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ABSTRACT

Providing accurate and automated input-modeling supp
is one of the challenging problems in the application
computer simulation. The models incorporated in curre
input-modeling software packages often fall short of wha
needed because they emphasize independent and ident
distributed processes, while dependent time-series proce
occur naturally in the simulation of many real-life system
This paper introduces a statistical methodology for fitti
stochastic models to dependent time-series input proces
Specifically, an automated and statistically valid algorith
is presented to fit ARTA (Autoregressive-to-Anything) pro
cesses with marginal distributions from the Johnson tra
lation system to stationary univariate time-series data. T
use of this algorithm is illustrated via a real-life example

1 INTRODUCTION

Dependent time-series input processes occur naturally
the simulation of many service, communications, and m
ufacturing systems. For example, Melamed et al. (199
observe autocorrelation in sequences of compressed v
frame bitrates, while Ware et al. (1998) report that the tim
between file accesses on a computer network frequently
hibit burstiness, as characterized by a sequence of s
interaccess times followed by one or more long ones. La
in this article, we model a pressure variable of a continuo
flow production line that is measured at fixed time interva
these measurements exhibit strong series dependence
have been previously studied by Cario and Nelson (199

The development of models for such time-series p
cesses is motivated by the fact that ignoring depende
can lead to performance measures that are seriously in e
and a significant distortion of the simulated system. A
illustration is given by Livny et al. (1993), who examine th
impact of autocorrelation on queueing systems and rep
that when positive autocorrelation among, say, the inter
y
s

.

t

d

r

rival times is ignored, then simulation results may gross
underestimate system congestion.

Much of the past work on time-series input process
is based on linear models, such as the ARMA class
those which underlie Kalman filtering and related metho
(Chatfield 1999). Mallows (1967) shows that the lineari
of these models imply normal marginal distributions, b
there are many physical situations in which the margina
of the time series are non-normal. Motivated by this, the
has been considerable research on modeling time se
with marginals from specific families, such as exponenti
gamma, geometric, or general discrete marginal distributio
(see, for example, Lewis et al. 1989). However, the
models often allow only limited control of the dependenc
structure and a different model is required for each type
marginal distribution.

A way to overcome these limitations is to construct th
desired process by a monotone transform of a Gaussian lin
process. For example, Cario and Nelson (1996) and Ca
et al. (2001) take this approach to develop models for re
resenting and generating stationary univariate time-ser
processes and finite-dimensional random vectors, resp
tively. The central idea in the former study is to transform
Gaussian autoregressive process into the desired univa
time-series input process that they presume as having
ARTA (Autoregressive-To-Anything) distribution, while the
latter study transforms a multivariate normal random vec
into the desired random vector that they refer to as ha
ing a NORTA (Normal-To-Anything) distribution. In both
studies, the authors manipulate the correlations of the co
sponding Gaussian process so that they achieve the des
correlations for the simulation input process. They assu
— as is common in the simulation input-modeling literatu
— that the desired marginal distribution and dependen
structure (specified via correlations) are given. Howev
there is no rigorously justified method for fitting the inpu
model when only raw data generated by an unknown proc
are available. Therefore, the purpose of the present pa
is to solve the problem of fitting stochastic input models
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stationary univariate time-series data and, specifically, fi
ting ARTA processes with marginal distributions from the
Johnson translation system.

To facilitate a detailed discussion of the data-fittin
problem, we first review the essential ideas involved
ARTA processes suggested by Cario and Nelson (199
The rest of the paper is organized around the presentat
of the three key levels of solving the data-fitting problem
In Section 3, we provide the iterative fitting algorithm an
the statistical properties of the resulting estimators, and
Section 4, we give a brief review of the numerical method
used to implement the suggested algorithm. Section
provides a real-life example demonstrating the use of t
algorithm and Section 6 gives concluding remarks.

2 OVERVIEW OF THE ARTA FRAMEWORK

In this section, we introduce the notation we will use an
provide a brief review of the Johnson translation system
we then describe ARTA processes.

2.1 Notation

We let the generic univariate input random variable be d
noted byX, with marginal cumulative distribution function
(cdf) FX. The cdf of the standard normal distribution is
denoted by8 and its probability density function byφ.
The mean of a random variable is denoted byµ and its
variance byσ 2.

A univariate time-series input process is denoted b
{Xt ; t = 1,2, . . .}. The term “time series" means that the
random variables may be dependent in sequence, such as
month-to-month demands for a product by a customer. W
denote any realization of lengthn from the input processXt
by {xt ; t = 1,2, . . . , n}. Boldface type is used to denote
column vectors; e.g.,x = (x1, x2, . . . , xn)

′.
We account for dependence between random va

ables that are lag-h apart, say Xt and Xt−h, via
their product-moment correlation defined asρX (h) =
E
[
σ−2 (Xt − µ) (Xt−h − µ)

]
, whereXt has meanµ and

varianceσ 2 for all t due to the assumption of stationarity
of the input process.

2.2 Johnson Translation System

The Johnson translation system for a random variableX is
defined by a cdf of the form

FX(x) = 8
{
γ + δf

[
x − ξ
λ

]}
,

whereγ andδ are shape parameters,ξ is a location parameter,
t-

n
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λ is a scale parameter, andf (·) is one of the following
transformations:

f (y) =



log(y) for the SL (lognormal) family,

sinh−1 (y) for the SU (unbounded) family,

log
(

y
1−y

)
for the SB (bounded) family,

y for the SN (normal) family.

There is a unique family (choice off ) for each feasible
combination of finite skewness and kurtosis that determ
the parametersγ andδ. Any mean and (positive) variance
can be attained by any one of the families by the manipulat
of the parametersλ andξ . Within each family, a distribution
is completely specified by the values of the paramete
(γ, δ, λ, ξ); the range ofX depends on the family of interes
(Johnson 1949).

The Johnson translation system provides good repres
tations for unimodal distributions and can represent cert
bimodal shapes, but not three or more modes. Illust
tions of the shapes of the Johnson-type probability dens
functions can be found in Johnson (1987). The first fo
moments of all distributions in the families SL, SB , SU , and
SN are finite. Nevertheless, the ability to match any (finit
first four moments provides a great deal of flexibility tha
is sufficient for many practical problems.

2.3 ARTA Processes

An ARTA process is a time series with arbitrary margin
distribution and autocorrelation structure specified throu
finite lag p. It is based on the construction of a Gaussia
standard time-series {Zt ; t = 1,2, . . . , n} as a base process
from which we obtain a series of autocorrelated(0,1)
uniform random variables {Ut ; t = 1,2, . . . , n} by using
the probability-integral transformationUt = 8(Zt). Then,
the transformationXt = F−1

X [Ut ] is applied, ensuring that
the input time-series process {Xt ; t = 1,2, . . . , n} has the
desired marginal distributionFX. This approach works for
any marginal distribution, althoughF−1

X may have to be
evaluated by an approximate numerical method when th
is no exact closed-form expression. The inverse cdf meth
is an essential ingredient of the framework described in t
remainder of this section.

In the ARTA framework, the base process {Zt ; t =
1,2, . . . , n} is a stationary, standard Gaussian autoregress
process of orderp (denoted AR(p)) with the representation

Zt =
p∑
h=1

αhZt−h + Yt , t = 1,2, . . . , n.

The αh, h = 1,2, . . . , p, are fixed autoregressive coeffi
cients andYt is white noise, representing that part ofZt
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that is not linearly dependent on past observations. T
structure ofYt is such that

E[Yt ] = 0 and E[YtYt−h] =
{
σ 2
Y if h = 0,

0 otherwise.

Choosingσ 2
Y appropriately ensures that eachZt is marginally

standard normal while the autoregressive coefficientsαh,
h = 1,2, . . . , p, uniquely determine the autocorrelation
structure of the base process,ρZ(h), h = 1,2, . . . , p. Cario
and Nelson (1996) have shown that the lag-h input auto-
correlation ρX(h) of the time-series input process {Xt ;
t = 1,2, . . . , n} is a continuous, nondecreasing function o
the lag-h autocorrelationρZ(h) of the base process. There
fore, if both the marginal distributionFX and the desired
input autocorrelationsρX(h), h = 1,2, . . . , p, are known,
then one can adjust the dependence in theZt process to
yield the desired dependence in theXt process by using any
of the computationally feasible methods suggested by So
et al. (1996), Cario and Nelson (1998), and Chen (200
The problem that has not been addressed is estimating
parameters of an ARTA process when only raw data pr
duced by an unknown process are available. We will atta
this problem in the remainder of the paper.

3 FITTING ARTA MODELS

In this section, we present the ARTA fitting algorithm to
gether with the theory that supports it and the statistic
properties that justify its use.

3.1 The Model

We are particularly interested in input modeling problem
in which data are plentiful and nearly automated input mo
eling is required. Consequently, we use a member of t
Johnson translation system to characterize the marginal d
tribution of the input process. A robust method for fittin
target distributions from the Johnson translation system
i.i.d. data is suggested by Swain et al. (1988) and imp
mented in software called FITTR1. They demonstrate t
robustness and computational efficiency of least-squar
minimumL1 norm, and minimumL∞ norm techniques for
estimating Johnson-type marginals. We believe that simi
techniques can be effectively adapted to fitting ARTA mod
els to dependent univariate data. We outline our approa
below.

Let {Xt ; t = 1,2, . . . , n} denote a stationary univariate
time-series input process. The goal is to approximate {Xt ;
rd
e

e

-

,

t = 1,2, . . . , n} by an ARTA process whose complete
specification is given by

Xt = F−1
X

[
8−1 (Zt )

]
= ξ + λf−1

[
Zt − γ
δ

]
, (1)

where

Zt =
p∑
h=1

αhZt−h + Yt , (2)

with Yt , t = p+1, p+2, . . . , n, independent and identically
distributed Gaussian random variables with mean zero a
varianceσ 2

Y . The value ofσ 2
Y that is required to forceZt to

have variance 1 is completely determined byα1, α2, . . . , αp
(Wei 1990). Therefore, we will writeσY ≡ g (p,α), where
α = (

α1, α2, . . . , αp
)
, and no longer considerσ 2

Y as a
parameter to be estimated. And from here on when
say “ARTA process,” we will mean an ARTA process with
Johnson-type marginals.

It is easy to see from Equations (1) and (2) that fittin
an ARTA process to data corresponds to the estimation
f , γ , δ, λ, ξ , p, and αh for h = 1,2, . . . , p. For ease
of presentation of the ARTA fitting algorithm, we assum
that the order of the underlying base processp and the
type of the Johnson transformationf are known. Clearly,
these also need to be determined in general. We add
this issue in Section 4.

Let ψ correspond to the vector of ARTA parameter
ψ = (λ, δ, γ, ξ, α1, α2, . . . , αp

)
, and consider the standard

ized white noise process

Vt (ψ) = Yt

g (p,α)
= Zt −∑p

h=1 αhZt−h
g (p,α)

.

If we further write the base random variableZt as a function
of the input random variableXt using (1), then we get
the following expression for the standardized white noi
process:

Vt (ψ) =
γ + δf

[
Xt−ξ
λ

]
−∑p

h=1 αh

(
γ + δf

[
Xt−h−ξ

λ

])
g (p,α)

.

(3)

SupposeXt is actually an ARTA process with the
parameter vectorψ∗. If we have all of the parameter value
correct,ψ = ψ∗, thenVt

(
ψ∗
)
, t = p + 1, p + 2, . . . , n,

are independent and identically distributed (i.i.d.) standa
normal random variables. Thus, the fitting procedure w
propose searches for parameters that makeVt (ψ), t =
p + 1, p + 2, . . . , n, appear to be such a sample.
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Let V(p+1) (ψ) ≤ V(p+2) (ψ) ≤ · · · ≤ V(n) (ψ) denote
the order statistics corresponding to the random varia
Vt (ψ), t = p + 1, p + 2, . . . , n. If ψ = ψ∗, then the
transformed variateR(t)

(
ψ∗
) = 8 {V(t) (ψ∗)} has the dis-

tribution of thet th order statistic in a random sample of siz
n−p from the uniform distribution on the unit interval(0,1).
SinceR(t)

(
ψ∗
)

has meanρt = (t − p) /(n−p+1) (Kendall
and Stuart 1979), we can writeR(t)

(
ψ∗
) = ρt + εt (ψ∗) so

that the {εt
(
ψ∗
)
; t = p + 1, p + 2, . . . , n} are translated

uniform order statistics with mean zero and covariance

Cov
(
εj
(
ψ∗
)
, εk

(
ψ∗
) ) = ρj (1− ρk)

n− p + 2
, p + 1≤ j ≤ k ≤ n.

Let Ro(ψ) ≡ (R(p+1)(ψ), R(p+2)(ψ), . . . , R(n)(ψ))
′, ρ ≡

(ρp+1, ρp+2, . . . , ρn)
′, andε(ψ) ≡ (εp+1(ψ), εp+2(ψ), . . .,

εn(ψ))
′, so thatε(ψ∗) ≡ Ro(ψ

∗)−ρ. Since the first and sec
ond moments of the uniformized order statistics are kno
and easily computed, we exploit this fact to develop a sing
distribution-free formulation of the fitting problem. Speci
ically, we minimize the distance betweenρ and Ro (ψ)

as a function ofψ with respect to some metric define
by a quadratic form in the(n− p)-dimensional Euclidean
space. IfW is the (n− p) × (n− p) matrix associated
with this quadratic form, then the parameter estimates
be obtained via least-squares fitting given by

minψ SW (ψ) ≡ ε (ψ)′Wε (ψ)

subject to ψ ∈ 9. (4)

We define the feasible region9 as follows:

9 = {(γ, δ, λ, ξ, α1, α2, . . . , αp)
′ :

δ > 0,

λ

 > 0 for f = SU ,
> X(n) − ξ for f = SB,
= 1 for f = SL andf = SN.

ξ

{
< X(1) for f = SL andf = SB,
= 0 for f = SN .∣∣RootOf

(
1−∑p

h=1 αhB
h = 0, B

)∣∣ > 1},
(5)

where the function RootOf is a place holder for represent
all the roots of the equation 1−∑p

h=1 αhB
h = 0 in the

variableB. The first three of the constraints (5) ensure t
feasibility of the Johnson parameters depending on the fam
of interest, and the last constraint ensures the stationarit
the autoregressive base process, and hence the station
of the input process (Cario and Nelson 1996).

Based on the experience of Swain et al. (1988) a
Kuhl and Wilson (1999), we choose to use the diagon
weight matrix,W = D, defined as

D =
diag

{
1/Var

(
εp+1

(
ψ∗
))
, . . . ,1/Var

(
εn
(
ψ∗
))}

, (6)
e

n
,

n

g

ly
of
rity

d
l

giving us the diagonally-weighted least-squares (DWLS) p
rameter estimators. In expanded form, the objective funct
of the DWLS least-squares estimation problem, using (
and (6), can be written as

SD (ψ) = ε (ψ)′ Dε (ψ)

=
n∑

t=p+1

w (n, p, t)
(
8
{
V(t) (ψ)

}− ρt)2 ,
(7)

where

w (n, p, t) = (n− p + 1)2(n− p + 2)

(n− p)2 (t − p)(n+ 1− t)
and {Vt (ψ); t = p + 1, p + 2, . . . , n} is given by (3).
Notice that the use of the uniformized order statistics f
fitting permits a single formulation for not only Johnson
type distributions, but all continuous distributions, becau
the necessary first and second moments of{8{V(t) (ψ)}; t =
p + 1, p + 2, . . . , n}, are known and easily computed.

3.2 ARTA Fitting Algorithm

One can minimize the objective function (7) subject to th
constraints in (5) by using a general-purpose optimizati
algorithm. Unfortunately, many of these algorithms a
dependent upon good initial estimates of the paramete
Further, the number of model parameters we need to
timate is p + 4, which increases linearly with the orde
of dependencep, making it even less likely that we can
obtain robust estimates that are independent of the qua
of the initial solution asp gets larger. Fortunately, there
is a natural decomposition of our optimization problem b
tween determining the Johnson parameters(γ, δ, λ, ξ) and
the base-process parameters

(
α1, α2, . . . , αp

)
. Further, we

have empirically observed that solvingSD (ψ) for any given
fixed feasibleγ, δ, λ, ξ provides pretty robust estimates o
α1, α2, . . . , αp. Therefore, we work iteratively between im
proving the estimates for(γ, δ, λ, ξ) and

(
α1, α2, . . . , αp

)
.

First, we define the solution set as the collection
parameters at which all of the entries of the gradient of t
objective functionSD (ψ) attain the value of zero. Then, we
start the algorithm with a parameter vector in the feasib
region9 (5). Next we solve the least-squares fitting proble
for the Johnson parametersγ, δ, λ, ξ by keeping the base
process parametersα1, α2, . . . , αp fixed. We call this Stage
1. Then, we solve the least-squares fitting problem f
α1, α2, . . . , αp by keepingγ, δ, λ, ξ fixed and we call this
Stage 2. Until the ARTA fitting algorithm reaches a poin
in the solution set, we work iteratively between Stage 1 a
Stage 2, converging to a stationary point.
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3.3 Properties of the ARTA Estimators

Suppose thatX1, X2, . . . , Xn are identically distributed ran-
dom variables with a joint ARTA distribution characterize
by the parameter vectorψ∗. Even if we assume that the typ
of the Johnson transformationf and the order of dependenc
p are known, the DWLS estimatorŝψn are not necessarily
consistent. In the limit, the DWLS problem requires on
that the empirical distribution ofRt(ψ) = 8 {Vt (ψ)} con-
verges toU(0,1), the uniform distribution on(0,1). This
can occur at parameter settings other thanψ∗, for instance at
(γ = γ ∗, δ = δ∗, λ = λ∗, ξ = ξ∗, αh = 0, h = 1,2, . . . , p).
Of course, in finite samples the joint distribution of th
order statistics does matter in minimizing (7), and,
shown in Biller and Nelson (2002b), only atψ = ψ∗ are
theRt(ψ) i.i.d. U(0,1). This accounts for the performanc
of our algorithm in recoveringψ∗ when the true process
is ARTA.

Since our goal is data modeling, rather than recovery
the true distribution, consistency is not a critical proper
Nevertheless, it is desirable. Although the estimatorψ̂n
is not consistent in general, it does have certain limit
consistency properties that are of interest:

1. Pr[λ̂n → λ∗] = 1 and Pr[ξ̂n → ξ∗] = 1.

2. If αh = α∗h, h = 1,2, . . . , p, then Pr[ψ̂n → ψ∗] = 1.

The first result is of limited practical value. Howeve
the second result is helpful in two ways:

We proposed decomposing the algorithm for so
ing the least-squares problem into two steps—improv
the estimates of(γ, δ, λ, ξ) and improving the estimates
of (α1, α2, . . . , αp)—-because we observed that the es
mates of(α1, α2, . . . , αp) are robust to poor estimates o
(γ, δ, λ, ξ). The second result shows that when we get the
base process parameters right, the least-squares estim
of the remaining Johnson parameters are consistent.
derivation of the corresponding result is available in Bill
and Nelson (2002b).

Notice also that whenp = 0, the first stage of the
ARTA fitting algorithm reduces to the one suggested
Swain et al. (1988) and it performs least-squares fitti
by treating the given sample points as independent.
{Xt ; t = 1,2, . . . , n} were i.i.d. Johnson-type random var
ables with the parameter setψ∗ = (γ ∗, δ∗, λ∗, ξ∗), then the
model with p = 0 would be correct and the transforme
random variateR(t)

(
ψ∗
) = 8 {γ ∗ + δ∗f [(X(t) − ξ∗)/λ∗]}

would have the distribution of thet th uniform order statistic
on the unit interval(0,1). Although Swain et al. (1988)
show empirically that the suggested least-squares estima
provide a convenient computational method for fitting a
member of the Johnson system whenp = 0, they do not
present any statistical properties of these estimators.
second result indicates that the fitting procedure of Sw
et al. gives strongly consistent estimators of the John
parameters.
rs

s

Since strongly consistent estimators of the paramet
of Gaussian AR(p) processes are well known, why no
incorporate them into our algorithm? Our motivation fo
the formulation (7) was to characterize the joint estimatio
of (γ, δ, λ, ξ, α1, α2, . . . , αp) by a single objective that did
not favor either the Johnson or the base process parame
leading to a direct proof of the convergence of the numeric
algorithm. Alternative formulations that lead to strongl
consistent estimators of the entire vector of parametersψ∗
are a subject of future research.

4 IMPLEMENTATION

The implementation of the ARTA fitting algorithm gives rise
to a number of issues including the determination of th
initial values for input process and base process, charac
ized by(f, γ, δ, λ, ξ) and

(
p, α1, α2, . . . , αp

)
, respectively,

the optimization algorithms used to solve each stage of t
algorithm, the assurance of the stationarity of the inp
process, and the positive definiteness of the autocorrelat
structure of the base process.

A common procedure for identifying the type of trans
formation to use from the Johnson translation system
to compute the sample skewness and kurtosis, and th
pick the family associated with that point on the (skewnes
kurtosis) plane. Algorithm AS 99 developed by Hill et al
(1976) does this, for instance. However, we choose to
all of the families and compare the goodness of the fits
bias and variability in the higher sample moments caus
the likelihood of identifying the wrong transformation to
be very high. Using the Algorithm AS 99, we choos
such starting Johnson parameters that they are feasible
both the prespecified Johnson transformation and the giv
collection of data points.

Using the initial estimates for the Johnson paramete
γ̂ , δ̂, λ̂, ξ̂ , we transform the input datax1, x2, . . . , xn via

zt = ξ̂ + λ̂f
[(
xt − γ̂

)
/δ̂
]
, t = 1,2, . . . , n. By treating

the transformed datâzt as a sample of lengthn from a
Gaussian autoregressive process, we fit an autoregres
model by least-squares estimation and, at the same tim
we determine the order of dependencep̂ via the Schwarz
criterion, an asymptotically consistent AR order-selectio
method that has been quite popular in recent applied wo
We take the resulting estimates as the starting parame
vector for the underlying base process.

We choose to perform the DWLS estimation using
Levenberg-Marquardt (LM) optimization algorithm (Mar-
quardt 1963). Despite its convergence properties, the c
vergence of the LM algorithm in practice might be slow
and often this is the case. Therefore, if the terminatio
criterion has not been satisfied in a prespecified numb
of iterations, then, we resort to the Nelder-Mead algorith
(Olsson 1974).
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The ARTA fitting algorithm approximates the inpu
process by a stationary ARTA model with a positive defin
autocorrelation matrix. It maintains stationarity enforcin
the constraint given as the last line of the definition in (5
Further, the fitted autocorrelation matrix is always positi
definite, because the autocovariance function of a covaria
stationary sequence with an autoregressive representati
positive definite (Fishman 1973).

5 AN ILLUSTRATIVE EXAMPLE

In this section, we approximate an input process that
been previously studied in Cario and Nelson (1998) by
ARTA model. They use 519 data points recorded at fix
time increments on a pressure variable of a continuous-fl
production line at a large chemical manufacturing pla
these measurements exhibit strong series dependence

Cario and Nelson (1998) chose the Weibull margin
distribution function. Since their software ARTAFACTS
has no capabilities for fitting marginal distributions, the
determined the parameters of the Weibull distribution w
the aid of theArena InputAnalyzer (Rockwell Software) th
assumes i.i.d. data and uses maximum likelihood estimat
In addition, they approximated the input autocorrelati
structure using the estimated autocorrelation function of
raw data and assumed an order of dependencep = 3. We
call this model “artafacts" and denote it by “AF" in Tabl
1.

Our software fit a Johnson unbounded distribution a
an autocorrelation structure withp = 2 characterized by
(γ, δ, λ, ξ) = (2.046,3.151,0.457,1.217) and (α1, α2) =
(1.050,−0.342). We call this model “artafit," denote it by
“ARF(p)" in Table 1, and usep to denote its order. The
histogram of the time series and the plots of the probabi
density functions fitted by both models are given in Figu
1.

In the first two rows of Table 1, we report th
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tes
statistics comparing the empirical distribution function wi
the fitted distributions. The second column corresponds
the fit suggested by Cario and Nelson (1998), the third c
umn corresponds to the Johnson fit under the assumptio
independence, and the other columns correspond to Joh
fits under the assumptions of orders 1, 2, and 3, respectiv
The fitted Johnson-type marginal distributions whenp = 1
andp = 2 are statistically superior to the one suggested
Cario and Nelson (1998), particularly in capturing the ta
behavior as indicated by the AD test statistics.

In order to check the goodness of the fit of the a
tocorrelation structure, we choose to compare the spec
distribution functions using the Kolmogorov-Smirnov cr
terion (Anderson 1993). The corresponding test statis
are provided on the last row of Table 1. Although th
Johnson-type fits withp = 1 andp = 2 have the same KS
s
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Figure 1: Histogram of the Empirical Pressure Data (wit
Nonparametric Density Estimate Superimposed) and t
Probability Density Functions for FittedWeibull and Johnso
Unbounded Distributions

Table 1: Comparison of the Kolmogorov-Smirnov,
Ander-son-Darling, and KS Spectral Test Statistics

AF ARF(0) ARF(1) ARF(2) ARF(3)
KSX 1.764 1.038 0.841 0.841 1.538
ADX 3.295 0.758 0.758 0.755 2.563
KSρX 0.004 0.509 0.204 0.095 0.099

and AD test statistics, the one withp = 2 has a significantly
smaller spectral test statistic, providing a better fit for th
autocorrelation structure of the process. At the same tim
the artafacts autocorrelations give significantly better fi
for the sample autocorrelations than the autocorrelations
the artafit(2) model. However, a pure correlation matc
is not the only thing that matters while choosing a goo
representation for the underlying system. This will be clea
in the the visual analysis of the time-series plots in Figure
2-4 and scatter plots in Figures 5-7.

Next, using the artafit and artafacts models, we genera
519 data points. Figures 2, 3, and 4 display the time-seri
plots while Figures 5, 6, and 7 provide the scatter plots o
(xt , xt+1), (xt , xt+2), (xt , xt+3) for the empirical pressure
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data and the data of the fitted artafacts and artafit models. T
sample paths are qualitatively similar, although we obser
differences that can be partly attributed to the sampli
error. In the empirical time series, there appear spikes t
cannot be captured by the artafacts model which var
more consistently about its mean. In addition, comparis
of Figure 5 and 6 shows that the artafacts data appe
to be more scattered or random than the empirical da
Thus, the marginal distribution and autocorrelation structu
of the artafacts process do not perform well in capturin
the characteristics of the time-series process. However,
artafit(2) model appears to be more successful in represen
the characteristics of the empirical data. Comparison
Figures 2 and 4 shows that the artafit(2) model captur
the height of the spikes reasonably well, but the number
spikes generated by the artafit(2) process is not as large
the number of spikes generated by the empirical time seri
However, the comparison of Figures 5 and 7 shows that
artafit(2) process is still reasonably successful in capturi
the autocorrelation structure of the empirical time-seri
process. Overall, the artafit(2) process provides a plausi
model for the empirical time series.
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Figure 2: Time-series Plot of the Empirical Data
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Figure 3: Time-series Plot of the Artafacts Data
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Figure 5: Scatter Plots of(xt , xt+1), (xt , xt+2), (xt , xt+3)

for the Empirical Pressure Data
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Figure 6: Scatter Plots of(xt , xt+1), (xt , xt+2), (xt , xt+3)

for the Artafact Data
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Figure 7: Scatter Plots of(xt , xt+1), (xt , xt+2), and
(xt , xt+3) for the Artafit Data

6 CONCLUSION

In this paper, we propose an algorithm to fit stochasti
input models to dependent univariate time-series processe
In order to demonstrate the use of the algorithm, we fi
an input model to data generated by a physical proces
A comprehensive empirical analysis of the ARTA fitting
algorithm is reported in Biller (2002).

Recently, Biller and Nelson (2002a) suggested a mor
comprehensive model for representing and generating st
tionary multivariate time-series input processes with arbi-
trary autocorrelation structures and specifically considere
the case of marginal distributions from the Johnson trans
lation system. Their approach is very similar to the one in
Cario and Nelson (1996), but they use a vector autoregressi
Gaussian process that allows the modeling and generati
of multivariate time-series processes. A natural extension o
the work presented in this paper is to fit stochastic mode
to dependent, multivariate time-series input processes. Th
is a subject of our future research.
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