
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

COMPONENT BASED SIMULATION MODELING WITH SIMKIT

Arnold Buss

MOVES Institute
Naval Postgraduate School

Monterey, CA 93943, U.S.A.

ABSTRACT

This paper demonstrates how to use Simkit to create Dis-
crete Event Simulation models using a component frame-
work. The component framework is based on a listener
design pattern especially useful for simulation models.
The objects created are called Listener Event Graph Ob-
jects, so the component framework is called LEGO. Sim-
kit is an Open Source package written in Java.

1 INTRODUCTION

The LEGO component framework is powerful, flexible,
and promotes designing generic, reusable simulation mod-
els (Buss and Sanchez, 2002). Simkit is an implementa-
tion of the LEGO framework that supports all its key con-
cepts. This type of component simulation modeling is
distinct from the commercial process-oriented modeling
environments because of the loose-coupling between com-
ponents brought by the two listener patterns in the method-
ology. In addition to bringing much more flexibility to
creating models, the loosely-coupled component approach
supports substantially more reuse of developed modules
(components) than traditional approaches. A particularly
useful feature of the approach is the ability to decouple the
model dynamics from all uses of the simulation data.

Simkit is based on an Event Graph world view
(Schruben, 1983, 1992; Buss, 2001a). Event Graphs are
the simplest and most natural way to represent Discrete
Event Simulation (DES) models. For a general introduc-
tion to DES modeling, see Law and Kelton (2000).

Simkit is a programming toolkit that supports this kind
of component-based modeling. In its current form, the
simulation modeler interacts with Simkit at the Application
Programmer Interface (API) level, in contrast to commer-
cial Graphical User Interface (GUI) environments. A GUI
for more intuitive model building in Simkit is currently
under development.

Simkit is platform-independent, written in the JavaTM
programming language, and will run on any reasonably
modern operating system. Simkit is copyright under the

GNU public license. Simkit is an Open Source package,
and may be downloaded from the internet at <http://
diana.gl.nps.navy.mil/Simkit/>.

2 EVENT GRAPH MODELING

Simkit is designed with a pure discrete event world view.
The most natural way to specify Discrete Event Simulation
(DES) models is using Event Graphs. We will therefore
present a brief review of Event Graphs. More detailed in-
formation about Event Graphs may be found in Schruben
(1983, 1992) and Buss (2001a).

The defining feature of DES models is that they have
state variables whose trajectories in simulated time are
piecewise constant. State transitions only occur at discrete
time epochs, which are designated as events. The Event
List is responsible for determining which events occur and
that the appropriate state transitions are executed. The oc-
currence of an event may trigger the occurrence of other
events at later times. These future occurrences of events
are implemented in a DES model by placing the appropri-
ate scheduled events on the Event List. The Event List al-
gorithm sorts the events in ascending temporal order and
executed the simulation by always

Specification of a DES model therefore consists of

• Defining the state variables
• Defining the state transitions corresponding to

events
• Defining the scheduling relationships between

events.

The prototypical Event Graph construct is shown in

Figure 1. Its interpretation is: When Event A occurs, then if
condition (i) is true, Event B is scheduled to occur at the
current time + t.

There are only two reserved terms in Event Graph
methodology: the Run event and a variable representing
the current value of simulated time called simTime (al-
though Schruben (1992) call it ‘clk’). The only special

Buss

property of the Run event is the fact that it is placed on the
Event List at time 0.0.

A B
t

(i)

Figure 1: Basic Event Graph Construct

The simplest nontrivial Event Graph is the Arrival

Process. The most generic version of the Arrival Process
has parameter consisting of a stream of non-negative inter-
arrival times {tA} and state consisting of the cumulative
arrival count N. There is one event (in addition to the Run
event) that will be labeled Arrival whose state transition is
to increment the arrival count. The Arrival Event has a
single scheduling edge that schedules another Arrival event
after a delay of tA. The Arrival Process Event Graph is
shown in Figure 2.

Arrival

{N++}

Run

{N = 0}

tAtA

Figure 2: Arrival Process Event Graph

More complicated models can be created using Event

Graph methodology (Schruben 1992).
Another useful Event Graph model captures a multiple

server queue. The parameters are {tS}, the stream of service
times, and k, the total number of servers. State variables are
S, the number of available servers, and Q, the number of
customers in the queue. The Event Graph for the Multiple
Server Queue component is shown in Figure 3.

Arrival

{Q++}

Start
Service

End
Service

t
S(S > 0)

{Q--, S--} {S++}

(Q > 0)
Figure 3: Multiple Server Queue Component

3 BUILDING SIMPLE MODELS IN SIMKIT

Simple DES models encapsulating a single Event Graph are
implemented in Simkit by subclassing the SimEntityBase
class, an abstract base class that implements most of the
functionality required by a DES component. There is a di-
rect mapping from an Event Graph model to this subclass.
Every parameter is mapped into a read/write property
of the class and every state variable is mapped into a read-
only property. At first glance this seems unintuitive, since
parameters do not change value during a simulation run,
whereas state variables do. State variables change value,
but only inside the class itself according to the state transi-
tions specified by the corresponding Event Graph. By
making the parameters writable properties, tools for Java
Beans may be used to configure the parameters of Simkit
objects. In the Arrival Process of Figure 2, the parameter
of interarrival times is a RandomVariate instance variable
(see Section 6) and the state variable N is implemented as
an instance variable of type int.

Every event is mapped to a corresponding method with
the same name, but with a prefix of ‘do.’ Thus, a Simkit
model corresponding to the Arrival Process of Figure 2
would consist of a single class (probably called ArrivalProc-
ess) that had two methods doRun() and doArrival().

State transitions are implemented as expressions that
change the value of the corresponding instance variables
according to the state transition function. Furthermore, in
Simkit models, by convention, all state transitions are ac-
companied by a PropertyChangeEvent being fired. The
reasons for this will be discussed in Section 4.2 below.

The final mapping between Event Graphs and a simple
Simkit model is the scheduling edges. Each scheduling
edge is implemented as a call to the waitDelay() method,
which is implemented in the SimEntityBase class. The
simplest form is waitDelay(String, double). The first
argument is the name of the Event and the second is the
time delay. Thus, the method corresponding to the Arrival
event in Figure 2 is shown in Figure 4.

public void doArrival() {
 firePropertyChange(“numberArrivals”,
 numberArrivals, ++numberArrivals);
 waitDelay(“Arrival”, iat.generate());
}

Figure 4: Source code for Arrival Event

 In the code snippet of Figure 4, iat is a reference to a
RandomVariate instance that generates the interarrival
times.

Initialization must be treated specially. The state tran-
sitions in the Run event are actually the initialization os
state variables. It is better for replications purposes to
separate the state transitions and the scheduling in the
doRun() method. The state transitions are therefore writ-
ten in a separate method called reset(), and the schedul-
ing is implemented using waitDelay() invocations in
doRun(). Thus, the Run event in Figure 2 is implemented
by the two methods, as shown in Figure 5.

ss
Bu

public void reset() {
 super.reset();
 numberArrivals = 0;
}
public void doRun() {
 waitDelay(“Arrival”, iat.generate());
}

Figure 5: Initialization methods for Arrival Process

The programmer never writes code to directly invoke

any ‘do’ method or reset(). Instead, every SimEntity in-
stance is registered with the Event List class, called Sched-
ule. Invoking the static Schedule.reset() method in-
vokes the reset() method of every SimEntity that has
been instantiated. That way, every SimEntity need only be
responsible for initializing (and maintaining) its own state
variables, a considerably smaller task than for the entire
simulation.

Scheduling edges that pass parameters to the sched-
uled are implemented by a form of waitDelay() with sig-
nature (String, double, Object[]). Cancelling edges
are implemented by the interrupt() statement with either
a (String) or a (String, Object[]) signature, corre-
sponding to interrupting the next scheduled event of a
given name or to interrupting the next scheduled event
with a given name and parameter list.

4 THE LISTENER PATTERN

Using the process described in the previous section, any
self-contained Event Graph can be implemented as a Sim-
kit model using a single SimEntity class (Buss, 2002b).
Simkit’s component model is best described using the con-
cept of software design patterns (Gamma, et al, 1995).

Simkit also implements a simulation component
framework that relies on two forms of the Listener Pattern,
the SimEventListener and the PropertyChangeListener pat-
terns. The Listener pattern allows the simulation modeler
to create simulation components that encapsulate Event
Graph logic, then connect the components together to cre-
ate larger models of greater complexity. This component
framework is called Listener Event Graph Objects (LEGO)
and is described in Buss and Sanchez (2002). As the name
suggests, the Listener pattern is a critical feature of the
LEGO component framework. There are two types of Lis-
tener pattern used in LEGO: the SimEventListener pattern
and the PropertyChangeListener pattern.

4.1 SimEvent Listener Pattern

The SimEventListener pattern is used when the occurrence
of an event (SimEvent) in one SimEntity object should
stimulate a corresponding SimEvent in another SimEntity
object. The listening SimEntity must explicitly register in-
terest in hearing another’s SimEvents. The pattern is one
that matches the names of the events. When a SimEvent is
heard that matches an event of the SimEventListener, then
that event is activated (i.e. its state transition is performed,
then any scheduling or canceling edges are executed). If
no corresponding event is found, then nothing happens.

The SimEvent Listener pattern is implemented in
Simkit by the SimEventListener interface, which is im-
plemented by a class intended to be a SimEvent Listener,
and the SimEventSource interface, which is implemented
by a class intended to be a source of SimEvents. Simkit’s
primary base class, SimEntityBase, implements both these
interfaces, so instances cam be both sources and listeners
of SimEvents.

Arrival
Process

Multiple
Server
Queue

Figure 6: Queueing Component Model

Figure 6 shows an instance of MultipleServerQueue

registered as a SimEventListener to an instance of Arrival-
Process, forming a complete queueing model. The occur-
rence of each Arrival event in the ArrivalProcess triggers
the occurrence of the Arrival event in the MultipleServer-
Queue. This listening relationship is indicated by the line
connecting the two components in Figure 6. The arrow-
head-like portion near the ArrivalProcess component indi-
cates the direction events are being dispatched, and the
shape is also suggestive of a stethoscope, indicating that
the MultipleServerQueue instance is listening to the Arri-
valProcess for its SimEvents.

4.2 PropertyChangeListener Pattern

The PropertyChangeListener pattern is closely tied to the
DES concepts of state and state transition. Every Proper-
tyChangeSource object maintains a list of other objects that
are interested in being notified whenever one of its proper-
ties changes value. Whenever a property does change
value, all registered listeners are notified by a Proper-
tyChangeEvent that is dispatched to each listener. In Simkit,
every SimEntity instance can be both a source or Proper-
tyChange events. The “properties” are in fact the state vari-
ables of the SimEntity instance. Every time a state changes
value, a PropertyChangeEvent should be fired. This conven-
tion allows there to be important decoupling between key
DES tasks. For example, one consequence discussed below
is the fact that DES models constructed in this manner do
not need to have any statistics collection built into the
model, yet are capable of many more disparate types of data
collection than if statistics were in fact built into the model.

The PropertyChangeSource does not know or care what
the listeners do when they are notified of the property
change. More important, the source object does not know or
care what class a listener instance is. The only requirement
is that the listener be an object that implements the Proper-

Buss

tyChangeListener interface. Thus, there is very loose cou-
pling between the source and the listener in this pattern.

The PropertyChangeListener pattern is directly sup-
ported by Java, which defines a PropertyChangeEvent ob-
ject and PropertyChangeListener interface, as well as sup-
porting classes, such as PropertyChangeSupport, that acts
as a proxy for registration of listeners and dispatching of
PropertyChangeEvent.

The SimEntityBase class provides the convenience
method firePropertyChange(), as shown in Figure 4. The
general signature is (String, Object, Object), with the
name of the state (property), the old value, and the new
value, respectively. Note that the name of the property as
given need not coincide with the name of the state variable.
This feature is important in distinguishing state changes
made by different instances of the same SimEntity class.

One of the most important uses of the Proper-
tyChangeListener pattern is in collecting statistics in a non-
invasive manner. Simkit provides several Proper-
tyChangeListener classes that estimate statistics on a given
property by name. They each keep internal variables for
running totals, counts, etc. When an instance hears a Prop-
ertyChangeEvent, it checks to see whether the property
name is the one it is listening for. If so, it simply updates
its variables, and if not then it does nothing. The code in
Figure 7 shows two examples of this. The variable queue
is an instance of a Multiple Server Queue component, as
modeled by the Event Graph of Figure 3. The first statis-
tics object (niqStat) listens for changes in a property
called numberInQueue. and updates its statistical counters
in a time-varying manner. The second (diqStat) listens
for a property called delayInQueue and updates its statisti-
cal counters in a tally manner. The queue object is not
aware that any statistics are being computed from its state
transitions, it simply fires the appropriate PropertyChan-
geEvents whenever the state transitions occur.

SimpleStatsTimeVarying niqStat =
new SimpleStatsTimeVarying(“numberInQueue”);
SimpleStatsTally diqStat =
new SimpleStatsTally(“delayInQueue”);
. . .
queue.addPropertyChangeListener(niqStat);
queue.addPropertyChangeListener(diqStat);

Figure 7: Code for Statistics PropertyChangeListeners

The statistics objects are not aware of the fact that it is

a queue they are collecting values from. Any Proper-
tyChangeSource instance that fires PropertyChangeEvents
of the given name will be acted upon.

5 BUILDING LEGO COMPONENT MODELS

The Listener patterns described in the previous section are
the critical elements in Simkit’s implementation of the
LEGO component framework. In general, the way in which
components are connected to each other is more a important
feature than the design of the components themselves. The
SimEventListener pattern to connect LEGO components is
sufficient to obtain the required generality and flexibility.

For example, the queueing model shown in Figure 6
connects two components together using the SimEventLis-
tener pattern. Neither component needs to know any spe-
cifics about the other, apart from the fact that they are
sources and listeners of SimEvents. Other SimEventLis-
teners could be listening to the Arrival Process instance –
instead of, or in addition to the Multiple Server Queue in-
stance. Likewise, the Multiple Server Queue instance
could be listening to other SimEvent sources – again, in-
stead of or in addition to the Arrival Process instance.

The SimEventListener pattern allows the occurrence
of an event in a simulation component to trigger the occur-
rence of an event of the same name (and signature) in a
SimEventListener. However. situations arise in which the
simulation modeler desires to have an event in one SimEn-
tity trigger an event of a different name. This is accom-
plished without having to edit either class through the use
of lightweight adaptor, or “bridge” components. The
bridge component listens for a SimEvent and schedules
another event with zero delay. A bridge component main-
tains no state, so there is never a need to listen to its Prop-
ertyChange events.

For example, a model of Tandem Queue can easily be
created from instances of the Multiple Server Queue in
Figure 3 using a bridge component, as shown in Figure 8.

ArrivalEnd
Service

Figure 8: Bridge for Tandem Queue

The code for the bridge class in Figure 8 is essentially a
single line, as shown in Figure 9.

public void doEndService() {
 waitDelay(“Arrival”, 0.0); }

Figure 9: Code for Tandem Queue Bridge

Instances of the bridge class can be used to transmit
EndService events of one queue to Arrival events of the
next queue. The model is configured as shown in Figure
10 below. Observe that the first queue in Figure 10 would
have to be listening to s SimEventSource for its Arrival
events, since it produces none itself.

MultipleServerQueue queue1;
MultipleServerQueue queue2;
Bridge bridge;
. . . // instantiation of objects.
queue1.addSimEventListener(bridge);
bridge.addSimEventListener(queue2);

Figure 10: Configuring a Tandem Queue Model

Buss

Simkit provides a class to provide simple Bridge func-
tionality called simkit.Bridge. Objects of this class is in-
stantiated with two strings, one for the name of the lis-
tened-to event and the second for the event that is
scheduled. Thus the modeler can either write a custom
bridge (as in Figure 8) or simply instantiate Simkit’s
Bridge class.

The fact that there are two instances of a Multiple
Server Queue in the component Tandem Queue model in-
troduces a potential difficulty regarding the state changes
of the two instances. Although they are distinct objects
and thus maintain two distinct sets of state variables, the
PropertyChangeEvents fired by each object have identical
names. This is not confusing to the model itself, since the
PropertyChangeListener pattern is based on individual ob-
jects. However, there may be difficulty determining which
instance is firing which event when log files or verbose
output is being examined. To mitigate this difficulty, there
is support in Simkit for PropertyChange renaming based on
a simple namespace concept. Instances of PropertChan-
geNamespace listen for PropertyChangeEvents and when
they hear one, prepend a name to the property name, then
refire the event. Thus, a simple namespace hierarchy can
be seamlessly incorporated into the model.

This is illustrated in Figure 11 for a Tandem Queue
model. There are two levels: each instance of Multiple
Server Queue is given a label (in this case an integer for its
position in the line) and the name “stationi” is added.
The Tandem Queue also has a PropertyChangeNamespace
instance that adds the name “tandem.” Thus, Figure 11
shows the numberInQueue state for station 1 of the tandem
queue has just decreased from 1 to 0. Yet the instance of
MultipleServerQueue simply fires a PropertyChangeEvent
called “numberInQueue,” unaware of the fact that addi-
tional names will be added to put it into context.

tandem:station1:numberInQueue:1 => 0
tandem:station1:numberAvailableServers:2 => 1
Time: 7.886 Current Event: StartService [5]
 ** Event List -- **
8.387 EndService
9.729 EndService
10.801 Arrival
15.471 EndService
100.000 Stop
 ** End of Event List -- **

Figure 11: Namespace PropertyChange Events

Components should be treated as “black boxes,”
meaning that they should be able to be used without
knowledge of how they are internally constructed. Thus,
LEGO components themselves can be constructed from
other LEGO components in a manner transparent to their
user. In other words, the simulation program should not be
able to distinguish between two components implementing
identical functionality, one of which was constructed
monolithically and the other constructed from components.
Thus, we can create a LEGO component for a tandem
queue by wrapping the above-described sequence of Mul-
tipleServerQueue and Bridge instances inside a component
that exposes other events as the starting and ending points.
So, using “Arrival to System” and “Exit System” as these
two events, the tandem queue LEGO component is as
shown in Figure 12.

Arrival to
System Arrival

End
Service

Exit
System

Multiple
Server
Queue

Multiple
Server
Queue

Bridge

Figure 12: Tandem Queue LEGO Component (Two Queues)

In Figure 12 an Arrival to System event in the Tandem

Queue is converted to an Arrival event, which is heard by
the first MultipleServerQueue instance. Similarly, the End
Service event in the last queue is heard by the Tandem
Queue and converted to an Exit System event. To a user of
this LEGO, however, the component appears to only have
two events, as shown in Figure 13

Arrival to
System

Exit
System

t

Figure 13: Tandem Queue LEGO

How the LEGO component schedules the Exit System

event is internal and details of it should not be required for
its use. The source code for the events in Figure 12 is
shown in Figure 14.

Buss

public void doSystemArrival() {
 firePropertyChange(“tandem:arrival”,
 numberArrivals, ++numberArrivals);
 waitDelay(“Arrival”, 0.0);
}
public void doEndService() {
 waitDelay(“SystemExit”, 0.0);
}
public void doSystemExit() {
 firePropertyChange(“tandem:exit”,
 numberServed, ++numberServed);
}

Figure 14: Source code for LEGO Tandem Queue Events

The Tandem Queue LEGO component is implemented

in Simkit so that the number of workstations in the line is
data. The addWorkCenter() method ensures that the proper
bridges and listeners are established, as shown in Figure 15.

public void addWorkCenter
 (MultiServerQueue workcenter) {
 PropertyChangeNamespace pcn =
 new PropertyChangeNamespace(workcenter,
 “station” + servers.size());
 workcenter.addPropertyChangeListener(pcn);
pcn.addPropertyChangeListener((PropertyChange
Listener) property);
 if (servers.isEmpty()){
 this.addSimEventListener(workcenter);
 }
 else {
 Bridge bridge =
 new Bridge(“EndService”, “Arrival”);
 SimEntity last =
 (SimEntity)servers.getLast();
 last.addSimEventListener(bridge);
bridge.addSimEventListener(workcenter);
last.removeSimEventListener(this);

 }
 workcenter.addSimEventListener(this);
 servers.add(workcenter);
}

Figure 15: Source Code for Adding a Workcenter to Tan-
dem Queue LEGO

6 RANDOM VARIATE GENERATION
FRAMEWORK

The framework for generating random variates and random
numbers in Simkit is of independent interest, not because
of any innovations in the algorithms, but because of the
degree of modeling flexibility afforded the simulator build-
ing models. This flexibility is a crucial factor in the LEGO
component framework, since having a different component
class for every conceivable random variable is undesirable.
It is likewise unsuitable to only have a small handful of
possible probability distributions from which to choose,.
Any component that uses randomness must be able to be
configured for any type of pseudo-random stream (includ-
ing constants and correlated streams).
The objectives of the framework were as follows:

• To be capable of running a model with simulation

components using different probability distribu-
tions without any “invasiveness” – that is, re-
editing of the source code and recompilation.

• Changes should be done using input data only,
and which probability distribution to us for a par-
ticular execution should be able to be decided at
the last possible moment (i.e. at runtime);

• To enable a simulation component to use a ran-
dom variate algorithm that was implemented sub-
sequent to the component’s creation, again with-
out editing or recompilation.

• To be able to substitute a different random num-
ber generator for a given random variate algo-
rithm without having to edit or recompile.

• To be able to implement a new random number
generator and use it with any existing random
variate algorithm, again without editing or recom-
piling the code that implements the random vari-
ate algorithm.

Some secondary goals that can be achieved include:

• The ability for a simulation component to be

driven by either a random variate generating algo-
rithm or by trace data without recompilation of
the component.

• The ability for any part of a component modeled
as a random to be also executed deterministically,
again without recompilation.

 The objectives described above are met in Simkit by
defining two interfaces and two generic object factories to
produces appropriate instances.

The objectives for generating random variates and us-
ing them in simulation components without recompilation
is met by defining a RandomVariate interface that specifies
a method called generate() that returns the generated ran-
dom variate. Instead of a single class with many different
methods for generating different types of random variates,
a separate class that implements the RandomVariate inter-
face must be written for each new random variate.

Since RandomVariate is an interface, it cannot be in-
stantiated directly. Instead, instances of a RandomVariate
class are obtained from the RandomVariateFactory using
the getInstance() method. Arguments to getInstance()
are a String, the name of the concrete RandomVariate
class desired, an Object[] (array of objects) that are the
desired parameters, and a long, the starting seed. These
are generic data, and may be easily extracted from text in-
put or from XML files. An example of obtaining a Ran-
domVariate instance from RandomVariateFactory is
shown in Figure 16.

Buss

RandomVariate rv =
 RandomVariateFactory.getInstance(“Gamma”,
 new Object[] { new Double(1.7),
 new Double(3.2) }, 12345L);

Figure 16: Obtaining RandomVariate instance

The ability of RandomVariateFactory to use generic
data makes it particularly straightforward to use XML as
input data. A single class is capable of converting XML
input to RandomVariate instances. An example of some
XML that cam be used this way is shown in Figure 17.

<RandomVariate>
 <class>simkit.random.GammaVariate</class>
 <parameter
 name=“alpha” class=“java.lang.Double”
 value=“1.7”></parameter>
 <parameter
 name=“beta” class=“java.lang.Double”
 value=“3.2”></parameter>
 <seed>12345</seed>
</RandomVariate>

Figure 17: Portion of XML Document to create Random-
Variate Instance

The RandomVariate interface contains a method gen-

erate() that returns the next generated pseudo-random
variate. This is an example of the Command Pattern
(Gamma et al, 1995) and is what enables the generic con-
figuration of LEGO components that use randomness.
Since any class implementing RandomVariate contains the
generate() method, the probability distribution can be
changed simply by replacing the instance used. Although
configuration files may have to be edited, the component
itself does not. Examples of the generate() method have
been shown in the code in Figure 4 and Figure 5

This structure for generating random variates makes
LEGO components built with Simkit robust against limita-
tions in Simkit’s random variate classes. Classes imple-
mented outside Simkit, as long as they implement the Ran-
domVariate interface, can be used as “first-class citizens”
in a simulation model. The RandomVariateFactory will
happily generate instances of such user-defined classes and
the LEGO components will likewise use them without
complaint.

7 CONCLUSIONS

Simkit is an implementation of the LEGO component
framework that enables the simulation modeler to create
flexible, robust, and reusable components. These simula-
tion components can be easily assembled into more com-
plicated models. Since a component itself can consist of
assembled sub-components, the framework is very scal-
able. Simkit is copyright under the GNU public license
and may be downloaded from the web at
<http://diana.gl.nps.navy.mil/Simkit/>.
ACKNOWLEDGEMENTS

The author thanks Paul Sanchez for many discussions and
feedback. This work was supported by a grant from the
Air Force Office of Scientific Research. This support is
gratefully acknowledged.

REFERENCES

Buss, A. 2001a. Basic Event Graph Modeling. Simulation
News Europe. 31:1-6.

Buss, A. 2001b. Event Graph Modeling with Simkit.
Simulation News Europe. 32/33:15-25.

Buss, A. and Sanchez, P. 2002. Building Complex Models
With Legos (Listener Event Graph Objects). In Pro-
ceedings of the 2002 Winter Simulation Conference,
ed E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes. Institute of Electrical and Electronics Engi-
neers, Piscataway, New Jersey.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA,.

Law, A. and D. Kelton. 2000. Simulation Modeling and
Analysis, Third Edition, McGraw-Hill., Boston, MA.

Schruben, L. 1983. Simulation Modeling with Event
Graphs. Communications of the ACM. 26:957-963.

Schruben, L. 1992. Sigma: A Graphical Simulation Model-
ing Program. The Scientific Press. San Francisco,
CA.

AUTHOR BIOGRAPHY

ARNOLD H. BUSS is a Research Assistant Professor in
the MOVES Institute at the Naval Postgraduate School.
He received a B.A. in Psychology from Rutgers Univer-
sity, his M.S. in Systems Engineering from the University
of Arizona, and a Ph.D. in Operations Research from Cor-
nell University. His recent work has involved Component-
Based software design.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 243
	02: 244
	03: 245
	04: 246
	05: 247
	06: 248
	07: 249

