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ABSTRACT

In this paper we propose a fast adaptive Importance Sa
pling method for the efficient simulation of buffer overflow
probabilities in queueing networks. The method compris
three stages. First we estimate the minimum Cross-Entro
tilting parameter for a small buffer level; next, we use th
as a starting value for the estimation of the optimal tiltin
parameter for the actual (large) buffer level; finally, th
tilting parameter just found is used to estimate the overflo
probability of interest. We recognize three distinct prope
ties of the method which together explain why the metho
works well; we conjecture that they hold for quite gener
queueing networks. Numerical results support this conje
ture and demonstrate the high efficiency of the propos
algorithm.

1 INTRODUCTION

The performance of computer and communications sy
tems is often characterized by the probability of certa
rare events. For example, the cell loss probability in
asynchronous transfer mode (ATM) switches should typ
cally be less than 10−9, see e.g., L’Ecuyer and Champoux
(2001). The performance of such systems is frequently stu
ied through simulation. However, estimation of rare eve
probabilities with naive Monte Carlo techniques requires
prohibitively large number of trials in most interesting case
One way to deal with this problem is to useImportance
Sampling(IS). The main idea of IS, when applied to rar
events, is to make their occurrence more frequent, or
-

y

-

other words, to “speed up” the simulation. Technically,
aims to select a probability distribution (change of measu
that minimizes thevarianceof the IS estimator. Finding
the right change of measure is often described by a la
deviation result. This type of analysis is feasible only f
relatively simple models, see also Asmussen and Rubins
(1995) and Heidelberger (1995) for surveys.

In Lieber, Rubinstein, and Elmakis (1997) and R
binstein (1997) anadaptive IS algorithm for rare events
simulation was proposed in which the change of measur
estimatedby minimizing the sample variance of the IS es
mator. In de Boer (2000) and Lieber and Rubinstein (19
this IS algorithm was further modified to minimize th
Kullback-Leibler distance, or Cross-Entropy, with respe
to the tilted parameter, instead of minimizing the varian
In de Boer (2000), several efficient heuristics based on st
dependent exponential changes of measure are present
overcome the difficulties when the state-independent
method fails. An attractive feature of the CE method is th
it can be readily modified for solving NP-hard combinat
rial optimization problems (see Alon, Raviv, and Rubinste
(2001), Rubinstein (1999), Rubinstein (2001b), Rubinst
(2002), Rubinstein (2001a)).

In this paper we investigate an adaptive IS algorithm
the efficient simulation of buffer overflow probabilities i
queueing systems. The difference between this algori
and existing adaptive algorithms (de Boer, Nicola, a
Rubinstein 2000, Lieber, Rubinstein, and Elmakis 199
Rubinstein 1997) is that the latter ones always requi
many stages, where the present one comprises onlythree
stages: First, in thepilot stage we estimate the minimum C
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tilting parameter for a small buffer level; next, we use th
as a starting value for the estimation of the optimal tiltin
parameter for the actual (large) buffer level; finally, th
tilting parameter just found is used to estimate the overfl
probability of interest.

The reason why the three-stage approach works w
(for arbitrary overflow levels) is that under the initial chang
of measure the buffer process is unstable, and moreover,
this change of measure is “close” to the change of meas
for the second stage. In other words, the initial tiltin
vector is in some sense a “good” tilting vector. We ha
investigated these two properties, which we will call th
instability propertyand therobustness propertyin more detail
for the M/M/1 queue. We conjecture that these propert
hold in more general network as well. Numerical resu
support this conjecture and demonstrate the high efficie
of the proposed algorithm.

The rest of the paper is organized as follows. In Se
tion 2 we summarize the main ideas behind theadaptive
approach to Importance Sampling. In Section 3 we form
late the simulation model and give the main algorithm f
simulating overflows in queueing networks. Results fro
a closer investigation of the M/M/1 queue are summariz
in Section 4. In Section 5 we demonstrate numerica
the effectiveness of the algorithm by investigating vario
queueing models, and in Section 6 concluding remarks
given. Finally, some auxiliary results and proofs are giv
in the appendix.

2 IMPORTANCE SAMPLING AND THE CROSS-
ENTROPY METHOD

In this section we briefly review the ideas behind Importan
Sampling (IS) and the Cross-Entropy (CE) method. F
details the reader is referred to Rubinstein and Melam
(1998) and Rubinstein (1999).

LetX = (X1, . . . , Xn) be a random vector taking value
in some spaceX . Let {f (·; v)} be a family of probability
densities onX , with respect to some (unspecified) ba
measure. Herev is a real-valued parameter (vector).

Let H be some real function onX . Suppose we wish
to estimate, via simulation,

γv := Ev H(X),

whereEv denotes the expectation underf (· ; v). In this
paper we will be mostly concerned with functionsH that
are indicators of certain events; for exampleH(X) = IA,
with A = {X ∈ X0} for some subsetX0 ⊂ X . When the
probability ofA is very small we say thatA is a rare event.

A naive way to estimateγv is to use crude Monte-Carlo
simulation: Draw a random sampleX(1), . . . ,X(N) from
f (· ; v); then 1

N

∑N
i=1H(X

(i)) is an unbiased estimato
of γv. However this poses serious problems whenH is the
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indicator of a rare event. In that case a large simulatio
effort is required in order to estimateγv accurately.

An alternative is to use Importance Sampling simulation
Draw a random sampleX(1), . . . ,X(N) from f (· ; ṽ); then

1

N

N∑
i=1

H(X(i))W(X; v, ṽ), (1)

with likelihood ratio

W(X; v, ṽ) := f (X(i) ; v)
f (X(i) ; ṽ) ,

is an unbiased estimator ofγv. We say that we perform
the simulation under achange of measureparameterized
by the tilting parameter (vector)̃v. The aim is now to
find an optimal tilting parameter∗v such that the variance,
or equivalently, the second moment, of the IS estimator
minimal. In other words we wish to find

∗v = arg min
ṽ
Eṽ
[
H(X)W(X; v, ṽ)]2 . (2)

More generally, using again the principle of IS, this is
equivalent to finding

∗v = arg min
ṽ
Evj H

2(X)W(X; v, ṽ)W(X; v, vj ) (3)

for any tilting parametervj .
An analytic expression for the optimal tilting paramete

∗v is typically not available. However, it can be estimate
by minimizing, possibly numerically, the estimator of the
expectation in (3), leading to the approximation

vj+1 = arg min
ṽ

N∑
i=1

H 2(X(i))W(X(i); v, ṽ)W(X(i); v, vj ) ,
(4)

whereX(1), . . . ,X(N) is a random sample fromf (·, vj ).
This formula forms the basis of an iterative scheme to e
timate the true optimal tilting parameter. Note that th
evaluation of (4) in general involvesnumericaloptimiza-
tion, which may be quite time-consuming. A much more
convenient approach is to replace (2) with its Cross-Entrop
equivalent introduced in Lieber and Rubinstein (1998), Ru
binstein (1999). This typically leads to much more simpl
(analytical) updating rules than (4).
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2.1 Cross-Entropy Method

It is well known that the best possible change of measu
to estimateγv is such thatX has a densityg given by

g(x) = H(x)f (x; v)
γv

, (5)

for all x ∈ X . However, this density may not belong to th
family {f (·; v)}. Instead of trying to find a tilting parameter
∗v which minimizes the variance of the estimator (1) w
could try to find a densityf (·; v∗) which, in some sense, is
closest to the density given in (5). One way of doing this
by minimizing the Kullback-Leibler orCross Entropy(CE)
“distance” betweeng andf (·; v∗) which is given (see e.g.
Kapur and Kesavan (1992)) by

Eg log
g(X)

f (X; v∗) , (6)

whereEg denotes the expectation underg. It is not difficult
to see that this is equivalent to finding

v∗ = arg max
ṽ
Ev H(X) logf (X; ṽ) . (7)

Analogously to (3) this is equivalent to

v∗ = arg max
ṽ
Evj H(X)W(X; v, vj ) logf (X; ṽ), (8)

for any tilting parametervj . Similarly to (4) we may
estimatev∗ by

vj+1 = arg max
ṽ

N∑
i=1

H(X(i))W(X(i); v, vj ) logf (X(i); ṽ) ,
(9)

whereX(1), . . . ,X(N) is a random sample fromf (·, vj ).
Since under quite mild conditions (Rubinstein and Shapi
1993) the sum in (9) is convex and differentiable wit
respect toṽ, the tilting vectorvj+1 in (9) may be readily
obtained by solving (with respect tõv) the following system
of nonlinear equations:

N∑
i=1

H(X(i))W(X(i); v, vj )∇ logf (X(i); ṽ) = 0, (10)

where the gradient is with respect toṽ. This, of course,
provided that the expectation and differentiation operato
can be interchanged (Rubinstein and Shapiro 1993) a
the function (8) is convex and differentiable with respe
to ṽ. The advantage of this approach is thatvj+1 can
often be calculatedanalytically. In particular, this happens
if the distributions of the random variables belong to
e

s
d

Natural Exponential Family(NEF); this is demonstrated in
the Appendix for a simple case, and in the next section fo
a general queueing model.

3 ESTIMATING BUFFER OVERFLOW
PROBABILITIES

In this section we present the main algorithm for estimating
buffer overflow probabilities in queueing networks.

Consider an open network of GI/G/1 queues with
Markovian routing. We are interested in the probability
γ (`) of the eventA that the content of a certain queue, or
the combined contents of several queues, exceeds a cert
level ` during an interval[0, T ], whereT is some stopping
time for the processX of interarrival times (from outside
the system) and service times and routing decisions. Typ
cally, T is the length of a busy cycle, or the first time until
either the content of a queue exceeds level` or the system
becomes empty.

We wish to estimateγ (`) by using an IS procedure,
in which we can change the service and interarrival time
distribution at each queue. We assume that for each que
the interarrival and service time distributions belong to a
NEF family that is reparametrized by the mean (vector o
means)v, as discussed in the Appendix. Note that such
an IS procedure isstate independent: the change of the
distributions is made globally and does not vary with the
state variables of the system (e.g., the content of the queue

The idea is to first estimate the optimal tilting paramete
via the iterative schemes (4) or (9) and then to use this t
estimateγ (`) via ordinary IS.

In most cases of interestγ (`) is a rare event probabil-
ity. This means that the choice of a “good”initial tilting
parameterv0 for the scheme (4) or (9) is crucial. For gen-
eral queueing networks it is unclear what comprises a goo
initial guess. Obviously, the system should be instable, bu
it is far from trivial to determine which instable regimes
are good and which are not good.

We now make three conjectures. All conjectures hav
been observed numerically and some can be proved in certa
simple situations, (see below).

1. Instability property. The optimal tilting parameter
corresponding to overflow of alow level `0 (e.g.
`0 = 3 or `0= 4) renders the system instable.

2. Robustness property.An optimal parameter cor-
responding to overflow of alow level`0 is a “good”
initial tilting vector for finding the optimal tilting
parameter for the high level̀. I.e., the estimation
of the tilting parameter for the high level` is robust
(insensitive) to the choice of̀0.

3. CE optimality property. The minimum variance
tilting parameterasymptoticallycoincides with the
minimum CE tilting parameter (see Lieber and
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Rubinstein (1998) for the proof for certain simple
situations).

The third property means that we can use a very simp
updating formula for the tilting vectors. In particular, le
v = (v1, . . . , vK) be the (nominal) vector of means cor
responding to the pdfs(f1, . . . , fK) of interarrival times
(customers arriving to the queue from outside the syste
and service times at the queues, assuming that the in
arrival and service times are random. For simplicity w
assume for the moment that the routing probabilities rema
fixed; see however Remark 3.2. LetH(X) be the indicator
of the eventA. Note that each parametervk corresponds to
a service time or an (external) interarrival time at a certa
queue. For each such service or interarrival time (index
by k) there will be τk service completions/inter-arrivals.
Denote these byYk1, . . . , Ykτk . It follows that the density
f (X; v), corresponding to the history of the processX
during [0, T ], is theproduct

f (X; v) =
K∏
k=1

τk∏
j=1

fk(Ykj ; vk) . (11)

Thus the likelihood ratioW(X; v, vj ), corresponding to
history of the processX during [0, T ], is the quotient the
products of the form above. Now, combining (11), (9) an
the Appendix, it is not difficult to see that for NEFs the
components of the tilting vector should be updated as

vj+1,k =

N∑
i=1

(
H(i)(X)W(i)(X; v, vj )

τ
(i)
k∑
j=1

Y
(i)
kj

)
N∑
i=1

H(i)(X)W(i)(X; v, vj ) τ (i)k
, (12)

where the simulation is performed under tilting vectorvj .
Based on the three properties above we now have

algorithm shown in Figure 1.
Remark 3.1. To assess if an initial tilting vectorv0 is “good”
we have to consider how effective the second stage of
Main Algorithm is. Numerical evidence shows that vecto
v1, v2, . . . convergeaccuratelyandfastto the optimal tilting
vectorv∗.
Remark 3.2. In the above, each random variable (and thu
each element ofv) was assumed to correspond to a servic
or interarrival time. However, the same formalism als
applies to random routing among two destinations: th
involves a Bernoulli random variable, with outcomes 0 an
1 corresponding to the two destinations. The mean of th
random variable is just the routing probability, so the routin
probability can be directly incorporated intov, thus allowing
our algorithm to also find the optimal routing probability.
)
r-

e

Main Algorithm

Pilot stage:

1. Choose an initial buffer level̀0. Choose the
initial tilting vector v0 = v.

2. SimulateN1 paths, using the tilting vector
v0, for overflow level`0.

3. Find the tilting vectorv1 from (12), for over-
flow level `0.

Second stage:

1. Initialize as follows: j := 0 (iteration
counter); Choose as initial tilting vectorv0
the resulting tilting vector (v1) of the pilot
stage.

2. SimulateN2 replications with tilting vector
vj .

3. Find the tilting vectorvj+1 from (12), for
overflow level`.

4. Incrementj and repeat steps 2–4, until the
tilting vector has converged.

Third stage:

Estimate the probabilityγv via IS simulation,
as in (1), with the final tilting vector obtained
in the second stage.

Figure 1: The Main Algorithm

4 IS AND THE CE-METHOD APPLIED TO THE
M/M/1 QUEUE

For a singleM/M/1 queue the behaviour of the propose
method, and in particular the three properties conjectur
earlier, can be studied analytically. A detailed analys
of the CE method applied to theM/M/1 queue can be
found in de Boer, Kroese, and Rubinstein (2002); we on
summarize the results here.

A few preliminaries: theM/M/1 queue is simulated as a
discrete-time Markov chain (as opposed to the continuo
time repesentation used in the rest of this paper). T
probability of arrival in the DTMC isp = λ/(λ + µ),
whereλ is the arrival rate andµ is the service rate. The
probability of service completion isq = 1−p. The tilting
is described by the exponential tilting parameterθ , from
which the tilted arrival and service probabilities follow:

p̃ = peθ

peθ + qe−θ
and q̃ = 1− p̃.
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4.1 Instability Property

It can be shown that the optimal tilted traffic intensityρ̃(`)
for the buffer overflow probability in a M/M/1 queue is
greater than unityregardless of the buffer sizè, (` ≥ 2).
This obviously is the instability property.

In addition, ρ̃(`) decreases iǹ and lim̀→∞ ρ̃(`) =
ρ−1; the latter is the well-known asymptotically optimal ti
for a single queue (Sadowsky 1991).

4.2 Robustness Property

In each iteration, the tilting parameter for the next iterati
is estimated using an equation like (12), which is aratio
estimator: the new tilting parameter is given as the rat
of two sample averages. A sufficient condition for such
estimator to have finite variance is that the variances of b
the numerator and the denominator, and the expectatio
their product, are all finite, and that the denominator is no
zero. For the case of IS-simulation of anM/M/1 queue,
it can be shown that this condition is only satisfied if th
simulation is run at a not-too-large tiltingθ .

As noted in Section 4.1, for a lower overflow level th
optimal tilting is larger. So the first step, using a loẁ0,
may produce a rather high tilting parameterθ for use in
the second iteration. Consequently, in the second itera
the sufficient condition may not be satisfied; then it is n
guaranteed that the estimate forθ found there (for use as
tilting parameter in the third iteration) has finite varianc
(the theory does not tell). As an example, ifρ = 0.3/0.7,
`0 should be chosen at least 7 in order for the sufficie
condition to be satisfied.

Clearly, the above results do not fully support th
conjectured robustness property:`0 must not be too small
for robustness to be proved. Still, as will be shown
the experiments section, even with a small`0 the method
converges, although a few more iterations are needed. T
needs further study.

4.3 CE Optimality Property

For theM/M/1 queue, it can be shown that the minimizatio
of variance and cross-entropy are asymptotically equivale
in the sense that the optimal tilting factors for`→∞ both
converge to the same limit value (which corresponds
exchanging the arrival and service rates). This is illustra
in Figure 2, which gives the tilting parameter value∗θ
that minimizes the variance, andθ∗ that minimizes the
cross-entropy, as a function of`.
)

h

5 10 15 20 25 30 35 40
level

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
theta

*

*

*
***********************************

Figure 2: Optimal Tilting Parameter∗θ for Minimizing Vari-
ance (Stars) andθ∗ for Minimizing CE (Dots) for Various
Values of̀ ; withp = 3/10 andi = 1. Note:θ∗(`) > ∗θ(`).
Also, θ∗(2) = θ∗(2) = ∞.

5 SIMULATION RESULTS

In sections 5.1 - 5.4 we give some numerical examples o
the application of our Main Algorithm with the view to
illustrate the three properties we have discussed above.

5.1 SingleM/M/1 Queue

As a first example, we consider theM/M/1 queue, with
arrival rateλ = 0.3, service rateµ = 0.7, and overflow
level (buffer size)̀ = 20.

The results are presented in Table 1. The table has on
row for every simulation run (iteration), listing the number
of replications (busy cycles) simulated, the values of (in
principle) the tilting parametersvk, and the estimate for the
overflow probability found in that simulation run along with
its relative error (RE). In the present model all distributions
are exponential, and tilting them exponentially gives again
an exponential distribution. Therefore, instead of listing
the tilting parametersvk explicitly, we prefer to show the
resulting rates, since these are more intuitive. The sam
applies to routing probabilities in later examples.

Table 1 shows results for two different values of the
overflow level `0 in the pilot run, namely 2 and 8. The
former is the minimum that can work; for̀0 = 1, the
system would already have reached the “rare” target even
in its initial state. In the case with̀0 = 8, the overflow in
the pilot run is rather rare, so a large number of replication
are needed to observe it a reasonable number of times (1
in this experiment).

The results for the casè0 = 8 show that a total of
three iterations can indeed be enough. The first (pilot run
makes the system unstable; i.e., theλ andµ that the pilot
run calculates as optimal for the second iteration, are suc
that λ > µ. The second run does not yet yield an optimal
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Table 1: Simulation Results for theM/M/1 Queue, for
` = 20. For Comparison: Direct Calculation Yields an
Overflow Probability of 5.826· 10−8.

`0 = 2
iter. repl. λ µ estimate rel. error
1 100 0.3 0.7 – –
2 1000 1.41 0.45 8.31 · 10−9 0.3031
3 1000 1.00 0.32 4.64 · 10−8 0.1332
4 1000 0.79 0.28 5.29 · 10−8 0.0514
5 1000 0.74 0.30 5.60 · 10−8 0.0419
6 1000 0.73 0.30 5.96 · 10−8 0.0406

`0 = 8
iter. repl. λ µ estimate rel. error
1 104 0.3 0.7 – –
2 1000 0.81 0.29 5.61 · 10−8 0.0573
3 1000 0.73 0.29 6.15 · 10−8 0.0398
4 1000 0.72 0.30 5.94 · 10−8 0.0406
5 1000 0.72 0.30 6.21 · 10−8 0.0385

(i.e., low RE) estimate of the overflow probability, since i
uses a tilting found in the first iteration and thus optima
for an overflow level of 8 rather than 20. However, th
second run does find optimal values forλ andµ to be used
in the third iteration: the third iteration achieves a relativ
error of 0.0398, and further iterations do not significantl
improve this.

In the case of̀ 0 = 2, things look a bit different.
Clearly, five iterations are needed here beforeλ and µ
are sufficiently close to their final values to achieve a lo
relative error. This is not surprising: in Section 4.2 it wa
noted that if`0 is chosen too low, the estimator for the
tilting parameter becomes the ratio of two infinite-varianc
estimates, and thus has unknown behaviour. The pres
simulation results suggest that the estimator for the tiltin
vector is biased in this situation, causing more iteration
to be needed; with every iteration we move closer to th
correct tilting and thus away from the “problematic” region

5.2 Two Non-Markovian Queues with Random
Feedback

As a second example, we consider the network depict
in Figure 3. It consists of two queues in tandem, whe
customers departing from the second queue either leave
network (with probabilityp), or go back to the first queue
(with probability 1−p). We are interested in the probability
that the total number of customers in the network excee
some high level, 50 in this example, during one busy cycl

Interestingly, for this model (and in general, any mode
with random feedback) we cannot work with`0 = 2, as we
could in the singleM/M/1 queue. The reason for this is the
following. Consider using̀ 0 = 2. This means that after
starting the busy-cycle with 1 customer in the network, w
t

λ

n n

p

1−p

θ θ

1 2

1 2

Figure 3: Two Queues in Tandem with Feedback

are interested in the probability of reaching a state where
customers are in the network, before the network becom
empty. So, until the overflow there will be always exactly
1 customer in the network: if less than 1, the busy-cycl
would already end, and if more than 1 the overflow woul
already happen. Therefore, no departures from the syst
can occur on a sample path to the overflow. Consequently
ever a service completion happens at the second queue on
sample path, the customer leaving that queuemustbe routed
back to the first queue, otherwise the busy-cycle would en
Therefore, we will observe customers being routed back
the first queue with probability 1, which then becomes th
value of the routing probability for the next iteration due
to the CE algorithm. And once a routing probability has
become 1, later iterations will never observe the alternativ
routing decision, so the probability will remain 1. So using
a pilot run with`0 = 2 forces the routing probability to be
1 in all later iterations, which is incorrect if̀> 2 in those
iterations.

In this example, the interarrival time distribution is a
two-stage Erlang distribution, with exponential paramete
λ = 0.2. The service time distributions are uniform on
[0,3.333] and [0,5], for the first and second server, re-
spectively. The results are shown in Table 2. In this tabl
θ1 and θ2 are the exponential tilting factors applied to the
non-Markovian service time distributions; basically, thes
are theθ from (13).

Table 2: Simulation Results for the Non-Markovian Network
for ` = 50.
`0 = 3
iter. repl. λ θ1 θ2 p estimate RE
1 102 0.2 0 0 0.5 – –
2 104 0.34 0.12 0.09 0.21 3.48 · 10−25 0.155
3 104 0.36 -0.00 0.17 0.23 3.37 · 10−25 0.015
4 104 0.36 0.00 0.15 0.24 3.34 · 10−25 0.014
5 104 0.36 0.00 0.15 0.24 3.29 · 10−25 0.012
6 106 0.36 0.00 0.15 0.24 3.29 · 10−25 0.001

`0 = 7
iter. repl. λ θ1 θ2 p estimate RE
1 104 0.2 0 0 0.5 – –
2 104 0.34 0.05 0.14 0.20 3.35 · 10−25 0.041
3 104 0.36 -0.00 0.15 0.24 3.24 · 10−25 0.011
4 104 0.36 0.00 0.16 0.24 3.27 · 10−25 0.012
5 104 0.36 -0.00 0.15 0.24 3.29 · 10−25 0.011
6 104 0.36 -0.00 0.16 0.24 3.22 · 10−25 0.011
7 106 0.36 0.00 0.16 0.24 3.28 · 10−25 0.001
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The algorithm converges quickly, already reaching th
final accuracy in the third iteration. No numerical results a
available for validation; therefore, we did the last iteratio
with 100 times more replications, to see whether relati
error decreases appropriately (i.e., by a factor of

√
100=

10). The fact that this is indeed the case, gives confiden

5.3 Five-node Jackson Network

As a final example, consider the estimation of the overflo
probability of the total population of the five-node Jackso
network with random routing depicted in Figure 4.

µ

µλ

µ

µ µ

1

1

1
p

3 4 5

2

1−p

p

1−p

p

1−p

2

2

5

5

Figure 4: A Five-node Jackson Network.

We first simulate this network at a parameter settin
where server 3 is the bottleneck queue: it has a load of 0
while the other servers have a load of 0.1. These parame
are as follows:λ = 3, µ1 = 40, µ2 = 20, µ3 = 25, µ4 =
50, µ5 = 60, with all routing probabilities equal to 0.5.
The overflow level during the pilot run,̀0, was set to 5:
this level is reached by about 1% of all sample paths und
the original measure.

The results are shown in Table 3. For an overflo
level of 80 the method still converges fine; and although t
relative error tends to vary notably among further iteration
the estimates do appear to be consistent. We have repe
the simulation for various overflow levels and have observ
that the relative error does not increase much between` = 20
and ` = 80, suggesting that the method is asymptotical
efficient.

It is noteworthy that the parameters found by the CE pr
cedure are close to those calculated by the method of Fra
Lennon, and Anderson (1991).

Table 3: Simulation Results for the Five-node Network wit
One Bottleneck;̀ 0 = 5, ` = 80. Note That Only Four of
the Nine Tilting Parameters are Shown Here.

iter. repl. λ p2 µ3 µ4 estimate RE
1 105 3.0 0.500 25.0 50.0 – –
2 105 10.5 0.641 20.0 45.0 2.51 · 10−55 0.363
3 105 13.3 0.564 16.7 47.6 8.03 · 10−55 0.060
4 105 13.0 0.589 15.3 49.8 7.82 · 10−55 0.024
5 105 12.9 0.595 15.3 49.4 7.50 · 10−55 0.014
6 105 13.0 0.594 15.4 49.6 7.67 · 10−55 0.048
7 105 13.0 0.594 15.4 49.7 7.60 · 10−55 0.017
.

,
rs

r

ed

r,

The above experiment has been repeated with a differe
set of service rates, chosen such that all servers had
equal load. For an overflow level` = 20, the method still
converged fine, but a much larger number of replications w
needed (107). For a higher overflow level, no convergence
was obtained: presumably, this is a case where a sta
independent change of measure does not work well enoug
A state-dependent change of measure does help here, at
expense of complexity; see de Boer (2000) or de Boer a
Nicola (2002).

5.4 Root Finding

In practical problems, one often needs to doroot finding:
finding a buffer size for which the overflow probability is
less than a given value. The present simulation techniq
can easily be used for that, because for high overflow leve
the optimal tilting turns out to be almost independent o
the overflow level (cf. Section 4.1). Thus, after finding a
good tilting for some high overflow level, one can estimat
the overflow probability for a large range of levels in one
run. (Note that the CE algorithm for static models, a
in Rubinstein and Melamed (1998), does not have th
property, making root finding more involved.)

As an example, the two-node network from Section 5.
is used. A simulation run with the tilting found by the CE
method for overflow level̀ = 50, is used to obtain all
the overflow probabilities given in Table 4. Clearly, thes
estimates have almost equal relative error, and one eas
concludes that a buffer size of 22 is the minimum that wi
make the overflow probability less than 10−10.

6 CONCLUDING REMARKS

In this paper, we have presented an efficient Cross-Entro
method for estimation of buffer overflow probabilities in
queueing networks via simulation. We have recognise

Table 4: Numerical Results for the Root Find-
ing Example.

level overflow probability relative error
2 0.422 0.0058
3 0.170 0.0082
...

...
...

21 1.62 · 10−10 0.0111
22 5.05 · 10−11 0.0109
...

...
...

48 3.40 · 10−24 0.0113
49 1.05 · 10−24 0.0111
50 3.27 · 10−25 0.0109
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three properties (CE optimality, instability and robustness
which explain why the method works well. Numerical
results support the conjectured properties and demonstr
the high efficiency of the proposed algorithm for queuein
networks up to five queues.

Some issues for further research are the following.

• Extension of the proofs of the three properties to
more general queueing models.

• Further investigation of the behaviour of the ratio
estimators of type (12) for theM/M/1 queue and
more general queueing models.

• Finding conditions under which a state-independen
change of measure, as used in this method, can
cannot lead to an (asymptotically) efficient simu-
lation.

APPENDIX

A.1 Natural Exponential Families (NEFs)

Consider a univariate family of distributions with densities
(pmf’s, pdf’s) {fθ , θ ∈ 2}, for some subset2 ⊂ R. The
family is said to be a NEF if

fθ (x) = exθ−κ(θ) h(x), (13)

whereh is a positive (normalization) function, cf. Morris
(1982) and Jorgensen (1997). For example, if we tak
θ = λ/σ 2 and κ(θ) = σ 2θ2/2, thenfθ is the density of
the N(λ, σ 2) distribution, whereσ 2 is fixed.

There are many NEFs. In fact, every distribution with
pdf f0 for which the moment generating function exists in
a neighbourhood of 0 generates its own NEF by lettingκ

be the cumulant function

κ(θ) = log
∫

eθxf0(x) dx

and by substitutingh = f0 into (13). We say thatfθ is
obtained fromf0 by an exponential twist/tiltwith twist-
ing/tilting parameterθ .

Now letX have a distribution in some NEF{fθ }. It is
not difficult to see that

v := EθX = κ ′(θ) and VarθX = κ ′′(θ).

Sinceκ ′ is increasing we may reparametrize the family usin
the meanv. In particular, to the NEF above corresponds a
family {gv} such that for each pair(θ, v) satisfyingκ ′(θ) = v
we havegv = fθ .

Now consider (8) for the case whereX is a random
variable from a NEF{f (·; v)}, reparametrized by the mean
g

te

r

v. Hence,

f (x; v) = exp(θ(v)x − κ(θ(v))) h(x),

whereθ is some differentiable function ofv. We wish to
maximize, with respect tõv the functionD defined as

D(ṽ) = Evj H(X)W(X; v, vj ) logf (X; ṽ) .

SolvingD′(ṽ) = 0 for ṽ gives

Evj H(X)W(X; v, vj )
{
θ ′(ṽ)X − κ ′(θ(ṽ)) θ ′(ṽ)}

= Evj H(X)W(X; v, vj ) θ ′(ṽ)(X − ṽ) = 0,

which is solved forṽ = v∗, with

v∗ = Evj H(X)W(X; v, vj )X
Evj H(X)W(X; v, vj )

. (14)

That v∗ is a global maximum follows from the convexity
of D and the fact thatD′′(v∗) = −θ ′(v∗)EvH(X) < 0,
becauseθ ′(v∗) = 1/Varv∗(X) > 0.
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