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ABSTRACT

We introduce SSJ, an organized set of software tools i
plemented in the Java programming language and offer
general-purpose facilities for stochastic simulation progra
ming. It supports the event view, process view, continuo
simulation, and arbitrary mixtures of these. Performanc
flexibility, and extensibility were key criteria in its design
and implementation. We illustrate its use by simple e
amples and discuss how we dealt with some performan
issues in the implementation.

1 INTRODUCTION

SSJ is a Java-based framework for simulation programmi
It has been designed primarily for discrete-event stochas
simulations (Law and Kelton 2000), but it also suppor
continuous and mixed simulation. Some ideas in its desi
are inherited from the packages DEMOS (Birtwistle 1979
(based on theSimulalanguage) and SIMOD (L’Ecuyer and
Giroux 1987) (based on theModula-2 language), among
others.

Simulation models can be implemented in a varie
of languages, including general-purpose programming la
guages such as FORTRAN, C, C++, Java, etc., special-
ized simulation languages such as GPSS, SIMAN, SLAM
SIMSCRIPT, etc., and point-click-drag-drop graphical sim
ulation environments such as Arena, Automod, etc.

Specialized languages and environments provide high
level tools but usually at the expense of being less flexib
than general purpose programming languages. In co
mercial simulation languages and environments, one m
frequently revert to general-purpose languages (such a
or VisualBasic) to program the more complex aspects o
model or unsupported operations. Compilers and suppo
ing tools for specialized languages are less widely availa
and cost more than for general purpose languages. A
other obstacle to using a specialized language: one m
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learn it. This is a non-negligible time investment, esp
cially for an occasional use, given that these languag
have their own (sometimes eccentric) syntax and sem
tic. Some high-level simulation environments propose
“no-programming” approach, where models are specifi
by manipulating graphical objects on the computer scre
by point-click-drag-drop operations, as in computer gam
This approach is very handy for building models that happ
to fit the frameworks pre-programmed in the software. B
for large and complex real-life systems, such nice fits a
more the exception than the rule.

SSJ is implemented as a collection of classes in the J
language. It provides convenient tools for simulation pr
gramming without giving away the generality and the pow
provided by a widely-used, general-purpose programmi
language reputed to be highly portable. These predefin
classes contain facilities for generating random numb
for various distributions, collecting statistics, managing
simulation clock and a list of future events, synchroni
ing the interaction between simulated concurrent process
etc. SSJ supports both the event view and the process v
as well as continuous simulation (where certain variab
evolve according to differential equations), and the thr
can be combined.

In the process-oriented paradigm,active objectsin the
system, calledprocesses, have a method that describe the
behavior in time. The processes can interact, can be s
pended and reactivated, can be waiting for a given resou
or a given condition, can be created and destroyed, e
These processes may represent “autonomous” objects s
as machines and robots in a factory, customers in a restaur
vehicles in a transportation network, etc. Process-orien
programming is a natural way of describing complex sy
tems (Franta 1977, Birtwistle et al. 1986, Kreutzer 198
Law and Kelton 2000). On the other hand, certain syste
are more conveniently modeled simply withevents, which
are instantaneous in the simulation time frame. Sometim
the use of events is preferred because it gives a faster s



L’Ecuyer, Meliani, and Vaucher

on
S

es

ue
u
an
n

C

m
nt
o

of
d
x-

”
m
SJ

d
s

ey
e-
ad
of
n
m,
e
o

ate
n-
rm
n

cu
us
ng
e
s

tic
y

ing
e.
ot
pl
ls

if
he
h
gs
ns.
t-

ms
in

in
heir
e.
s.
ste
p
ins

Java
ts.

by
by

as
ral-
m
ed

s
ner-
of

-

ic
of

e

mu-
by

g

A

ulation program, by avoiding the process-synchronizati
overhead. Events and processes can be mixed freely in S

Other Java-based simulation frameworks and librari
proposed in the last few years includeSilk (Healy and Kil-
gore 1997, Kilgore 2000), aSimJavafrom New Zealand
(Kreutzer, Hopkins, and van Mierlo 1997), asimjavafrom
Scotland (Howell and McNab 1998), aJavaSimfrom the
U.K. (Little 1999), aJavaSimfrom Ohio (Tyan and Hou
2002),JSIM (Miller, Ge, and Tao 1998), andSimkit (Buss
2000, 2001). Some of them are specialized (e.g., for que
ing systems, computer networks and protocols, etc.). O
framework has a different design, in several aspects, th
each of these. We won’t discuss them all, but for illustratio
we will make some timing comparisons withSilk, which
is perhaps the best known of these products in the WS
community.

SSJ was designed to be open and very flexible fro
bottom to top. As an example, at the lower level, the eve
list has a default implementation and the user need n
worry about it, but it is also easy to change the type
data structure used for its implementation (doubly linke
list, binary tree, heap, splay tree, etc.), by adding one e
tra parameter to the “clock and event list initialization
method. As another example, different types of unifor
random number generation algorithms are available in S
and randomstreams(which are objects acting roughly like
independent random number generators) can be create
will using any of these types. Some of these algorithm
may correspond to quasi-Monte Carlo methods, i.e., th
produce (deterministic or randomized) low-discrepancy s
quences (see, e.g., L’Ecuyer and Lemieux 2002) inste
of pseudo-random numbers. This provides a nice way
mixing Monte Carlo and quasi-Monte Carlo methods i
a given simulation program, and switching between the
without changing the simulation code: It suffices to chang
the constructor at stream creation to change the type
stream. Convenient tools are also available to manipul
and control the streams in order to facilitate the impleme
tation of variance reduction methods that require some fo
of synchronization (L’Ecuyer et al. 2002, Law and Kelto
2000).

We have been attentive to performance issues. Exe
tion speed remains important for many (if not most) serio
simulation applications. In some cases (e.g., when prici
financial derivatives by simulation) it is because precis
estimates are required within a few seconds or minute
in other cases (e.g., when optimizing complex stochas
systems by simulation) a well-tuned efficient program ma
already run for several hours or even a few days, so slow
it down by a factor of 10 (say) makes a significant differenc
The constant increase of cheap computing power will n
change this state of affairs in the foreseeable future: Peo
just adapt by considering larger and more detailed mode
and by attacking more difficult optimization problems.
J.
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Java has a bad reputation for execution speed, so
performance is important, why choose it? It is true that t
early versions of the Java Virtual Machine (JVM), whic
interprets the portable byte code, were slow. But thin
have changed dramatically with the most recent versio
The JVMs are now optimized and complemented with jus
in-time compilers. In these environments, Java progra
can run almost as fast as C or C++ programs compiled
native code. Given the fact that simulation programs
Java are much more elegant, clean, and portable than t
counterparts in C, the small “speed tax” is worth the pric

The remainder of this paper is organized as follow
The next section gives a brief overview of SSJ. To give a ta
of how simulation programs look like with SSJ, we develo
and discuss small examples in Section 3. Section 4 expla
how we have implemented the processes by harnessing
threads. Section 5 outlines intended future developmen
A complete documentation of all the classes provided
SSJ so far, and several additional examples, are given
L’Ecuyer (2001b) and Meliani (2002).

2 OVERVIEW OF SSJ

Low-level classes in SSJ implement basic tools such
random number generators, statistical probes, and gene
purpose lists. Each class providing a uniform rando
number generator must implement an interface nam
RandomStream , which looks pretty much like the in-
terface of the classRngStream described by L’Ecuyer
(2001a) and L’Ecuyer et al. (2002), with multiple stream
and substreams. Other classes provide methods for ge
ating non-uniform random variates from several kinds
distributions.

The classStatProbe and its subclassesTally and
Accumulate provide elementary tools for collecting statis
tics and computing confidence intervals. The classList
implementsdoubly linked lists, with tools for inserting,
removing, and viewing objects in the list, and automat
statistical collection. These list can contain any kind
Object .

Event scheduling is managed by the classSim, which
contains the simulation clock and a central monitor. Th
classesEvent and Process provide the facilities for
creating and scheduling events and processes in the si
lation. Each type of event or process must be defined
defining a class that extendsEvent or Process . The
classContinuous provide tools for continuous simula-
tion, where certain variables vary continuously accordin
to ordinary differential equations.

The classesResource , Bin , andCondition , pro-
vide additional mechanisms for process synchronization.
Resource corresponds to a facility with limited capacity
and a waiting queue. AProcess can request an arbi-
trary number of units of aResource , may have to wait
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until enough units are available, can use theResource
for a certain time, and eventually releases it. ABin al-
lows producer/consumer relationships between process
It corresponds essentially to a pile of free tokens and
queue of processes waiting for the tokens. Aproducer
adds tokens to the pile whereas aconsumer(a process) can
ask for tokens. When not enough tokens are available, t
consumer is blocked and placed in the queue. The cla
Condition supports the concept of processes waiting fo
a certain boolean condition to be true before continuin
their execution.

3 EXAMPLES

3.1 An M/M/1 Queue

Our first example is a traditionalM/M/1 queue, with arrival
rate of 1 and mean service time of 0.8. The system initiall
starts empty. We want to simulate its operation and compu
statistics such as the mean waiting time per customer, t
mean queue length, etc. Simulation is not necessarily th
best tool for this very simple model (queueing formulas ar
available for infinite-horizon averages; see, e.g., Kleinroc
1975), but we find it convenient for illustrating SSJ.

Figure 1 shows a SSJ-based process-oriented simulat
program that simulates theM/M/1 queue for one million
time units (i.e., approximately one million customers). The
constantsmeanArr , meanServ , andtimeHorizon rep-
resent the mean time between arrivals, the mean service tim
and the time horizon, respectively. The server is an obje
of classResource , with capacity 1. The two random
number streamsgenArr andgenServ (instances of the
classRandMrg) are used to generate the interarrival time
and service times, respectively. These objects are crea
whenQueueProc is instantiated by themain program.

The program defines one type of process (Customer )
by extending the pre-defined classProcess . The method
actions (which must be implement by any extension of
Process ) describes the life of a customer. Upon arrival
the customer first schedules the arrival of the next custom
in an exponential number of time units. Behind the scene
this effectively schedules an event, in the event list, that wi
start a new customer instance. The customer then reque
the server by invokingserver.request . If the server
is free, the customer gets it and can continue its executio
immediately. Otherwise, it is automatically (behind the
scenes) placed in the server’s queue, is suspended, a
resumes its execution only when it obtains the server. Whe
its service starts, the customer invokesdelay to freeze itself
for a duration equal to its exponential service time. Afte
this delay has elapsed, the customer releases the server
disappears. Several distinct customer instances can co-e
in the simulation at any given point in time, and be a
different phases of theiractions method.
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The program also defines one type of even
(EndOfSim ) by extending the classEvent and defin-
ing its methodactions . This method describes what to
do when this event occurs (at the end of the simulation)

The constructorQueueProc initializes the simulation,
invokescollectStat to specify that detailed statistical
collection must be performed automatically for the resourc
server , schedules an eventEndOfSim at time 106, sched-
ules the first customer’s arrival, and starts the simulatio
TheEndOfSim event prints a detailed statistical report on
the resourceserver (average utilization, average waiting
time, average queue length, number of customers serv
etc.).

One can also write an event-oriented version of th
M/M/1 queue simulation program, where the event class
areArrival , Departure , andEndOfSim , as shown in
Figure 2. This program is written at a lower level and i
less compact than its process-oriented counterpart. On
other hand, it runs faster (see below). This is often true, d
to the fact that processes involve more overhead. Worki
at a lower level is also convenient in situations where th
logic implemented in the available higher-level construc
is not exactly what we want.

Here, the customers waiting and in service are mai
tained in listswaitList andservList . The statistical
probecustWaits collects statistics on the customer’s wait
ing times. It is of classTally , which is appropriate when
the statistical data of interest is a sequence of observatio
X1, X2, . . . . Every call towaitList.update brings a
new observationXi (a new customer’s waiting time). The
statistical probetotWait , of classAccumulate , com-
putes the integral (and eventually the time-average) of t
queue length as a function of time. It is updated each tim
the queue size changes. Interestingly, in the program
Figure 1, theResource andProcess objects use these
same lower-level constructs (lists, statistical probes, etc
but this is hidden in SSJ.

Note that in this program, only oneArrival event
and oneDeparture event are instantiated. These event
are recycled. This contributes to improving the speed b
reducing the number of objects that must be created. Th
is allowed because there is never more than one instan
of these events planned at the same time. Of cour
this program could be further simplified in several ways
In fact, the successive customer’s waiting times can b
simulated without an event list by using Lindley’s recurrenc
Wi+1 = max(0, Wi + Si − Ai) whereAi , Si , andWi are
the ith interarrival time, service time, and waiting time
respectively. Our goal here is not to make the simple
program for theM/M/1 queue, but to illustrate SSJ.

We made some timing experiments with these tw
programs on a 750 MHz AMD-Athlon computer running
Redhat Linux 7.1. With the JDK-1.2.2 virtual machine, th
javacomp just-in-time compiler, and Java green thread
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public class QueueProc {

static final double meanArr = 1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

Resource server = new Resource (1, "server");
RandMrg genArr = new RandMrg ();
RandMrg genServ = new RandMrg ();

public static void main (String[] args) {new QueueProc(); }

public QueueProc () {
Sim.init();
server.collectStat (true);
new EndOfSim().schedule (timeHorizon);
new Customer().schedule (Rand1.expon (genArr, meanArr));
Sim.start();
}

class Customer extends Process {
public void actions () {

new Customer().schedule (Rand1.expon (genArr, meanArr));
server.request (1);
delay (Rand1.expon (genServ, meanServ));
server.release (1);
}

}
class EndOfSim extends Event {

public void actions () {
System.out.println(server.report());
Sim.stop();
}

}
}

Figure 1: Process-oriented Simulation of anM/M/1 Queue.
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QueueProc took 21.9 seconds to run andQueueEv2 took
7.1 seconds. These numbers are the “user time” return
by the Linux command “time ”. With JDK-1.3.1 and the
“hotspot” optimizer from SUN,QueueEv2 took 3.6 sec-
onds. However, the hotspot optimizer allows onlynative
threads(which are real threads managed at the operati
system level, as opposed togreenthreads which are simu-
lated threads in the Java environments).QueueProc runs
much slower under this setup (over a minute), because
tive threads involve a large amount of overhead. A progra
that simply implements Lindley’s recurrence to compute th
average waiting time of 106 customers takes approximately
2.1 seconds under JDK-1.3.1 + hotspot, and more than
of this time is used to generate the exponential rando
variables.

A Silk version ofQueueProc , taken from Healy and
Kilgore (1997) with straightforward adaptation, took 19
seconds under JDK-1.2.2 withjavacomp using Silk’s aca-
demic version 1.2.

SSJ actually has a brother named SSC (L’Ecuyer 200
It is a library implemented in ANSI-C, offering tools similar
-

to those of SSJ, but without the process-view facilities. W
tried a version ofQueueEv2 in SSC and it ran in 2.8
seconds on the same machine (withgcc and optimization
level-O3 ). This gives a Java/C speed ratio of 3.6/2.8≈ 1.3,
i.e., a time penalty of approximately 30%.

3.2 Two Queues in Series with a Batch Server

This example is adapted from Healy and Kilgore (1998
Customers must pass through two queues in series: A
being served at the first queue, they join the second que
and when their service is over at the second queue, t
disappear. The first queue isM/M/1 as in the previous
example while the second one serves customers in batc
of sizes 10 to 20. The server at the second queue w
until there are at least 10 customers ready to be served, t
serves all these customers simultaneously. After complet
its service time, ifC ≥ 10 customers are waiting in queue 2
the server starts another batch immediately with min(C,20)
customers. Otherwise it waits until there are 10.
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public class QueueEv2 {

static final double meanArr = 1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

Arrival arrival = new Arrival();
Departure departure = new Departure();

RandMrg genArr = new RandMrg ();
RandMrg genServ = new RandMrg ();
List waitList = new List ("Customers waiting in queue");
List servList = new List ("Customers in service");
Tally custWaits = new Tally ("Waiting times");
// Accumulate totWait = new Accumulate ("Size of queue");

class Customer { double arrivTime, servTime; }

public static void main (String[] args) { new QueueEv2(); }

public QueueEv2() {
Sim.init();
new EndOfSim().schedule (timeHorizon);
arrival.schedule (Rand1.expon (genArr, meanArr));
Sim.start();
}

class Arrival extends Event {
public void actions() {

arrival.schedule (Rand1.expon (genArr, meanArr));
// The next arrival.

Customer cust = new Customer(); // Cust just arrived.
cust.arrivTime = Sim.time();
cust.servTime = Rand1.expon (genServ, meanServ);
if (servList.size() > 0) { // Must join the queue.

waitList.addLast (cust);
// totWait.update (waitList.size());

} else { // Starts service.
servList.addLast (cust);
departure.schedule (cust.servTime);
custWaits.update (0.0);
}

}
}

class Departure extends Event {
public void actions () {

servList.removeFirst ();
if (waitList.size () > 0) {

// Starts service for next one in queue.
Customer cust = (Customer) waitList.removeFirst ();
servList.addLast (cust);
departure.schedule (cust.servTime);
custWaits.update (Sim.time () - cust.arrivTime);
// totWait.update (waitList.size ());
}

}
}

class EndOfSim extends Event {
public void actions () {

System.out.println (custWaits.report());
Sim.stop();
}

}
}

Figure 2: Event-oriented Simulation of anM/M/1 Queue.
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Suppose the arrival rate is 1, the service time at th
first queue is exponential with mean 0.8, and the servic
time at the second queue is exponential with meanθ . We
want to compare the mean sojourn time in the system fo
two different values ofθ . To be specific, letX1 (resp.,X2)
be the average sojourn time of the first 10000 custome
for θ = θ1 = 12 (resp.,θ = θ2 = 13). We want to estimate
µ2−µ1 whereµj = E[Xj ]. To do this, we will perform 10
pairs of simulation runs, where each pair produces a replica
of the vector (X1, X2) using common random numbers
across the two values ofθ (see, e.g., Law and Kelton 2000
for an introduction to this variance reduction technique)
The 10 replicates ofD = X2−X1 are independent random
variables that are approximately normally distributed, so w
can compute a confidence interval onµ2−µ1 by assuming
that
√

10(D̄ − (µ2− µ1))/SD has the Student distribution
with 9 degrees of freedom, wherēD andS2

D are the empirical
mean and variance of the 10 values ofD. The program of
Figure 3 computes such a confidence interval and produc
the printout shown in Figure 4.

The constructor ofBatchServer repeats the follow-
ing 10 times: It performs one simulation run atθ = 12.0,
memorizes the average sojourn time in variablemean1,
resets the three random number streams to the beginn
of their current substreams so that the next simulation ru
at θ = 13.0 will use exactly the same sequences of random
numbers as that atθ = 12.0, performs the second simu-
lation, gives the value ofD = X2 − X1 to the collector
statDiff , and then resets the random number streams
new substreams in order to get independent random nu
bers for the next pair of runs. When the 10 pairs of run
are completed, the 90% confidence interval onµ2− µ1 is
printed.

Here, the server at the first queue is implemented a
a Resource as in theM/M/1 example, but the second
server is implemented as aProcess , using aBin as a
synchronization mechanism. When a customer arrives
queue 2, if he is the tenth customer in the queue and t
server is free, he wakes up the server. The customer th
requests a token from that bin and is automatically suspend
until he receives the token (when its service ends). Th
methodbinServ2.waitList().size() returns the
number of processes currently waiting for tokens at the bin
this is the size of the queue at the second server.

The behavior of the second server is described in th
actions method ofServer2 . When this server becomes
free and the queue size is less than 10, it suspends itse
waiting to be waken up by a customer when the queue si
reaches 10. The server then becomes busy and serve
new batch of customers. The size of this batch may exce
10 if the server just completed the previous batch (an
was not suspended). After service completion, a number
tokens equal to the batch size is put on the bin, so that t
appropriate number of customers can resume their executio
-

,

a

.

Note that the methodSim.init() automatically cleans
up all Process objects; for this reason,server2 must
be created at the beginning of each simulation run.

In contrast to the previous examples, here there is
EndOfSim event; customer number 10000 takes care
stopping the simulation when he leaves the system.

Under JDK-1.2.2 withjavacomp , this program takes
about 7.8 seconds to execute. We tried theSilk imple-
mentation of the same model, given in Healy and Kilgo
(1998), and it took approximately 100 seconds for asingle
run (compared with roughly 0.4 seconds per run with SS
on the same platform.

4 IMPLEMENTING PROCESSES

In discrete event simulation, sequencing is based on
ordered list of event notices. In SSJ, these notices
represented by user defined sub-classes of theEvent class,
each of which must contain anactions method defining
the effect of the event. A simulation executive repeated
takes the next event off the list, updates the simulation clo
and executes theactions method until the end.

SSJ also handles Processes. These act like threads:
execute a sequence of events spread over time so that
actions are intermingled with those of other processes.
Java, it seems natural to use theThread class to implement
Processes. However, JavaThread s are designed to suppor
real parallelism (exploiting multi-processor architecture
or pseudo parallelism via time-slicing. For simulation, on
must find an efficient way to curb this parallelism so th
execution passes between the executive and the proce
in a strictly sequential way.

The required control operation is theresume(X) op-
eration ofcoroutineswhere the active thread suspends itse
and passes control to another thread so that there is alw
only one thread active. Presently, Java provides a vers
of resume(X) which does not automatically suspend th
calling thread so that theresume(X); must be followed
by suspend; . To allow for combinedeventandprocess
orientations, theactions method of process objects jus
resumesthe process and the processesresumethe executive
after every active phase.

Unfortunately, as Java implementations have evolve
the use ofresume(X) andsuspend has been deprecated
these operations may not be available in future versio
We have also found that correct passage of control can
be garanteed. In SSJ, process synchronization does
use Java’sresume(X) ; rather, we use thewait and
notify methods to implement semaphores (Holub 200
and use those to create our own safe and correct vers
of resume(X) andsuspend . These were the ones use
in the BatchServer example.

To deal with real—not simulated—parallelism, newe
implementations of Java use operating systemsnative
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class BatchServer {

static final double meanArr = 1.0;
static final double meanServ1 = 0.8;
static double meanServ2;

RandMrg genArr = new RandMrg(); // For times between arrivals.
RandMrg genServ1 = new RandMrg(); // For service times at server 1.
RandMrg genServ2 = new RandMrg(); // For service times at server 2.

Resource server1 = new Resource (1, "Server 1");
Server2 server2;
Bin binServ2 = new Bin ("Server 2 Bin ");
Tally statSojourn = new Tally ("Sojourn times in one run");
Tally statDiff = new Tally ("Differences on averages");

public static void main (String[] args) { new BatchServer(); }

public BatchServer () {
for (int rep = 0; rep < 10; rep++) {

meanServ2 = 12.0; simulOneRun();
double mean1 = statSojourn.average();
genArr.resetStartSubstream ();
genServ1.resetStartSubstream ();
genServ2.resetStartSubstream ();
meanServ2 = 13.0; simulOneRun();
statDiff.update (statSojourn.average() - mean1);
genArr.resetNextSubstream ();
genServ1.resetNextSubstream ();
genServ2.resetNextSubstream ();

}
System.out.println (statDiff.printConfIntStudent (0.90));

}
private void simulOneRun () {

statSojourn.init(); server1.init(); binServ2.init();
Sim.init(); // Note: this method kills all processes.
server2 = new Server2(); server2.schedule(0.0);
new Customer().schedule(0.0);
Sim.start();

}
class Customer extends Process {

public void actions() {
new Customer().schedule (Rand1.expon (genArr, meanArr));
double arrivalTime = Sim.time();
server1.request(1);
delay (Rand1.expon (genServ1, meanServ1));
server1.release(1);
if (binServ2.waitList().size() >= 9 && !server2.busy)

server2.resume();
binServ2.take(1); // Blocked until end of service.
statSojourn.update (Sim.time() - arrivalTime);
if (statSojourn.numberObs() >= 10000) Sim.stop();

}
}
class Server2 extends Process {

boolean busy = false;
int batchSize; // Current batch size.
public void actions() {

while (true) {
if (binServ2.waitList().size() < 10) {

busy = false; suspend(); // Wait for enough customers.
};
busy = true; // Starts serving new batch.
batchSize = Math.min (20, binServ2.waitList().size());
delay (Rand1.expon (genServ2, meanServ2));
binServ2.put (batchSize); // Unblocks customers in batch.

}
}

}
}

Figure 3: Simulation Program for Two Queues in Series with a Batch Server.
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REPORT on Tally stat. collector ==> Differences on averages
min max average standard dev. nb. obs

3.373 8.050 4.958 1.644 10

90.0% confidence interval for mean ( 4.005, 5.911 )

Figure 4: Output of the Program of Figure 3.
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threadsrather than manage their own locally. This mean
that scheduling overhead has increased to the point wh
the time required to create and start a new thread is ea
the equivalent of creating 100 ordinary objects.

To improve efficiency, we do not implement processe
directly asThread s; rather we have an intermediate (pri
vate) classThread2 which execute theactions method
of the Processes. The advantage of this organization
that we do not need to create a newThread for every
new Process . The Thread2 objects are organized in a
thread pool(Holub 2000). When a process ends its life, it
associatedThread2 object is put on a stack of free threads
When a new process is instantiated, an oldThread2 object
is taken from the stack, or created if the stack is emp
Thus, the total number of threads created does not exc
the maximum number of threads that are simultaneou
active during the simulation. However, with native thread
the number is limited and some complex simulations c
run out of threads.

Efficiency is also improved by sometimes by-passin
the executive. Initially, after every event, the executive tak
control and calls theactions method of the nextEvent
or Process ; but, when it is time for a process to relinquish
control, its thread takes over from the executive, executi
the upcoming events (if any) from the event list, until
comes upon another process. Then, itresumesdirectly the
next process. This mechanism reduces by half the num
of transfers between threads.

Nevertheless, as theQueueProc andQueueEv2 tim-
ings indicate, event models which only use method ca
still run roughly 3 times faster than process models whic
requireThread operations.

5 FUTURE DEVELOPMENTS AND CONCLUSION

We presented SSJ, a framework written in Java which allo
both discrete and continuous simulation and supports b
events and processes. Its strength lies partly in the sta
of-the-art support for random number generation, efficie
implementation, and use of novel scheduling techniqu
adapted to Java’s strengths and weaknesses.

Our work allows us to draw some conclusions about th
suitability of Java for simulation. For sequential program
ming or event-oriented simulation, the code runs almo
d

r

-

as fast as C (30% penalty in our example). Surprising
Java’s support for real parallel activity via theThread
class is ill-adapted to the pseudo-parallelism of simulati
processes.

During the year 2002, we plan to beef up SSJ’s libra
of alternate event list implementations, random number ge
erators, support for quasi-Monte Carlo methods, statisti
analysis tools, and to add classes adapted to specific a
of applications such as finance.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada Grant
ODGP0110050 and FCAR-Québec Grant No. 00ER32
to the first author. We thank Guy Lapalme for his helpfu
comments on the design of SSJ classes.

REFERENCES

Birtwistle, G. M. 1979.Demos—a system for discrete eve
modelling on Simula. London: MacMillan.

Birtwistle, G. M., G. Lomow, B. Unger, and P. Luker. 1986
Process style packages for discrete event modelli
Transactions of the Society for Computer Simulation3-
4:279–318.

Buss, A. H. 2000. Component-based simulation modeling.
Proceedings of the 2000 Winter Simulation Conferenc,
964–971. Pistacaway, New Jersey: IEEE Press.

Buss, A. H. 2001. Discrete event programming with Simk
Simulation News Europe32/33: 15–26.

Franta, W. R. 1977.The process view of simulation. New
York: North Holland.

Healy, K. J., and R. A. Kilgore. 1997. Silk: A Java-base
process simulation language. InProceedings of the 1997
Winter Simulation Conference, 475–482. Piscataway,
NJ: IEEE Press.

Healy, K. J., and R. A. Kilgore. 1998. Introduction to silk
and Java-based simulation. InProceedings of the 1998
Winter Simulation Conference, 327–334. Piscataway,
NJ: IEEE Press.

Holub, A. 2000.Taming Java threads. APress (distributed
by Springer-Verlag, NY).

Howell, F. W., and R. McNab. 1998. Simjava: a discre
event simulation package for Java with applications



L’Ecuyer, Meliani, and Vaucher

d

-

:

r
n
e

-

in

,

-

.
y

té

-
va

-

e
e
s,

y
s-
ed

re

g

e
-
and
st
are
d

computer systems modelling. InProceedings of the First
International Conference on Web-based Modelling an
Simulation. San Diego, CA: The Society for Computer
Simulation.

Kilgore, R. A. 2000. Silk, Java, and object-oriented simu
lation. In Proceedings of the 2000 Winter Simulation
Conference, 246–252. Piscataway, NJ: IEEE Press.

Kleinrock, L. 1975.Queueing systems, vol. 1. New York:
Wiley.

Kreutzer, W. 1986.System simulation - programming styles
and languages. New York: Addison Wesley.

Kreutzer, W., J. Hopkins, and M. van Mierlo. 1997.
SimJAVA—a framework for modeling queueing net-
works in Java. InProceedings of the 1997 Winter Sim-
ulation Conference, 483–488. Pistacaway, New Jersey
IEEE Press.

Law, A. M., and W. D. Kelton. 2000.Simulation modeling
and analysis. Third ed. New York: McGraw-Hill.

L’Ecuyer, P. 2001a. Software for uniform random numbe
generation: Distinguishing the good and the bad. I
Proceedings of the 2001 Winter Simulation Conferenc,
95–105. Pistacaway, NJ: IEEE Press.

L’Ecuyer, P. 2001b.SSJ: A Java library for stochastic sim-
ulation. Software user’s guide.

L’Ecuyer, P. 2002.SSC: A library for stochastic simulation
in C. Software user’s guide.

L’Ecuyer, P., and N. Giroux. 1987. A process-oriented sim
ulation package based on Modula-2. In1987 Winter
Simulation Proceedings, 165–174.

L’Ecuyer, P., and C. Lemieux. 2002. Recent advances
randomized quasi-monte carlo methods. InModeling
Uncertainty: An Examination of Stochastic Theory
Methods, and Applications, ed. M. Dror, P. L’Ecuyer,
and F. Szidarovszki, 419–474. Boston: Kluwer Aca
demic Publishers.

L’Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002
An object-oriented random-number package with man
long streams and substreams.Operations Research. To
appear.

Little, M. C. 1999. JavaSim user’s guide. Available on-line
at <http://javasim.ncl.ac.uk/> .

Meliani, L. 2002. Un cadre d’application pour la simulation
stochastique en Java. Master’s thesis, DIRO, Universi
de Montréal. Forthcoming.

Miller, J. A., Y. Ge, and J. Tao. 1998. Component-based sim
ulation environments: JSIM as a case study using Ja
beans. InProceedings of the 1998 Winter Simulation
Conference, 373–381. Piscataway, NJ: IEEE Press.

Tyan, H.-Y., and C.-J. Hou. 2002. JavaSim on-line man
uals and tutorials. Available on-line at<http://
javasim.cs.uiuc.edu> .
AUTHOR BIOGRAPHIES

PIERRE L’ECUYER is professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at th
University of Montreal. His main research interests ar
random number generation, quasi-Monte Carlo method
efficiency improvement via variance reduction, sensitivit
analysis and optimization of discrete-event stochastic sy
tems, and discrete-event simulation in general. He obtain
the prestigiousE. W. R. SteacieGrant in 1995-97 and the
Killam Grant in 2001-03. His recent research articles a
available on-line at<http://www.iro.umontreal.
ca/˜lecuyer> .

LAKHDAR MELIANI is a M.Sc. Student at the University
of Montreal. His main interests are software engineerin
and objected-oriented programming.

JEAN VAUCHER is professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at th
University of Montreal. In the early seventies, he de
signed GPSSS, a simulation package based on Simula,
made several contributions related to efficient event li
implementations. Presently, his main research interest
in object-oriented programming, distributed systems an
intelligent agents.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 234
	02: 235
	03: 236
	04: 237
	05: 238
	06: 239
	07: 240
	08: 241
	09: 242


