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ABSTRACT 

High dimensional probabilistic models are often formulated 
as belief nets (BN’s), that is, as directed acyclic graphs with 
nodes representing random variables and arcs representing 
“influence”. BN’s are conditionalized on incoming informa-
tion to support probabilistic inference in expert system ap-
plications. For continuous random variables, an adequate 
theory of BN’s exists only for the joint normal distribution. 
In general, an arbitrary correlation matrix is not compatible 
with arbitrary marginals, and conditionalization is quite in-
tractable.  Transforming to normals  is unable to reproduce 
exactly a specified rank correlation matrix. We show that a 
continuous belief net can be represented as a regular vine, 
where an arc from node i to j  is associated with a (condi-
tional) rank correlation between i  and j.  Using the elliptical 
copula and the partial correlation transformation properties, 
it is very easy to conditionalize the distribution on the value 
of any node, and hence update the BN.   

1 INTRODUCTION 

Belief Nets (BN’s) are Directed Acyclic Graphs (DAG’s) 
representing influence between random variables. We 
would like to associate nodes in a BN with continuous uni-
variate random variables and to interpret “influence” in 
terms of correlation. This should ideally be done in a way 
that does not impose intractable constraints, and which 
supports conditionalization. Simply associating arcs with 
correlations is unsuitable for two reasons; (i) the compati-
bility of marginal distributions and a specified product 
moment correlation is not easily determined, and (ii) the 
correlation matrix must be positive definite. To illustrate 
this latter constraint, consider the simple BN in Figure 4b. 
Variables 1 and 2 have correlation zero. If 1 is highly cor-
related with 3, then it is impossible that 2 is also highly 
correlated with 3, since this would require positive correla-
tion between 1 and 2. 

 

One option is to represent influence as rank correla-

tion. Any rank correlation in the interval [-1, 1] is compati-
ble with arbitrary continuous invertible marginals. We 
could transform the variables to standard normal, induce a 
product moment correlation structure using well known 
methods, and transform back to the original variables.  The 
rank correlation thus induced would not be exactly equal 
the specified rank correlation, but would be in the right ball 
park. Exact replication of a given rank correlation matrix 
could be obtained with this method if the joint normal 
could realize every rank correlation matrix. This is not the 
case; indeed the rank correlation matrices of joint normal 
distributions are very sparse in the set of correlation matri-
ces (Kurowicka and Cooke 2001). Of course, the problem 
of positive definiteness noted above would still be present. 

In this paper we briefly describe the regular-vine-
elliptical- copulae method for specifying dependences in 
high dimensional distributions (section 2).  We then apply 
this method to the problem continuous BN’s (sections 3 to 
6). In section 7 we show how regular vines may be used to 
infer a BN from multivariate data. 
 
2 VINES 

2.1 Basic Facts and Concepts 

A vine on N variables is a nested set of trees, where the 
edges of tree j are the nodes of tree j+1; j = 1,… ,N-2, and 
each tree has the maximum number of edges (Cooke 
1997).  A regular vine on N variables is a vine in which 
two edges in tree j are joined by an edge in tree j+1 only if 
these edges share a common node, j = 1,… ,N-2. There are 
(N-1)+(N-2)+ … +1 =N(N-1)/2 edges in a regular vine on 
N variables. Figure 1 shows a regular vine on 5 variables. 
The four nested trees are distinguished by the line style of 
the edges; tree 1 has solid lines, tree 2 has dashed lines, 
etc. The conditioned ( before |) and conditioning ( after |) 
sets associated with each edge are determined as follows: 
the variables reachable from a given edge are called the 
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constraint set of that edge. When two edges are joined by 
an edge of the next tree, the intersection of the respective 
constraint sets are the conditioning variables, and the 
symmetric difference of the constraint sets are the condi-
tioned variables. The regularity condition ensures that the 
symmetric difference of the constraint sets always contains 
two variables. Note that each pair of variables occurs once 
as conditioned variables.  

We recall two generic vines, the D-vine D(1,2,…n ) 
and C- -vine C(1,2,…,n), shown on Figures 1 and 2. 

 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 1: The D-Vine on 5 Variables D(12345) 
Showing Conditioned and Conditioning Sets 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure  2: The C-Vine on 4 Vari-
ables  C(1,2,3,4) Showing Condi-
tioned and Conditioning Sets 

 
Each edge in a regular vine may be associated with a con-
stant conditional rank correlation (for j=1 the conditions 
are vacuous) and, using  minimum information copulae, a 
unique joint distribution satisfying the vine-copulae speci-
fication with minimum information can be constructed and 
sampled on the fly (Cooke 1997).  Moreover, the (constant 
conditional) rank correlations may be chosen arbitrarily in 
the interval [-1,1]. 
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The edges of a regular vine may also be associated with 
partial correlations, with values chosen arbitrarily in the in-
terval (-1,1).  Using the well known recursive formulae (1) it 
can be shown that each such partial correlation regular vine 
uniquely determines the correlation matrix, and every full 
rank correlation matrix can be obtained in this way (Bedford 
and Cooke 2002). In other words, a regular vine provides a 
bijective mapping from (-1,1)N(N-1)/2  into the set of positive 
definite matrices with 1's on the diagonal. One verifies that 
ρij can be computed from the sub-vine generated  by the 
constraint set of the edge whose conditioned set is {i, j} us-
ing the following recursive formulae 
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When (X,Y) and (X,Z) are joined by the elliptical copula 
(see Figure 3)  (Kurowicka et. al. 2000) and the conditional 
copula (Y,Z|X) does not depend on X, then the conditional 
correlation (Y,Z) given X does not depend on X and  con-
ditional product moment correlation of Y,Z given X is 
equal to partial correlation (Kurowicka and Cooke 2001). 
 

 
 

Figure 3: The Scatter Plot of the Elliptical 
Copula with Correlation 0.8 

 
Moreover, there exists very compact functional form of the 
conditional distribution using the elliptical copula. 

Using elliptical copula vine structure can be uniquely 
associated with a full rank correlation matrix and can be 
converted into an on-the-fly sampling routine.   

2.2 Updating Vines 

For a regular vine-rank correlation specification with ellip-
tical copula updating with information is very simple. 
Since for elliptical copulae partial and conditional product 
moment correlations are equal then using the recursive 
formula (1) we can easily convert any partial correlation 
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vine into any other partial correlation vine. We convert 
given vine to the C-vine with variable which we observe, 
say 1, as a root. Conditional correlations don't depend on a 
value of 1 then we drop the "1"s from all conditions and as 
a result we obtain C-vine with variable 2 as a root. We can 
convert this "updated vine" to any other regular vine, re-
calculate conditional rank correlations and sample this 
"updated" vine if desired. 

 
3 BELIEF NETS 

3.1 Basic Concept 

A finite valued Belief Net is a directed acyclic, graph, to-
gether with an associated set of probability tables. The 
graph consists  of nodes and arcs. The nodes represent 
variables, which can be discrete or continuous. The arcs 
represent causal/influential or functional relationships be-
tween variables.  
 

 
 
 
 
 
 

Figure 4: A Simple Example Of BN’s 
 

The graph in Figure 4a) tells us that variables 2 and 3 are 
conditional independent given variable 1. The message of 
the graph on Figure 4b) is that 2 and 3 are independent and 
a distribution of 1 given 2 and 3 is arbitrary.  

If variables 1,2 and 3 on Figure 4a) take values “True” 
or “False” then two 2x2  probability tables must be speci-
fied (example shown in Table 1).  
 
Table 1: An Example of Probability Tables Specification in 
BNs 

 
Even for such a simple example, figuring out the right  
probabilities in the probability tables requires some work 
(e.g. statistical data or expert’s opinions). For a large net 
with many dependences and nodes that can take more val-
ues this is almost impossible. For continuous random vari-
ables, an adequate theory of BN’s exists only for the joint 
normal distribution. Despite of all these problems BN’s are 
a very powerful tool that enables us to model uncertain 
events and describe dependence structure in an intuitive, 
graphical way.  
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3.2 Updating BNs 

The main use of BNs is in situations that require statistical 
inference. If we know events that have actually been ob-
served, we might want to infer the probabilities of other 
events, which have not yet been observed. Using Bayes 
Theorem it is then possible to update the values of all the 
other probabilities in the BN. Updating BN’s  is very com-
plex involving arc reversing and addition but with the algo-
rithm proposed by (Lauritzen and Spiegelhalter 1988) it is 
possible to perform fast updating in large BNs.  

In the next section we show that a continuous belief 
net can be represented as a regular vine, where an arc from 
node i to j  is associated with a (conditional) rank correla-
tion between i  and j. 
 
4 ASSOCIATING A D-VINE WITH A BN 
 
We number the nodes in a belief net 1,…,n. 
 Step 1 Sampling Order. We construct a sampling or-
der  for the nodes, that is, an ordering such that all ances-
tors of node i appear before i in the ordering. A sampling 
order begins with a source node and ends with a sink node.  
Of course the sampling order is not in general unique. 
 Step 2 Factorize Joint. We first factorize the joint in 
the standard way following the sampling order. If the sam-
pling order is 1,2,…n, write: 
 

P(1,…n) = P(1)P(2|1)P(3|12)…P(n|1,2…n-1). 
 

Next, we underscore those nodes in each condition which 
are not necessary in sampling the conditioned variable. 
This uses (some of) the conditional independence relations 
in the belief net.  For example, for the BN in Figure 5 
 

 
 
 
 

 
 

 
 

Figure 5: Simple BN 
 

a sampling order is 1,2,3. Our factorization is 
 

P(1)P(2|1)P(3|12). 
 
For each term, we order the conditioning variables, i.e. the 
variables right of the “|”, such that the underscored vari-
ables (if any) appear right-most and the non-underscored 
variables left-most. 

1 2 

3 
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 Step 3 Quantify D-Vine for Node n. Suppose the last 
term looks like: 
 

P(n | n-1,n-3,…n-2, 3,2,1). 
 
Construct the D-vine with the nodes in the order in which 
they appear, starting with n (left) and ending with the last 
underscored node (if any). 
 If the D-vine D(n-1, n-3,…1) is given, the D-vine D(n, 
n-1,…1) can be obtained by adding the edges: 
 

(n, n-1), (n, n-3| n-1)….(n, 1 | n-1,…2). 
 
For any underscored node k, we have  
 
(n ⊥ k |  all non-underscored nodes ∪ any subset of under-

scored’s not including. k). 
 
The conditional correlation between n and an underscored 
node will be zero. For any non-underscored node j, the 
bivariate distribution  
 

(n,j | non-underscored nodes before j) 
 
will have to be assessed. The conditioned variables (n,j) 
correspond to an arc in the belief net. 
 Write these conditional bivariates next to the corre-
sponding arcs in the belief net. Note that we can write the 
(conditional) correlations associated with the incoming 
arcs for node n without actually drawing the D-vines.  If 
the last factor is P(5|1,2,3,4), we have incoming arcs (5,1), 
(5,2) and (5,3) which we associate with conditional corre-
lations (5,1), (5,2|1) and (5,3|12). 
 Step 4 Quantify D-Vine for Node n-1, for Node n-2 
etc. Proceed as in step 3 for nodes 1,2,…n-1. Notice that 
the order of these nodes need not be the same as in the pre-
vious step. Continue until we reach the D-vine D(12) or 
until the order doesn’t change in smaller subvines. i.e, if 
for node 4 the D-vine is D(4321)  and for node 3 it is 
D(321) then we can stop with node 4; or better,  we can 
quantify the vine D(321) as a subvine of D(4321). 
 Step 5 Construct Partial Correlation  D-Vine (1,…n). 
As a result of steps 1 - 4 each arc in the belief net is associ-
ated with a (conditional) bivariate distribution. These con-
ditional distributions do not necessarily agree with the 
edges in D(1…n) since the orders in the different steps 
may be different. However, if the conditional bivariate dis-
tributions are given by partial correlations, then given 
D(1…k) we can compute D(π(1)…π(k)) where π ∈ k! Is a 
permutation of 1,…k. Repeating using this fact, we com-
pute the partial correlations for D(1…n). Since the values 
of conditional correlations on regular ( sub)vines are alge-
braically independent and uniquely determine the correla-
tion (sub)structure, the above algorithm leads to an as-
signment of correlations and conditional correlations to arc 
in a belief net which are algebraically independent and 
which, together with the “zero edges” in the corresponding 
D-vines, uniquely determine the correlation matrix. Exam-
ple 1 (Figures 6-10) illustrates the above steps.  
 Example 1 

 
 
 

Figure 6:  Example 1; BN 
 

Sampling order: 1234 
 
Factorization: P(1)P(2|1)P(3|12)P(4|231) 
 
D-vine 4231: 

 
 
 
 
 
 
 

Figure 7:  Example 1; Step 2,3 
 
The dotted edge has partial correlation zero, the bold 

edges correspond to (4,2) and (4,3|2). These are written on 
the belief net and must be assessed. 

We now consider the tem P(3|12). The order is 
different than for the  term P(4 | 231). We construct 
D(312): 
 

 
 
 
 

Figure 8:  Example 1; Step 4 
 

The dotted edges have partial correlation zero, the bold 
edge must be assessed, it is added to the belief net. The 
belief net is now quantified: 
 

 
 
 

Figure 9:  Example 1; BN with Conditional 
Correlations 

 
With the partial correlations in D(312) we compute using the 
recursive relations D(231). In fact, we find ρ23 =ρ23;1 = 0. We 
now have D(4231) which corresponds to the belief net. 
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Figure 10:  D-Vine Corresponding to Example 1 

 
 Example 2. The steps for this example are illustrated 
in Figures 11-15. 

 

 
 
 
 
 
 
 
 

Figure 11:  Example 2; BN 
 

Sampling order: 12345 
 
Factorization: 
P(1)P(2|1)P(3|12)P(4|321)P(5|2413)D(52413): 

 

 
 
 
 
 
 
 
 

 
 
 

Figure 12:  Example 2; Step 2,3 
 

D(4321): 
 

 
 

 
 
 
 
 

 
Figure 13: Example 2; Step 4 
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D(312): 
 
 
 
 
 

Figure 14: Example 2; Step 4 (continued) 
 

We don’t need to draw D(21). The Belief net becomes: 
 

 
 
 
 
 
 
 
 

Figure 15:  Example 2; BN with Conditional Correlations 
 

 Example 3. We may omit drawing all the vines  by 
noting that we can identify the (conditonal) correlations 
which must be specified on the BN directly in steps 3 and 4 
of the above algorithm. Thus consider the BN in Figure16. 

 

 
 
 
 
 
 
 
 

Figure 16:  Example 3; BN 
 

Sampling order: 12345 
 
Factorization:  P(1)P(2|1)P(3|12)P(4|231)P(5|3412). 
This enables us to write the necessary conditonal correla-
tions directly on the BN (see Figure 17): 

 
 

 
 
 
 
 

 

Figure 17: Example 3; BN with Conditional Correlations 

5 CANONICAL VINE 

We could also use the C-vine in the same way as the D-vine 
in the above procedure. The only problem is that it doesn’t 
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draw nicely. With the C-vine, the procedure is different ac-
cording to whether we add a new variable to the end or the 
beginning of the vine. For example, suppose we have 
C(1234) and we want to add variable 5 at the end  to con-
struct C(12345). We have to add edges corresponding to the 
conditions: (51), (5,2|1),  (5,3|12),  (5,4|123). This is the same 
as for the D-vine D(51234). However if we want to add 5 to 
the beginning, to form C(51234) then we have to add condi-
tions (51), (52), (53), and (54) and we have to add 5 to the set 
of conditioning variables in each of the nodes of  C(1234). 
 As mentioned above, C-vines are most useful for ac-
tual sampling and for conditionalization. Hence in using 
belief nets, we will be doing lots of vine transformations. 
The elliptical copula will not create errors, whereas for 
some other copula, errors in approximating conditional as 
partial correlation will cumulate. 
 Example 4. In this example we use C-vine to quan-
tify the belief net. The above steps are illustrated in Fig-
ures 18-20. 

 
 

 
 

 
 
 
 
 

 
Figure 18:  Example 4; BN 

 
Sampling order: 12345 
 
Factorization: P(1)P(2|1)P(3|2 1)P(4|2 3 1) 
 
               C(2314):                                        C(213): 

 

 

 

 

 
Figure 19:  Example 4; Step 2,3,4 with C-Vine 
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As a result we obtain: 
 

 
 
 
 
 
 
 
 

 

Figure 20:  Example 4; 
BN with Conditional 
Correlations 

6 FROM VINES TO BELIEF NETS 

Obviously, from a given D-vine or C-vine we can’t 
uniquely construct a belief net, as the order of the sub 
vines may change. However, in some  simple cases we 
can invert the algorithm of Section 2.  Dotted edges indi-
cate zero correlation. 
 Example 5. Let us consider the D-vine in Figure 21. 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 21:  Example 5; D-Vine 
 

This corresponds to a factorization: 
 

P(1) P(2 | 1) P(3 | 2 1) P(4 | 3 2 1) P(5 | 4 3 2 1). 
 
The belief net is shown in Figure 22 

 
 
 

 
Figure 22: BN with Conditional Correlations Correspond-
ing to Example 5 
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 Example 6. Let us consider the D-vine in Figure 22. 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 23:  Example 6; D-Vine 
 

The factorization is  
 

P(1) P(2 | 1) P(3 | 21) P(4 | 321) P(5 | 4321). 
 
The belief net is shown in Figure 24: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 24: Belief Net with 5 Nodes Corresponding to the 
D-Vine 

 
Not very interesting. We don’t add the conditions as they 
correspond to all the edges in the D-vine. 
 
 Example 7. Let us consider the D-vine in Figure 25. 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 25: Example 7; D-vine 
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The factorization is 
 

P(1) P(2 | 1) P(3 | 21) P(4 | 321) P(5 | 4321). 
 
The belief net is shown in Figure 26. 
 

 
 
 
 

 

Figure 26: BN with Conditional Correlations Corresponding 
to Example 7 

 Example 8. Let  us consider the D-vine in Figure 27. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 27:  Example 8; BN 

 
Factorization: 
 

P(1) P(2 | 1) P(3 | 21) P(4 | 321) P(5 | 4321). 
 
The belief net is shown in Figure 28. 

 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 28: BN with Conditional Correlations Correspond-
ing to Example 8 
 
And so on. 
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7 FROM CORRELATION MATRIX TO BN   

The interesting problem arises when we want to reconstruct  
the graphical dependence structure from the data. The corre-
lation matrix can be calculated and cells significantly differ-
ent then zero selected. The correlation matrix calculated 
from the date is changed to one with  zeros in places where 
correlations don’t differ significantly from zero. (Note that 
this procedure can be quite difficult since the changed matrix 
must satisfy positive definiteness constraint). Then we can 
calculate correlations on the C or D- vine and determine the 
belief net corresponding to it. The easiest way would be to 
take belief net as on Figure 24, calculate all partial correla-
tions on the D-vine and assign them to  arcs of the belief net. 
This is simple but not too smart since we would like to re-
cover from the data the most conditional indifference rela-
tionships and reduce maximally number of arcs in the belief 
net. This can be done by finding the right ordering of vari-
ables that gives us maximal number of partial correlations 
on the C- vine equal to zero.   
 The following procedure can be used: 
 

• Choose a variable with maximum number of zeros 
in the correlation matrix (say A) as a first in the 
ordering. (It is obvious that this way we maximize 
number of zeros in the first tree of canonical vine  
on Figure 2 ). 

• Calculate a matrix of partial correlations of the 
first order given this chosen first variable. (We 
denote this matrix A;1 = [ρij;1] ). Using formula (1) 
we immediately see that the matrix A;1 has zero in 
every cell where ρ1j=0 and ρij=0, i=2,…,n. (Notice 
that ρij;1=0 also when ρij=ρ1iρ1j) 

• As a second in the ordering choose variable which 
has the most zeros in the matrix A;1. This way the 
maximum number of zeros will be obtained in the 
second tree of the canonical vine etc… 

 
Of course the above procedure doesn’t give the unique or-
dering but always produces a canonical vine with maxi-
mum number of partial correlations equal to zero.  
 Example 9. Let us consider the following matrix 
 
 
  
 
 
 
 
Following the above procedure we find new ordering of 
variables [1 5 2 4 3] and the C-vine  

 

ρ15 ρ12 ρ14 ρ13 0 0.5 0 0 
 ρ25;1 ρ45;1 ρ35;1  0 0.2 0 
  ρ24;15 ρ23;15   0 0.1155 
   ρ34;152 

 
 
= 

   0.7192 

1 0.5 0 0 0 
0.5 1 0.1 0 0 
0 0.1 1 0.7 0 
0 0 0.7 1 0.2 
0 0 0 0.2 1 
Now we build the belief net corresponding to this vine: 
 
• Start with the last variable , that is 3. All partial 

correlations on the C-vine involving 3 as a condi-
tioned variables appear in the last column of the 
above matrix. 

• Add arrow to the node 3 from each variable which 
appear with 3 in conditioned set of non-zero partial 
correlation. (Correlations 23;15 and 34;152 are 
non-zero hence 3 gets arrows from nodes 2 and 4). 

• Proceed the same way with the next in backward 
ordering  variable, that is 4. Draw arrows to 4 
from each variable which appear in conditioned 
set of non-zero correlation in third column of the 
above matrix. (Correlation 45;1 is non-zero hence 
4 gets arrow from 5) 

• In the end correlation 12 is nonzero hence 2 gets 
arrow from 1. 

  
We obtain the following belief net shown in Figure 29. 

 
 
 
 
 
 
 
 
 

 
Figure 29: BN Corresponding To Example 9 

 
8 CONCLUSIONS 
 

1. Using the elliptical copula and regular vines, we 
have shown how an arbitrary belief net with arbi-
trary continuous univariate distributions at the 
nodes can be quantified. Influence is represented 
as (conditional) rank correlation. The (condi-
tional) correlations are algebraically independent 
and, in combination with the (conditional) indif-
ference statements implied by the belief net, 
uniquely determine the correlation structure.   

2. Sampling and conditionalization are easily per-
formed by transforming to the appropriate C-vine.  

3. Finally, we show how the regular-vine-elliptical-
copula approach can be used to infer a belief net 
from an empirical correlation matrix. 
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