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ABSTRACT The global guidance system ensures the convergence of the
search so that, given sufficient time, it reaches and selects
We propose an optimization-via-simulation algorithm foruse one of the optimal solutions. Specifically, we adopt the
when the performance measure is estimated via a stochastic,philosophy of Shi and Olafsson’s (200Bjested Partition
discrete-event simulation, and the decision variables may (NP) method. NP is based on identifying a sequence of
be subject to deterministic linear integer constraints. Our “most-promising” subregions af. When better solutions
approach—uwhich consists of a global guidance system, a are foundnsidethe current most-promising region, then the
selection-of-the-best procedure, and local improvement—is region is partitioned for finer exploration. On the other hand,

globally convergent under very mild conditions. when better solutions are fouralitsidethe current most-
promising subregion, then NP backtracks to a superregion
1 INTRODUCTION of it. The idea is to concentrate the computational effort
where there appear to be good solutions but not be trapped
We consider the following optimization problem: locally.
The search, essentially the partitioning, is guided by the
r;l%xu(x) estimated performance of solutions sampled from each re-

gion. Thus, the performance of an NP-based search depends,

where u1(x) is the scalar-valued performance measure as- to a gr_e_at extent, on making_correct decisions_about when
sociated with a vector-valued, integer decision variable or (O Partition or backtrack. We incorporaBequential Selec-
solutionx = (x1, x2, ..., x,). All solutionsx are contained ~ tlon with Memory(SSM)—a statistical procedure that we
in a convex and finite feasible spadedefined by determin-  have specifically designed for use within the optimization-
istic linear constraints. We assume the performance measureVia-Simulation context—to help NP make such decisions
1(x) can only be estimated via a stochastic, discrete-event (Pichittamken and Nelson 2001). Under certain condltlon§,
simulation by observing a simulation output random vari- SSM guarantees to select the best, or a near-best, solution
ableY (x), whereu(x) = E[Y (x)], and that little or nothing with a user-specified probability when some solutions have
is known about the response surfacex). previously been visited and their past observations (or their
A key feature that makes optimization via simulation ~Summary statistics) are maintained. SSM utilizes “memory"

difficult is balancing the tradeoff between the computational ©f Solutions it has seen to alleviate the need to obtain new
effort used in estimating.(x) and that used for exploration simulation outputs every time th_e search revisits a solution.
of © in search of better solutions. If too much effort is e further refine SSM for use in an NP-based search by
spent on estimating:(x), an optimization algorithm may  &llowing it to terminate as soon as the most-promising re-
not visit much of® in the time available. As a result, it may gion, father than the single best solution, is identified. We
not discover an optimal solution, or even a good solution, C&ll this refinement SSNREGION. o
at all. On the other hand, unless the algorithm accounts Our motivation for incorporating SSMiis to intelligently
for variability in the estimator ofc(x), the search can be  €xPend the simulation effort used in region-selection steps.
misled and not converge or even recognize good solutions Th.e hope is that good ;electlons made with minimal simu-
when they are encountered. Our goal is to achieve both lation effort, and the guidance provided by the NP method,
provable convergencand good empirical performance will result in moving toward better and better solutions,
Our search scheme consists of a global guidance system, While still having adequate time to exploge thoroughly.
a selection-of-the-best procedure, and local improvement.
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We further enhance the performance of our combined
scheme with local improvement. Because the NP method
already provides aiversificationelement, local improve-
ment is intended to provide antensificationcomponent.
The idea is to enhance performance on problems wit&re
is large, but good solutions are clustered, or whéyeis
large, but the response surface is smooth. Whgtis large,
relative to the time available for optimization, the search

may miss some better solutions residing close to good so-

lutions that it has already visited. Once they are missed,

and Alrefaei and Andradottir 1999), and Andradottir's (1995,
1996) random search algorithms. The common character-
istic among these algorithms is that they move from the
current solution to one of its neighboring solutions. How-
ever, they differ in their neighborhood structure, their rule
for comparing the current solution to the selected neighbor,
and their criterion for estimating the optimal solution at the
end of the search. Most of these algorithms can be shown
to converge globally as the sampling effort increases.

In contrast to such globally convergent methods, many

the search may not encounter them again due to random heuristics are appealing because they work well in practice.

sampling in a large space. Local improvement helps the
search explor&® more intensively near good solutions.

A hill-climbing (HC) algorithm constitutes our local-
improvement scheme. We chose HC because it is intuitively
simple: The current solution on hand is compared with some
(or all) of its neighboring solutions, and the winner becomes
the next solution. This neighborhood selection of the best
is repeated until some stopping criterion is satisfied. Its
simplicity aside, HC is also appealing because it is readily
applicable in our problem setting where a neighborhood is
easy to define.

With the NP method acting as our global guidance
system, SSM expediting the region selection, and HC per-
forming local improvement, we call our combined scheme
the NP+SSM+HC Algorithm In addition to the use of
SSM and HC, our implementation of NP differs consider-
ably from Shi and Olafsson’s (2000) version, including the
criterion used to estimate the optimal solution, the gener-
ality of the partitioning scheme and the solution-sampling
scheme. Similar to their NP method, NP+SSM+HC con-
verges almost surely to a global optimum, but it does so
under far less restrictive assumptions.

The paper is organized as follows: The next section
reviews literature relevant to our approach. We define our
problem more specifically in Section 3. We give an overview
of NP+SSM+HC in Section 4, followed by descriptions of

each of its components. The global convergence properties
are stated in Section 5. We compare our algorithms to !
other schemes via a numerical example in Section 6. We

conclude with future research directions in Section 7. All
the proofs can be found in Pichitlamken (2002).

2 BACKGROUND

Many optimization-via-simulation algorithms are adapted
from methods designed for deterministic problems. Typ-
ically, the search tries to move in a relatively improving
direction while utilizing some form of randomization to

escape from local optimal solutions. Andradottir's (1998)

tutorial discusses a number of such methods, including the

stochastic ruler algorithm (Yan and Mukai 1992), variants

To bridge the gap between research and practice, Boesel
(1999) and Boesel, Nelson and Ishii (2002) supplement
a genetic algorithm search with a ranking-and-selection
procedure applied at the end of the search to allow the
combined algorithm to make a correct-selection guarantee.

3 FRAMEWORK

We now define our optimization-via-simulation problem
more precisely. Our goal is to solve

max(x) 1)
Xe®
when @ is defined by the following constraints:

q

Zaijxi < bj, i=1L2...,p

i=1

Oflifxi < u,-<oo,i=1,2,...,q (2)
li,xj,u; € Z+U{0},i=l,2,...,q

where the set of positive integers is denoteddsy. Thus,
we assume that the feasible regi®nis convex and finite.
To avoid triviality, we also assume th& is nonempty.
The finiteness ob allows us to index the solutionsand
the corresponding performance measures as follgws:
{X1, X2, ..., Xy} Whereuv is the number of feasible solutions
in ©, and u; = w(x;). Without loss of generality, we let
the set of optimal solutions b®* = {X,*, Xy*+1, ..., Xy}
where 1< v* <.

Recall that we must estimate;. The observed per-
formance measure of solutiahon replicationp of the
simulation is denoted by;,, so thatu; = E[Y;,]. Let
aiz = Var [Y;,]. Both the performance measuyxg and its
varianceo-i2 are assumed finite for alle {1, 2, ..., v}. Fur-
ther, the observed performance measifigsp = 1,2, ...,
are independent and identially distributed (i.i.d.), and inde-
pendent ofY;, for i # j.

of simulated annealing altered to accommodate randomness

(e.g., Gelfand and Mitter 1989, Gutjahr and Pflug 1996,
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Let aregion, which we will generically denote as,
be a finite, convex subset & characterized by:

q
Zaifjx,- < b;, j=212...,p"
i=1

0<ll <xi = ul <o0,i=12...,9 (3)
IF,xj,uj € Ztu{0,i=12...,q.

The region isinfeasiblewhen there exists a constraipte
{1,2,..., pT} such that

T]T T T T
E al-jll--i— E a;iu; > bj.

TenT TeqT
t.a,.j>0 t.a,.j<0

4)

4 NP+SSM+HC

We first give a high-level description of NP+SSM+HC, and
then present the particulars of each step—partitioning, solu-
tion sampling, SSM, and HC—separately in the subsequent
sections.

Algorithm NP+SSM+HC
1. Initialization: Set the iteration countdr =1, the

currentmost-promising regia®y, = ®, the number

of observations on thé" solution n; (k) = 0 for

all i € {1,2,...,v}, and the initial estimate of
the optimal solutiorx;.. to a user-provided initial
k=1

solution.

Search and selectiorRepeat Steps 2a—2f until the
simulation effort (i.e., clock time or the number of
simulation replications allowed) is exhausted:

(@)  Partitioning: If the current most-promising
region Ry is not a singleton, then partition
Ry into disjoint regionsRi1, Rk2, - . ., Rrw(ry)
(see Section 4.1). Le¥;, = w be the number
of subregions. Then, iR, # ©, aggregate
the surrounding region; le¥;, = M; + 1 and

Rim, = O\ Ry.

Sampling: For each region Ry, £
1,2,..., M, randomly sample® solutions
from Rye. (If x;.lf L€ Rye, include it as one

of thesey sampled solutions fronR,,. See
Section 4.2.) Aggregatall the sampled so-
lutions x; into a set through their indices
let Sy denote the set of indices of sampled
solutions.

(b)

Selection of the best solutionTake Anfree
observations of;, from every solutiorx;, i €
Sr. Use SSM or SSMEEGION to select the
best solution overS;, which we denote as
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X*(Sk) (see Section 4.3). If the simulation
effort is exhausted, go t8earch termination
step.

Algorithm Hill Climbing If the criterion for
using HC is satisfied, perform Algorithm Hill
Climbing with X*(S;) as a starting solution
(see Section 4.4). '—ex;-; be the solution
deemed best by HC. If the simulation effort
is exhausted, go t&earch terminatiorstep.

Updating the most-promising regiont x;.; €

Ry, then Ry, that containsgz becomes the
next most-promising regiorR1; otherwise,
the search backtracks to the superregioRgf

which can be eithe® or Ry,_1. Increment
k=k+1.

Restart: Restart at iteratiork if Ry_iy+1 =
Ri—kg+2 = - -+ = Ry by letting Ry = ® and
using a different partitioning criterion (see (7)
below).

Search terminationThe best solution selected by

NP+SSM+HC is the one with the maximum cu-
mulative sample average; i.e., the selected solution

(d)

(e)

(®

is X;, where
i = arg max{¥; (n; (k) : ni (k) > 0}(5)
Yir) = ) Yip/r. (6)
p=1

We further describe each component of NP+SSM+HC in
the following sections (see Pichitlamken 2002 for complete
details).

4.1 Partitioning Scheme

Our proposed partitioning scheme is motivated by the Branch
and Bound Method. The goal is to partition a convex,
feasible regionr of the form defined in (3) into disjoint
subregions, each of which remains convex. We branth
one dimension per partitioning: First, we select the variable
to branch upon, say;/, using one of the following three
criteria:

argmax <; <, {u; — I} if criterion = BIGGEST RANGE
i argmirhf,»fq{ul? — (7} if criterion = SMALLEST RANGE

i with probability 1/g for i € {1,2, ...

if criterion = RANDOM

.q}
)

Next, we further divide the range of feasible values of
xin {5, 05 + 1, up, — Lul}, into subintervals. Based
on these subintervals, we form the subregions from the
constraints that define and a tighter constraint ag.
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On iteration k, after the most-promising regioR; the selection of a new most-promising region for NP, and in
is partitioned, and the surrounding region is aggregated, determining when the HC algorithm has found an improved
solutions are sampled from each subregion. We describe solution.

the solution sampling scheme next. Without loss of generality, let the finite number of so-
lutions under consideration be denoted{ky, X2, ..., X, }.
4.2 Solution Sampling Scheme SSM assumes the observations taken fogmy;,, to be

i.i.d. normally distributed with finite mean; and variance
NP+SSM+HC requires sampling within the subsets of the Giz (the convergence properties of NP+SSM+HC do not
most-promising regiorR;, which are convex, and within depend on the normality assumption). For convenience of
the surrounding region, which is not convex. We developed exposition, assume that the true means of the solutions are
Algorithm MIX-D to sample an integer solution from a indexed suchthaii < us <--- < . The best solution is

convex region of the form (3) (we will denote it asfor defined as the one with the largest mean, which is therefore
simplicity), and Algorithm MIX-DS to sample an integer .

solution from® \ R;. Algorithm MIX-DS is essentially Our procedure guarantees to sebectwith probability
Algorithm MIX-D, sampling over®, but with extra calcu- at least - « whenever the difference between the best and

lations to ensure that the generated Markov chain remains the next best solution is worth detecting:
outsideR; at all times.

Our discrete-variable sampling algorithms extend Pr{selectx,} > 1 — o« wheneveru, — u,—1>368. (8)
Smith’s (1984) Mixing Algorithm, which is for continu-
ous spaces. From a starting solution insigeAlgorithm The indifference-zone parameter is denoted by 0. Even

MIX-D generates the next solution (i.e., the next state of when the indifference-zone condition is not satisfigd
the Markov chain) that is also inside This process is Uie—1 < 8), SSM still selects a “good” solution (one whose
repeated for several steps, and the sampled solution returnedmean is withiné of u,) with probability at least 1 «.

by MIX-D is the current state of the Markov chain when it In SSM, we sequentially take one observation at a
stops. If the feasible regior® andt are of the form (3), time from surviving solutions, immediately followed by
and they are nonempty and of full-dimension, both MIX- screening. To make this precise, we define some notation:
D and MIX-DS generate solutions that are asymptotically Leti € {1,2,...,«}.
uniformly distributed over the feasible spac@and® \ Ry,
respectively (see Pichitlamken 2002 for details). V = set of solutions we have “visited" before;
Although the uniformity property of the solution sam- nj >ngforieVv
pling algorithms is not required to attain the global conver- ¢ _ setof solutions we see for the first time:
gence of NP+SSM+HC, it is desirable in practice: Recall ) '
that we assume no knowledge of the response suyféce ni<noforieVe={L2 ....«}\V
Therefore, we count on the MIX-D and MIX-DS algo-  y,. = VAJ
rithms to insure diversity, while the NP method focuses A
NP+SSM+HC on promising solutions. Ni = T;ZX{NU}
After we sample solutions from all subregions, we N = maxn; )

use either SSM or SSNREGION to select the best. To 1<i<k
make this paper self-contained, we briefly describe these O-iZ, = Var (Y;, —Y;,)

. . - j P jp
procedures in the next section (see Pichitlamken and Nelson minimum initial number of observations
2001 and Pichitlamken 2002 for complete details). "o

from any solution
4.3 Sequential Selection with Memory S7 = estimator ofo};
no

SSM was designed to provide a highly efficient method = 1 Z (Yip — Yjp — [Yi(no) — ?j(no)])z
for selecting the best—maximum of minimum expected ho — 1p:1 ‘
performance—from among a small number of candidate _ , 1

solutions. SSM is fully sequential with elimination, which

means that it takes observations one at a time from the solu- Note thatV; +1 is the maximum number of observations
tions under consideration and eliminates (ceases sampling) taken fromx;.

solutions as soon they are shown to be inferior. SSM is

specially designed for use in optimization algorithms that

revisit solutions because it exploits whatever data have al-

ready been obtained. In NP+SSM+HC, we use SSM for
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Procedure SSM After SSM selects the best solution from the set of
sampled solution, we attempt to improve it further with hill
1. Initialization: For eachx;,i € V¢, takeng — n; climbing, as described below.
observationgng > 2), and sets; = ng. Compute
SE Vi # . 4.4 Local Improvement
2. Procedure parametersWe choosei anda;; as
follows: Algorithm Hill Climbing (HC) is essentially a greedy heuris-
_ tic that iteratively moves from the current solution to one
1) fS,-zj Kk — 1\ of its neighboring solutions until some stopping criterion
A= 2 and a;; = 48 — 1) ( 2a ) -1} is satisfied. In our algorithm, the available options for em-

ploying HC are: (a) do not perform HC at all, (b) perform
If no > N (as defined in (9)), stop and select the HC onall iterations, or (c) perform HC if themprovement

solution with the largest; (n;) (as defined in (6)) IS “big enough,” i.e.,
as the best. Otherwise, let={1, 2, ..., «} be the . )
set of surviving solutions, set= ng, and proceed Y?;f (”2;) — Yz’;f 1(n;.Z 1) > 26, (12)

to Screening From here orV represents the set of

solutions on which we have obtained more than  wheres is an indifference-zone parameter of SSM (see (8)).
observations, whil&/¢ is the set of solutions with

exactlyr observations. Procedure Hill Climbing
3. Screening:Set /99 = I where

1. Initialization: Setr = 0 and Xp to a starting

[ = Ii i e 1% and solution.
2. Search: Repeat Steps 2a—2d until the stopping
Vi> max (V;—aij)+ rk} criterion is satisfied (see Remark below):
JEITE I (8 Neighborhood construction: For X, =
Z;=1 Yj, forjeve (X1, Xor, ..q.,th), construct a hypercube:
Y = _ ) B(X;) = M_,[Xir — &, Xir + &], whereg ¢
rYj(nj) ~ forjeV. Z+. UpdateB(X,) so thatB(X,) C ©.

(b) Solution sampling: Use MIX-D (see Sec-
tion 4.2) to sampler solutions fromB(X;).

for > _, Yip. o .
p=1-tp Aggregate the indices of the sampled solutions
4. Stopping rule: If |I| = 1, then stop and report ingt]c? agset8'0° P
2.

the only survivor as the best; otherwise, for each

In essence, fox; with n; > r, we substitute ¥; (n;)

i € (INV*), take one additional observation from (c)  Selection of the bestUse SSM (see Sec-

x; and setr = r +1. If r = N + 1, terminate tion 4.3) to select the best solution whose
) S i i 7l [

the procedure and select the solution/ iwith the index is ;"¢ from &;°.

largest sample average as the best; otherwise, for (d)  Update the best solutionX; 1 = X:.oc and

eachi € (I N'V) with n; = r, updateV and V¢: f=1+1. '

V¢ =Veuli},andV = V\ {i}. Go toScreening 3. Termination: ReturnX,.
SSMREGION intends to save simulation effort by
terminating SSM when all surviving solutions belong to the
samesubregion. This is useful in an NP step where all we
need to do is to identify the subregion that contains the best
sampled solution, not necessarily the best solution itself.

Remark: The options for the stopping criterion are: (a) to
perform HC once, (b) to perform HC uniif'°® = i ¥, or
(c) to perform HC until

Let S; be the set of solution indices of the surviving Yistoc(njsdoc) = Yidoc (Malac)| - <9, (12)
solutions when SSMREGION terminates on iteratiott.
The best solution selected by SSREGION is: wheres is an indifference-zone parameter. The motivation
for (12) is similar to the rationale behind (11); with (12),

(10) however, HC stops if the perceived progress is too small.
Thus far, we have fully described how NP+SSM+HC

works. In the next section, we establish its global con-
vergence properties, which are not just an aggregation of

the attributes of each component—partitioning, solution
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sampling, SSM, HC, and updating of the most-promising
region—but also a result of their interactions.

5 PROPERTIES OF NP+SSM+HC

In Lemma 1, we establish that every solution @ is
sampled infinitely often in the limit. The Strong Law of

Large Numbers then leads us to almost-sure convergence
of NP+SSM+HC.

Lemmal Forallie{l?2...,v},
lim n; (k) = oo.
k— 00
O
Theorem 1  NP+SSM+HC converges almost surely to

one of the global optimal solutions ds — oo; i.e., a
solution x;., wherei* as defined in (5) belongs to the set
of optimal solutions almost surely &s— ooc. ]
Theorem 1 guarantees that our algorithm converges to
a global optimal solution in the limit. In Theorem 2, An-
dradéttir (1999) provides us with af(k~1/2) convergence
rate for the case of a unique optimumi* (= v). Note that
Theorem 1 holds when there are multiple optimal solutions,
but in such cases we were unable to extend Andradéttir’s
results to our algorithm. Theorem 2 also allows us to form a
confidence interval for the maximum performance measure
M-
Theorem 2 If the optimal solution is unique, ant
satisfies (5), then

VAngedk (V. (n3.(K)) — po) = N(O, o),
where= denotes convergence in distribution.

6 NUMERICAL EXPERIMENTS

We consider the performance of NP+SSM+HC relative to
other optimization schemes on a three-stage buffer allocation
problem. We will first describe the competing optimiza-
tion schemes, then characterize a test problem, and finally
report the corresponding performance of each scheme. In
addition to NP+SSM+HC, the optimization approaches that
we consider are:

NP: NP does not use SSM or HC. It takésisxeq ObsEr-
vations ofY;, from x; that has never been visited before,
otherwise, it take\nfee Observations. NP selects the best
solution over the sef;, X*(Sk), as the one with the largest
cumulative sample average, and NP Us&s;,) to determine

the next most-promising region.

Pure random search (RS)(Andradoéttir 1996) RS is a
modified hill-climbing algorithm. LetC;(k) denote the
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number of timesx; becomes the current solution up to
iterationk. RS proceeds as follows:

1. Use MIX-D to uniformly sample a candidate so-
lution Xy, over ® \ {Ix}, wherel; is the index of

the current solution.

Take Anfixeq > O Observations of’;, , and Yl;i p

and compute the sample averages over these ob-
servations:)?,,é (Aniixed) and Yy, (Ansixed)-

Updatel, andC;(k):

|

Ci(k) + I{Ixy1 = i}
k41,

2.

Ili’ if I_’I]i (Anﬁxed)>)_’1k (A”fixe?)

13)

It

I, otherwise

Citk+1)
k

whereZ{v} = 1 if v is true and O otherwise. The selected
solution isx;, where

l'*

(14)

argmax _; ., C; (k).

Simulated annealing (SA)(Andradottir 1999) SA is al-
most identical to RS, but occasional downhill moves are
allowed. Let the neighborhood structure be such that every
solution is a neighbor of every other solution. The annealing
temperaturel’ is fixed. Equation (13) is replaced by

I, if Uy <exp{—AY/T}

. (15)
I, otherwise

Ipy1 <

where AY," = max(Y;, (Anfixed) — Y1/, (Anfixed), 0), and
Uy ~ uniform(0, 1). The selected solution .. where

l'*

argmax ; <, {Yi(n; (k)) : n; (k) > 0}.  (16)
Remark: The past observations are accumulated in RS and
SA for the purpose of estimating the optimal solution upon
search termination (in (14) and (16)), but they are not used
for the local comparison (in (13) or (15)).

We consider RS and SA because they are globally
convergent (Our problem setting is such that the required
conditions specified in Andradéttir (1996, 1999) are sat-
isfied.). We compare NP+SSM+HC to NP to study the
role of local selection-of-the-best schemes and HC. Each
optimization scheme is repeated for some number of times,
and the results shown below are theeragedvalues across
different searches.

6.1 Three-Stage Buffer Allocation Problem

We consider a three-stage flow line with finite buffer storage
space in front of stations 2 and 3 and an infinite number of
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jobs in front of station 1. There is a single server at each NP+SSM+HC outperform the rest despite their small num-
station, and the service time at statibnis exponentially ber of solutions seen relative to other optimization schemes
distributed with ratew;,, h = 1, 2, 3. If the buffer of station (see Figure 2). This illustrates the dilemma of local selection
h is full, then stationh — 1 is blocked and a finished job  versus global exploration. When the simulation effort is
cannot be released from statign— 1. The total buffer small, both NP+SSMREGION+HC and NP+SSM+HC are
space and the service rates are limited. The goal is to find a unable to see much @& because they use more simulation
buffer allocation and service rates such that the throughput effort per search iteration than other schemes do (as they
(average output of the flow line per unit time) is maximized. use SSM to select the best). However, as the optimization
We obtain the balance equations of the underlying Markov progresses further, the benefit of successively making good

chain from Buzacott and Shantikumar (1993). selections on every iteration finally pays off, and the per-
Let b, be the number of buffer space at statiom = formance of NP+SSMREGION+HC and NP+SSM+HC
1, 2, 3. The constraints (in the form of (2)) are: surpasses that of other optimization schemes.
The benefit of HC is manifested through the favorable
w1+ u2+uz < 20 performance of NP+SSNREGION+HC compared to that
by+b3y < 20 of NP+SSMREGION. This result confirms our conjecture
Cbo—be < —20 that HC is advantageous for problems with laté¢d and
2773 = clustered good solutions; this three-stage buffer allocation
1 < wun = 200 h=123 problem hag®| = 21, 660 with 5 decision variables, and
1 < b, < 20 =12 good solutions are in close proximity.
wn, by € ZT. Next, we examine the value of optioREGION

NP+SSMREGION+HC noticably outperforms

The number of feasible solution is 21,660. The optimal NP+SSM+HC in the initial phase of the search. Option
solutions are(u1, w2, u3, bo, b3) = (6, 7, 7, 12, 8) and REGIONis helpful when the S|mulat|oq budget is limited
(7, 7, 6, 8, 12) with an expected throughput of 5.776. In becausg SSNKEGIOI\) consumes less simulation effort per
the simulation, the throughput is estimated after the first Seéarch iteration than SSM does (recall that SBEIGION
2000 units have been produced, and it is averaged over theStops when all surviving solutions belong to the same
subsequent 50 units released. subregion). This savings allows NP+SSREGION+HC

All of the searches start from (2, 2, 2, 2, 18). Other O explore® more extensively than NP+SSM+HC does
parameter values for NP+SSM+HC are as follows: when (S€€ Figure 2), and thus the search with optREEGION
NP backtracks it is to the entire feasible regién the is more likely to discover good solutions.
partitioning criterion for NP i8IGGEST RANGHEhe most-
promising region is partitioned inte = 2 subregions; the 7 THE FUTURE
number of solutions sampled from each subregion and the o _ _
surrounding region i$ = 5; each time a solution is visited V& have proposed an optimization-via-simulation algorithm
it gets at leastAngee = 1 additional observations; the with the goal of establishing both provable convergence
minimum number of observations needed to run SSM is @nd good empirical performance. NP+SSM+HC consists

no = 4; the indifference-zone parameter of SSM is 0.5; of a global guidance system, selection of the best, and local
the confidence level for SSM is4 o = 0.9; the number improvement. We use the NP method as our global guidance
of iterations without progress that triggers restatgis= 6; system to ensure that the search not only advances toward

the number of Markov-chain transitions in each application ©Ptimal solutions, but it also reaches one of them, if there
of MIX-D or MIX-DS is 10; and the annealing temperature IS €nough simulation effort. While the NP method gives us
is T = 3 (see (15)). When HC is used, it is performed the convergence guarantee, SSM enhances the performance
on all iterations and stops when progress is too small (see °f the NP method by controlling the local-selection error,
(12)); the number of candidate solutions on each HC step @nd HC improves it further by intensifying the search near
is @ = 3; and the neighborhood step size&is= 1. For good solutions. . _ _
NP, RS and SA the number of observations per visit is Our motivation behind NP+SSM+HC is essentially to
Ansixed = 4. Finally, the results we report are the average Make optimization-via-simulation algorithms adapt to vari-
over 50 independent searches. ability and to characteristics of the response surface. Our
Figure 1 shows the expected throughput of ¢erent algorithms show promise in numerical tests (see the exten-
optimal-solution estimate;, (i* is defined in (5)) averaged ~ Sive study in Pichitlamken 2002). Still, we need to find
over 50 searches at each point in time. Initially, the perfor- Methods for adapting effectively if we are to reap the full
mance of NP+SSMREGION+HC and NP are comparable ~ benefits of the NP+SSM+HC Algorithm.
and better than other optimization methods. However, as
the simulation effortincreases, NP+SSREGION+HC and
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Figure 1: Expected Throughput of the Current Optimal-Solution Estimate at Each Point in Time
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