whenN , p and γ are such that the total
number of samples for which the score is less than or equ
to γ is not too small. For example whenγ is close to
γ ∗ andp assigns almost no probability mass to vectorsx

for which V (x) ≤ γ , most random samples would provide
an estimator 0/0, unlessN is exceedingly large. This
poses a problem to the proposed minimisation procedu
On the one hand we would like to chooseγ as close as
possible toγ ∗, and find (an estimate) of̃p via the procedure
above, which assigns almost all mass to vectors close
the optimal vector(s). On the other hand, we would like t
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keepγ relative large in order to obtain a viable estimato
for p̃.

3.3 Adaptive Estimation

To overcome this problem, one may consider asequenceof
thresholdsγ0, γ1, . . . and a sequence of parameter vector
p0,p1, . . ., such that{γn} converges to a value close to the
optimal γ ∗ and {pn} converges to a pmf that assigns high
probability mass to vectors that give a small score. Thi
strategy is embodied in the following procedure, see e.g
Rubinstein (1999):

Start with somep0. Let n = 0.
Repeat the following until convergence is reached:

• Draw a random samplex(1), . . . , x(N) from
f (·,pn), whereN is some fixed number.

• Calculate the scores for each of these vectors, an
order them from smallest to biggest,s1 ≤ . . . ≤ sN .
Let ξ be the integer part ofρN . Defineγn = sξ .

• Definepn+1 as the estimate of the optimalp̃ in
(10) withp = pn. Thus, the components ofpn+1
are found from (11). Increasen by 1.

In each iteration, the new threshold value is selecte
to be greater than or equal to a proportionρ of the current
sample scores, thus ensuring (11) is a viable estimator f
p̃. Note that the stopping criterion, the initial vectorp0,
the sample sizeN and the numberρ have to be specified in
advance, but that for the rest the algorithm is “self-tuning”

4 RARE EVENT SIMULATION IN SEQUENCE
ALIGNMENT

In this section we derive our main algorithm by combining
the main ideas of Sections 2 and 3.

In Section 2 the optimal sequence alignment problem
was formulated in terms of a shortest path problem throug
a graph. Specifically, in that context, we need to find a
alignment pathx through the edit graph for which the
alignment scoreV (x) is minimal. It is clear that this
problem fits the combinatorial optimisation formulation of
Section 3. In particular, the state spaceX is given by the
collection of all possible alignment paths.

On this space we define a class of probability mas
functions {f (·,p)} in the following way: Let M =
{M0,M1, . . . , } be a Markov chain on the edit graph, starting
at the top left-hand corner(0,0) with the one-step transition
probabilities shown in Table 1 (for all 0≤ i ≤ n1− 1 and
0 ≤ j ≤ n2− 1).

Note that here r stands forright and d for down.
Moreover, forj = 0, . . . , n2 − 1 the transition probability
from(n1, j) to(n1, j+1) is 1. Similarly, fori = 0, . . . , n1−
Table 1: The Transition Probabilities

from to with prob.
(i, j) (i + 1, j) r(i, j)

(i, j) (i, j + 1) d(i, j)

(i, j) (i + 1, j + 1) 1− r(i, j)− d(i, j)

1 the transition probability from(i, n2) to (i + 1, n2) is
1. Finally, (n1, n2) is an absorbing state. Letτ be the
time by whichM has reached the absorbing state (not
that τ ≤ n1 + n2), and letMτ denote the path taken
by M through the edit graph. We gather all parameter
{r(i, j), d(i, j),0 ≤ i ≤ n1 − 1,0 ≤ j ≤ n2 − 1} into a
single parameter vectorp. For each suchp let

f (x;p) = Pp(Mτ = x), for all x ∈ X .

This defines a proper probability distribution onX with
pmf f (·;p). Denote byX (i, j) the collection of all paths
going through node(i, j), and byX̄ (i, j) the collection of
all pathsnot going through node(i, j).

Now, consider the estimation of (9) via Importance
Sampling. The optimal change of measure within the sam
parametric family is given byf (·, p̃), where p̃ is such
that (10) is maximal. To maximise (10) let us first look a
f (x;p) for some fixedx andp. Let Xr (i, j) be the set of
all pathsx making the transition from(i, j) to (i + 1, j).
Similarly defineXd(i, j) as the set of all pathsx making
the transition from(i, j) to (i, j + 1). Defining 1A as the
indicator function of a setA, we can write

f (x;p) =
n1−1∏
i=0

n2−1∏
j=0

(
r(i, j)1Xr (i,j)(x)

+ d(i, j)1Xd (i,j)(x) (12)

+ (1− r(i, j)− d(i, j))1X ′(i,j)(x)

+ 1X̄ (i,j)(x)
)
,

where we have abbreviated the setX (i, j) − Xr (i, j) −
Xd(i, j) to X ′(i, j). It follows that

φ(p̃;p, γ ) =
n1−1∑
i=0

n2−1∑
j=0

EpH(X; γ )
(

log(r̃(i, j))1Xr (i,j)(X)

+ log(d̃(i, j))1Xd (i,j)(X)

+ log(1− r̃(i, j)− d̃(i, j))1X ′(i,j)(X)
)
.
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Hence, maximising (10) with respectr̃(i, j) andd̃(i, j) for
all i andj amounts to differentiating the expression abov
with respect tor̃(i, j) and d̃(i, j) and equating it to zero.
This gives the set of equations

1

r̃(i, j)
EpH(X; γ ) I{X∈Xr (i,j)}

− 1

1− r̃(i, j)− d̃(i, j) EpH(X; γ ) I{X∈X ′(i,j)} = 0,

and

1

d̃(i, j)
EpH(X; γ )I{X∈Xd (i,j)}

− 1

1− r̃(i, j)− d̃(i, j) EpH(X; γ ) I{X∈X ′(i,j)} = 0 ,

from which it follows that

r̃(i, j) = Ep H(X; γ ) I{X∈Xr (i,j)}
Ep H(X; γ ) I{X∈X (i,j)}

and

d̃(i, j) = Ep H(X; γ ) I{X∈Xd (i,j)}
Ep H(X; γ ) I{X∈X (i,j)} .

As in (11), we can estimatẽr(i, j)andd̃(i, j) in the following
way. We runN independent copies of the Markov proces
M using the one-step transition probabilities inp. This
leads to the random sample of pathsX(1), . . . ,X(N) from
the pmff (·;p). The estimators of̃r(i, j) and d̃(i, j) are
respectively given by∑N

k=1H(X
(k); γ ) I{X(k)∈Xr (i,j)}∑N

k=1H(X
(k); γ ) I{X(k)∈X (i,j)}

, (13)

and ∑N
k=1H(X

(k); γ ) I{X(k)∈Xd (i,j)}∑N
k=1H(X

(k); γ ) I{X(k)∈X (i,j)}
. (14)

These estimators have an easy interpretation. For exam
to obtain r̃(i, j) we count the number of paths (out ofN )
going from(i, j) to (i, j +1) that have a score less than o
equal toγ , and divide this number by the total number o
paths passing through(i, j) that have a score less than o
equal toγ . The estimator ford̃(i, j) has a similar natural
interpretation.

Using the algorithm outlined in Section 3 we now con
struct a sequenceγ0, γ1, . . . decreasing toγ and a sequence
p0,p1, . . . tending to some vector̄p such thatγ is close
to γ ∗ and such thatf (·; p̄) assigns positive mass only to
alignment pathsx for which V (x) ≤ γ .
le,

4.1 Main Algorithm

1. Initialize as follows: j := 0 (iteration counter);
Choose an initial vector of transition probabilities
p0, for example withr(i, j) = d(i, j) = 1/3.

2. GenerateN paths of the Markov processM, using
the transition probabilities specified inpj .

3. Calculate the scores for each of these paths, an
order them from smallest to biggest,s1 ≤ . . . ≤ sN .
Let ξ be the integer part ofρN . Defineγj = sξ .

4. Find the next parameter vectorpj+1 from (13) and
(14), for each(i, j).

5. Incrementj and repeat steps 2–5, until convergence
has been reached.

Note that the stopping criterion, the initial vectorp0,
the sample sizeN and the numberρ have to be specified
in advance.

4.2 A Modified Algorithm

Paths generated by the Markov process described above
centred around the path consisting of diagonal edges leadi
down and to the right from(0,0). Paths that deviate far from
this centre path are rare, and consequently some parts of t
edit graph are unlikely to be explored. This poses a problem
when the optimal path deviates substantially from the centr
path. For example, to optimally alignAAAAABBBBBwith
BBBBB, we must prefix the second string with 5 spaces. Thi
means that the corresponding path through the edit grap
(0,0), . . . , (5,0), (6,1), . . . , (10,5), initially travels along
the upper border. The algorithm does not converge proper
in this case because it is most unlikely that the Markov chai
M will follow such a path along the border unlessp is such
that r(0,0), . . . , r(4,0) are very close to 1.

To remedy this problem, we allowM to start at any posi-
tion along theupper borderBu := {(0, j), j = 0,1, . . . , n2}
or the left borderBl := {(i,0), i = 0,1, . . . , n1}. Denote
the probability thatM starts at(i, j) by α(i, j). The theory
above can be carried through with only slight modifications
For example,X is now the set of paths through the edit
graph, starting on the upper or left boundary; and the param
eter vectorp now includes the initial probabilitiesα(i, j).
Moreover, lettingY(i, j) be the set of paths that start at
(i, j), the right-hand side of (12) should be multiplied by∑

(i,j)∈B
α(i, j)1Y(i,j)(x) ,

whereB = Bl ∪Bu is the set of possible starting states. In
addition to updating ther(i, j) and d(i, j), we now also
have to update theα(i, j). This leads in addition to (13)
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and (14) to the following updating formula forα(i, j):∑N
k=1H(X

(k); γ ) I{X(k)∈Y(i,j)}∑N
k=1H(X

(k); γ ) , (15)

whereX(1), . . . ,X(N) is a random sample of alignmen
paths from the pmff (·;p).

5 SOME EXAMPLES

In this section we give the results of a number of tests
which the algorithm has been subjected. In each case
search for an optimal alignment of two sequencesS1 of length
n1 andS2 of lengthn2, with respect to the scoring matrix
v(x, y) = 0 if x = y, otherwisev(x, y) = 1. For all cases
we chose the parametersρ = 0.1 andN = 100(n1 + n2).
Moreover, the initial transition probabilities for the Markov
chainM were 1/3 for each of the three directions, and th
starting state ofM was chosen uniformly on the union of
the upper border and the left border.

The first test was to see if the algorithm could co
rectly find alignments of the strings of the formS1 = S2 =
AAAAAAAAAAA, for various lengthsn1(= n2). The algo-
rithm was found to converge to correct “self-alignment” fo
n1 = 10, 100 and 1000. The number of iterations require
seem to vary as

√
n1, see the table below.

Table 2: The Number of Iterations Required for the Sel
Alignment Test, for Various String Lengths

n1 10 100 1000
iterations 6 15 41

The second series of tests involvedright-shifts
of the form S1 = AAAAAAAAAA and S2 =
BBBBBBBBBBAAAAAAAAAA. In other words,S2 is ob-
tained from S1 by prependingn1 B’s. Note that the
size of S2 is 2n1. The test was performed for dif-
ferent values ofn1 (10, 100 and 1000), and the algo
rithm was found to converge to the optimal alignmen
Similar results were found for a third series of test
this time involving left-shifts: S1 = AAAAAAAAAAand
S2 = AAAAAAAAAABBBBBBBBBB.

Finally, we applied the algorithm to two protein se
quences from Escherichia coli:Nitrogen Regulatory Pro-
tein P-II 1 (database: gi121386) andNitrogen Regu-
latory Protein P-II 2 (database: gi1707971), cf. Carr
Cheah, Suffolk, Vasudevan, Dixon, and Ollis (1996) an
Xu, Cheah, Carr, van Heeswijk, Westerhoff, Vasudevan, a
Ollis (1998).

The two protein sequences are shown below:

MKKIDAIIKPFKLDDVREALAEVGITGMTVTEVKGFGRQ
KGHTELYRGAEYMVDFLPKVKIERTAQTGKIGDGKIFVF
e

d

DVARVIRIRTGEEDDAAI

MKLVTVIIKPFKLEDVREALSSIGIQGLTVTEVKGFGRQ
KGHAELYRGAEYSVNFLPKVKIDVAIADDQLDEVIDIVS
KAAYTGKIGDGKIFVAELQRVIRIRTGEADEAAL

The algorithm found the following alignment:

MKKIDAIIKPFKLDDVREALAEVGITGMTVTEVKGFGRQ
MKLVTVIIKPFKLEDVREALSSIGIQGLTVTEVKGFGRQ

KGHTELYRGAEYMVDFLPKVKI__________E___R__
KGHAELYRGAEYSVNFLPKVKIDVAIADDQLDEVIDIVS

TAQ_TGKIGDGKIFVFDVARVIRIRTGEEDDAAI
KAAYTGKIGDGKIFVAELQRVIRIRTGEADEAAL

which gives an optimal edit score of 39. The algorithm took
a few seconds to execute. Note that the edit distance doe
not impose gap penalties. A more sophisticated scoring
function would favour a single big gap to multiple small
gaps.

6 CONCLUSIONS

In this paper we have described a new randomized algorithm
for sequence alignment. The algorithm generates random
alignments via a random walk. The transition probabili-
ties of the random walk are altered/updated dynamically
by minimizing the Cross-Entropy distance between two
distributions. This leads to simple and effective updating
rules.

In the examples given, the new algorithm does not
outperform the standard dynamic programming approach
The examples are trivial, and merely demonstrate that the
algorithm behaves sensibly. The significance of the new
algorithm is that it may be possible to use it in conjunction
with scoring functions that are not easily handled via existing
approaches.

The cross entropy method has recently proved to be use
ful for solving difficult combinatorial problems in telecom-
munications and management science, see for examp
de Boer (2000), Lieber, Rubinstein, and Elmakis (1997),
and Rubinstein (2000). In this paper, it is applied to a
problem in computational biology for the first time. One
of the merits of the Cross-Entropy (CE) approach is that it
opens up a whole range of possible applications in compu
tational biology. For example, it could be of help in solving
multiple DNA sequence alignment and protein sequence
alignment that involve complicated scoring functions for
which no polynomial time algorithms exist. From a mathe-
matical point of view the CE method is attractive because,
unlike many other randomized algorithms, it can be sub-
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jected to a rigorous analysis. This is important for an
further developments and improvements of the algorithm

An obvious direction for future research is to investigate
which problems in computational biology could benefit from
the CE approach. Work is underway to apply the CE metho
to protein folding, in which (due to the three dimensiona
structure of a protein) the score is a complicated functio
of the positions of the amino acids.

Another direction for research is to study in more deta
how the algorithm could be modified and how this would
affect its efficiency. For example, there are many ways t
randomly generate the alignments. In the current algorith
the alignments are generated through a Markov process, b
this is not essential for the CE approach. Other modification
could include “Ant Colony” heuristics, see for example
Dorigo and Gambardella (1997) and Gutjahr (2000).

Finally, in this introductory paper we have made no
attempt to compare the algorithm with other (randomized
algorithms for sequence alignment. It would be interestin
to carry out such investigations in the future.
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