Proceedings of the 2002 Winter Simulation Conference
E. Ylcesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

SSJ: A FRAMEWORK FOR STOCHASTIC SIMULATION IN JAVA

Pierre L'Ecuyer
Lakhdar Meliani
Jean Vaucher

Département d’Informatique et de Recherche Opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal, H3C 3J7, CANADA

ABSTRACT learn it. This is a non-negligible time investment, espe-
cially for an occasional use, given that these languages
We introduce SSJ, an organized set of software tools im- have their own (sometimes eccentric) syntax and seman-
plemented in the Java programming language and offering tic. Some high-level simulation environments propose a
general-purpose facilities for stochastic simulation program- “no-programming” approach, where models are specified
ming. It supports the event view, process view, continuous by manipulating graphical objects on the computer screen
simulation, and arbitrary mixtures of these. Performance, by point-click-drag-drop operations, as in computer games.
flexibility, and extensibility were key criteria in its design This approach is very handy for building models that happen
and implementation. We illustrate its use by simple ex- to fit the frameworks pre-programmed in the software. But
amples and discuss how we dealt with some performance for large and complex real-life systems, such nice fits are

issues in the implementation. more the exception than the rule.
SSJis implemented as a collection of classes in the Java
1 INTRODUCTION language. It provides convenient tools for simulation pro-

gramming without giving away the generality and the power

SSJis a Java-based framework for simulation programming. provided by a widely-used, general-purpose programming
It has been designed primarily for discrete-event stochastic language reputed to be highly portable. These predefined
simulations (Law and Kelton 2000), but it also supports classes contain facilities for generating random numbers
continuous and mixed simulation. Some ideas in its design for various distributions, collecting statistics, managing a
are inherited from the packages DEMOS (Birtwistle 1979) simulation clock and a list of future events, synchroniz-
(based on th&imulalanguage) and SIMOD (LEcuyer and ing the interaction between simulated concurrent processes,
Giroux 1987) (based on th®lodula-2 language), among etc. SSJ supports both the event view and the process view,
others. as well as continuous simulation (where certain variables

Simulation models can be implemented in a variety evolve according to differential equations), and the three
of languages, including general-purpose programming lan- can be combined.
guages such as FORTRAN, C+&, Java, etc., special- In the process-oriented paradigattive objectsn the
ized simulation languages such as GPSS, SIMAN, SLAM, system, calleghrocesseshave a method that describe their
SIMSCRIPT, etc., and point-click-drag-drop graphical sim- behavior in time. The processes can interact, can be sus-
ulation environments such as Arena, Automod, etc. pended and reactivated, can be waiting for a given resource

Specialized languages and environments provide higher- or a given condition, can be created and destroyed, etc.
level tools but usually at the expense of being less flexible These processes may represent “autonomous” objects such
than general purpose programming languages. In com- as machinesand robotsinafactory, customersin arestaurant,
mercial simulation languages and environments, one must vehicles in a transportation network, etc. Process-oriented
frequently revert to general-purpose languages (such as Cprogramming is a natural way of describing complex sys-
or VisualBasic) to program the more complex aspects of a tems (Franta 1977, Birtwistle et al. 1986, Kreutzer 1986,
model or unsupported operations. Compilers and support- Law and Kelton 2000). On the other hand, certain systems
ing tools for specialized languages are less widely available are more conveniently modeled simply wiglrents which
and cost more than for general purpose languages. An- are instantaneous in the simulation time frame. Sometimes,
other obstacle to using a specialized language: one mustthe use of events is preferred because it gives a faster sim-

234

L’Ecuyer, Meliani, and Vaucher

ulation program, by avoiding the process-synchronization Java has a bad reputation for execution speed, so if
overhead. Events and processes can be mixed freely in SSJ performance is important, why choose it? It is true that the
Other Java-based simulation frameworks and libraries early versions of the Java Virtual Machine (JVM), which

proposed in the last few years incluBék (Healy and Kil- interprets the portable byte code, were slow. But things
gore 1997, Kilgore 2000), &imJavafrom New Zealand have changed dramatically with the most recent versions.
(Kreutzer, Hopkins, and van Mierlo 1997) samjavafrom The JVMs are now optimized and complemented with just-
Scotland (Howell and McNab 1998), JavaSimfrom the in-time compilers. In these environments, Java programs

U.K. (Little 1999), aJavaSimfrom Ohio (Tyan and Hou can run almost as fast as C or C++ programs compiled in
2002),JSIM (Miller, Ge, and Tao 1998), an8imkit (Buss native code. Given the fact that simulation programs in
2000, 2001). Some of them are specialized (e.qg., for queue- Java are much more elegant, clean, and portable than their
ing systems, computer networks and protocols, etc.). Our counterparts in C, the small “speed tax” is worth the price.
framework has a different design, in several aspects, than The remainder of this paper is organized as follows.
each of these. We won't discuss them all, but for illustration The next section gives a brief overview of SSJ. To give a taste

we will make some timing comparisons wiilk, which of how simulation programs look like with SSJ, we develop
is perhaps the best known of these products in the WSC and discuss small examples in Section 3. Section 4 explains
community. how we have implemented the processes by harnessing Java

SSJ was designed to be open and very flexible from threads. Section 5 outlines intended future developments.
bottom to top. As an example, at the lower level, the event A complete documentation of all the classes provided by
list has a default implementation and the user need not SSJ so far, and several additional examples, are given by
worry about it, but it is also easy to change the type of L'Ecuyer (2001b) and Meliani (2002).
data structure used for its implementation (doubly linked
list, binary tree, heap, splay tree, etc.), by adding one ex- 2 OVERVIEW OF SSJ
tra parameter to the “clock and event list initialization”
method. As another example, different types of uniform Low-level classes in SSJ implement basic tools such as
random number generation algorithms are available in SSJ, random number generators, statistical probes, and general-
and randonstreams(which are objects acting roughly like purpose lists. Each class providing a uniform random
independent random number generators) can be created anumber generator must implement an interface named
will using any of these types. Some of these algorithms RandomStream, which looks pretty much like the in-
may correspond to quasi-Monte Carlo methods, i.e., they terface of the claskngStream described by L'Ecuyer
produce (deterministic or randomized) low-discrepancy se- (2001a) and L'Ecuyer et al. (2002), with multiple streams
guences (see, e.g., LEcuyer and Lemieux 2002) instead and substreams. Other classes provide methods for gener-
of pseudo-random numbers. This provides a nice way of ating non-uniform random variates from several kinds of
mixing Monte Carlo and quasi-Monte Carlo methods in distributions.

a given simulation program, and switching between them, The classStatProbe and its subclasseBally and
without changing the simulation code: It suffices to change Accumulate provide elementary tools for collecting statis-
the constructor at stream creation to change the type of tics and computing confidence intervals. The clasd
stream. Convenient tools are also available to manipulate implementsdoubly linked lists, with tools for inserting,
and control the streams in order to facilitate the implemen- removing, and viewing objects in the list, and automatic
tation of variance reduction methods that require some form statistical collection. These list can contain any kind of
of synchronization (LEcuyer et al. 2002, Law and Kelton Object .

2000). Event scheduling is managed by the cl&®, which

We have been attentive to performance issues. Execu- contains the simulation clock and a central monitor. The
tion speed remains important for many (if not most) serious classesEvent and Process provide the facilities for
simulation applications. In some cases (e.g., when pricing creating and scheduling events and processes in the simu-
financial derivatives by simulation) it is because precise lation. Each type of event or process must be defined by
estimates are required within a few seconds or minutes; defining a class that extendsvent or Process . The
in other cases (e.g., when optimizing complex stochastic classContinuous provide tools for continuous simula-
systems by simulation) a well-tuned efficient program may tion, where certain variables vary continuously according
already run for several hours or even a few days, so slowing to ordinary differential equations.
it down by a factor of 10 (say) makes a significant difference. The classe®esource , Bin , andCondition , pro-

The constant increase of cheap computing power will not vide additional mechanisms for process synchronization. A
change this state of affairs in the foreseeable future: People Resource corresponds to a facility with limited capacity
just adapt by considering larger and more detailed models, and a waiting queue. Arocess can request an arbi-
and by attacking more difficult optimization problems. trary number of units of &esource , may have to wait

235

L’Ecuyer, Meliani, and Vaucher

until enough units are available, can use fResource The program also defines one type of event
for a certain time, and eventually releases it.Bik al- (EndOfSim) by extending the clasg&vent and defin-
lows producer/consumer relationships between processes.ing its methodactions . This method describes what to
It corresponds essentially to a pile of free tokens and a do when this event occurs (at the end of the simulation).
gueue of processes waiting for the tokens. pfoducer The constructoQueueProc initializes the simulation,
adds tokens to the pile whereas@sumer(a process) can invokescollectStat to specify that detailed statistical
ask for tokens. When not enough tokens are available, the collection must be performed automatically for the resource
consumer is blocked and placed in the queue. The class server , schedules an eveBndOfSim attime 16, sched-
Condition supports the concept of processes waiting for ules the first customer’s arrival, and starts the simulation.
a certain boolean condition to be true before continuing The EndOfSim event prints a detailed statistical report on

their execution. the resourceserver (average utilization, average waiting
time, average queue length, number of customers served,
3 EXAMPLES etc.).
One can also write an event-oriented version of this
3.1 An M/M/1 Queue M /M /1 queue simulation program, where the event classes
areArrival , Departure , andEndOfSim, as shown in
Our first example is a traditionaf / M /1 queue, with arrival Figure 2. This program is written at a lower level and is

rate of 1 and mean service time of 0.8. The system initially less compact than its process-oriented counterpart. On the
starts empty. We want to simulate its operation and compute other hand, it runs faster (see below). This is often true, due
statistics such as the mean waiting time per customer, the to the fact that processes involve more overhead. Working
mean queue length, etc. Simulation is not necessarily the at a lower level is also convenient in situations where the
best tool for this very simple model (queueing formulas are logic implemented in the available higher-level constructs
available for infinite-horizon averages; see, e.g., Kleinrock is not exactly what we want.
1975), but we find it convenient for illustrating SSJ. Here, the customers waiting and in service are main-
Figure 1 shows a SSJ-based process-oriented simulationtained in listswaitList ~ andservList . The statistical
program that simulates th& /M /1 queue for one million probecustWaits collects statistics on the customer’s wait-
time units (i.e., approximately one million customers). The ing times. It is of clas§ally , which is appropriate when
constantsneanArr , meanServ , andtimeHorizon rep- the statistical data of interest is a sequence of observations
resentthe mean time between arrivals, the mean service time, X1, Xo, Every call towaitList.update brings a
and the time horizon, respectively. The server is an object new observatiornX; (a new customer’s waiting time). The
of classResource , with capacity 1. The two random statistical probaotWait , of classAccumulate , com-
number streamgenArr andgenServ (instances of the putes the integral (and eventually the time-average) of the
classRandMrg) are used to generate the interarrival times queue length as a function of time. It is updated each time
and service times, respectively. These objects are createdthe queue size changes. Interestingly, in the program of

whenQueueProc is instantiated by thenain program. Figure 1, theResource andProcess objects use these
The program defines one type of proceSsigtomer) same lower-level constructs (lists, statistical probes, etc.),

by extending the pre-defined claBsocess . The method but this is hidden in SSJ.

actions (which must be implement by any extension of Note that in this program, only ona&rrival event

Process) describes the life of a customer. Upon arrival, and oneDeparture event are instantiated. These events
the customer first schedules the arrival of the next customer are recycled. This contributes to improving the speed by
in an exponential number of time units. Behind the scenes, reducing the number of objects that must be created. This
this effectively schedules an event, in the event list, that will is allowed because there is never more than one instance
start a new customer instance. The customer then requestsof these events planned at the same time. Of course,
the server by invokingerver.request . If the server this program could be further simplified in several ways.
is free, the customer gets it and can continue its execution In fact, the successive customer’s waiting times can be
immediately. Otherwise, it is automatically (behind the simulated without an event list by using Lindley’s recurrence
scenes) placed in the server’'s queue, is suspended, andW; 1 = max(0, W; + S; — A;) where A;, S;, andW; are
resumes its execution only when it obtains the server. When the ith interarrival time, service time, and waiting time,
its service starts, the customer invoklesay to freeze itself respectively. Our goal here is not to make the simplest
for a duration equal to its exponential service time. After program for theM /M /1 queue, but to illustrate SSJ.

this delay has elapsed, the customer releases the server and We made some timing experiments with these two
disappears. Several distinct customer instances can co-existprograms on a 750 MHz AMD-Athlon computer running
in the simulation at any given point in time, and be at Redhat Linux 7.1. With the JDK-1.2.2 virtual machine, the
different phases of themctions method. javacomp just-in-time compiler, and Java green threads,

236

L’Ecuyer, Meliani, and Vaucher

public class QueueProc {

static final double meanArr =1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

Resource server = new Resource (1, "server");
RandMrg genArr = new RandMrg ();
RandMrg genServ = new RandMrg ();

public static void main (String[] args) {new QueueProc(); }

public QueueProc () {
Sim.init();
server.collectStat (true);
new EndOfSim().schedule (timeHorizon);
new Customer().schedule (Randl.expon (genArr, meanArr));
Sim.start();

class Customer extends Process {
public void actions () {
new Customer().schedule (Randl.expon (genArr, meanArr));
server.request (1);
delay (Randl.expon (genServ, meanServ));
server.release (1);

}
class EndOfSim extends Event {
public void actions () {
System.out.printin(server.report());

}Sim.stop();
}
}
Figure 1: Process-oriented Simulation of &M /1 Queue.
QueueProc took 21.9 seconds to run a@uieueEv2 took to those of SSJ, but without the process-view facilities. We

7.1 seconds. These numbers are the “user time” returned tried a version ofQueueEv2 in SSC and it ran in 2.8
by the Linux commandtime ”. With JDK-1.3.1 and the seconds on the same machine (wgitc and optimization
“hotspot” optimizer from SUNQueueEv2 took 3.6 sec- level-O3). This gives a Java/C speed ratio 32.8 ~ 1.3,
onds. However, the hotspot optimizer allows omigtive i.e., a time penalty of approximately 30%.
threads(which are real threads managed at the operating
system level, as opposed goeenthreads which are simu- 3.2 Two Queues in Series with a Batch Server
lated threads in the Java environment@ueueProc runs
much slower under this setup (over a minute), because na- This example is adapted from Healy and Kilgore (1998).
tive threads involve a large amount of overhead. A program Customers must pass through two queues in series: After
that simply implements Lindley’s recurrence to compute the being served at the first queue, they join the second queue,
average waiting time of f0customers takes approximately —and when their service is over at the second queue, they
2.1 seconds under JDK-1.3.1 + hotspot, and more than 3/4 disappear. The first queue /M /1 as in the previous
of this time is used to generate the exponential random example while the second one serves customers in batches
variables. of sizes 10 to 20. The server at the second queue waits

A Silk version ofQueueProc , taken from Healy and until there are at least 10 customers ready to be served, then
Kilgore (1997) with straightforward adaptation, took 190 serves all these customers simultaneously. After completing
seconds under JDK-1.2.2 wifavacomp using Silk’s aca- its service time, ifC > 10 customers are waiting in queue 2,
demic version 1.2. the server starts another batch immediately with(@ir20)

SSJ actually has a brother named SSC (L'Ecuyer 2002). customers. Otherwise it waits until there are 10.
Itis a library implemented in ANSI-C, offering tools similar

237

L’Ecuyer, Meliani, and Vaucher

public class QueueEv2 {

static final double meanArr =1.0;
static final double meanServ = 0.8;
static final double timeHorizon = 1000000.0;

Arrival arrival = new Arrival();
Departure departure = new Departure();

RandMrg genArr = new RandMrg ();

RandMrg genServ = new RandMrg ();

List waitList = new List ("Customers waiting in queue");
List servList = new List ("Customers in service");

Tally custWaits = new Tally ("Waiting times");

/I Accumulate totWait = new Accumulate ("Size of queue");

class Customer { double arrivTime, servTime; }
public static void main (String[] args) { new QueueEv2(); }

public QueueEv2() {
Sim.init();
new EndOfSim().schedule (timeHorizon);
arrival.schedule (Randl.expon (genArr, meanArr));
Sim.start();

class Arrival extends Event {
public void actions() {
arrival.schedule (Randl.expon (genArr, meanArr));
/I The next arrival.

Customer cust = new Customer(); // Cust just arrived.

cust.arrivTime = Sim.time();

cust.servTime = Randl.expon (genServ, meanServ);

if (servList.size() > 0) { /I Must join the queue.
waitList.addLast (cust);
/Il totWait.update (waitList.size());

} else { /I Starts service.
servList.addLast ﬁcust);
departure.schedule (cust.servTime);
i:ustWaits.update (0.0);

}

class Departure extends Event {
public void actions () {

servList.removeFirst ();

if (waitList.size () > 0) {
Il Starts service for next one in queue.
Customer cust = (Customer) waitList.removeFirst ();
servList.addLast (cust);
departure.schedule (cust.servTime);
custWaits.update (Sim.time () - cust.arrivTime);
/I totWait.update (waitList.size ());

}

}
class EndOfSim extends Event {
public void actions () {(
System.out.printin (custWaits.report());
}Sim.stop();

Figure 2: Event-oriented Simulation of ad/M /1 Queue.

238

L’Ecuyer, Meliani, and Vaucher

Suppose the arrival rate is 1, the service time at the Note that the metho&im.init()

automatically cleans

first queue is exponential with mean 0.8, and the service up all Process objects; for this reasorserver2 must

time at the second queue is exponential with meaVe

want to compare the mean sojourn time in the system for

two different values 0. To be specific, lef(; (resp.,X?)

be created at the beginning of each simulation run.
In contrast to the previous examples, here there is no
EndOfSim event; customer number 10000 takes care of

be the average sojourn time of the first 10000 customers stopping the simulation when he leaves the system.

for 6 =61 = 12 (resp.p = 62 = 13). We want to estimate
w2 —p1wherep; = E[X;]. To do this, we will perform 10

Under JDK-1.2.2 witljavacomp , this program takes
about 7.8 seconds to execute. We tried 8ikk imple-

pairs of simulation runs, where each pair produces a replicate mentation of the same model, given in Healy and Kilgore

of the vector (X1, X2) using common random numbers
across the two values éf (see, e.g., Law and Kelton 2000
for an introduction to this variance reduction technique).
The 10 replicates ob = X, — X4 are independent random

variables that are approximately normally distributed, so we 4

can compute a confidence interval pp— p1 by assuming
that +/10(D — (u2 — 11))/Sp has the Student distribution
with 9 degrees of freedom, Whel_laandsg are the empirical
mean and variance of the 10 valuesiof The program of

Figure 3 computes such a confidence interval and produces each of which must contain arctions

the printout shown in Figure 4.
The constructor oBatchServer repeats the follow-
ing 10 times: It performs one simulation run @t 12.0,

(1998), and it took approximately 100 seconds fairggle
run (compared with roughly 0.4 seconds per run with SSJ)
on the same platform.

IMPLEMENTING PROCESSES

In discrete event simulation, sequencing is based on an
ordered list of event notices. In SSJ, these notices are
represented by user defined sub-classes dEtlemit class,
method defining

the effect of the event. A simulation executive repeatedly
takes the next event off the list, updates the simulation clock
and executes thactions method until the end.

memorizes the average sojourn time in variableanl, SSJalso handles Processes. These act like threads: they
resets the three random number streams to the beginningexecute a sequence of events spread over time so that their
of their current substreams so that the next simulation run actions are intermingled with those of other processes. In
atd = 13.0 will use exactly the same sequences of random Java, it seems natural to use fif@ead class to implement
numbers as that &t = 12.0, performs the second simu- Processes. However, JalWlaread s are designed to support
lation, gives the value oD = X, — X1 to the collector real parallelism (exploiting multi-processor architectures)
statDiff , and then resets the random number streams to or pseudo parallelism via time-slicing. For simulation, one
new substreams in order to get independent random num- must find an efficient way to curb this parallelism so that
bers for the next pair of runs. When the 10 pairs of runs execution passes between the executive and the processes
are completed, the 90% confidence intervalyon— w1 is in a strictly sequential way.
printed. The required control operation is thesume(X) op-
Here, the server at the first queue is implemented as eration ofcoroutineswhere the active thread suspends itself
a Resource as in theM/M/1 example, but the second and passes control to another thread so that there is always
server is implemented as Rrocess , using aBin as a only one thread active. Presently, Java provides a version
synchronization mechanism. When a customer arrives at of resume(X) which does not automatically suspend the
queue 2, if he is the tenth customer in the queue and the calling thread so that theesume(X); must be followed
server is free, he wakes up the server. The customer thenby suspend; . To allow for combinedeventand process
requests a token from that bin and is automatically suspended orientations, theactions method of process objects just
until he receives the token (when its service ends). The resumeghe process and the processesumethe executive
methodbinServ2.waitList().size() returns the after every active phase.
number of processes currently waiting for tokens at the bin; Unfortunately, as Java implementations have evolved,
this is the size of the queue at the second server. the use ofesume(X) andsuspend has been deprecated:
The behavior of the second server is described in the these operations may not be available in future versions.
actions method ofServer2 . When this server becomes We have also found that correct passage of control cannot
free and the queue size is less than 10, it suspends itself,be garanteed. In SSJ, process synchronization does not
waiting to be waken up by a customer when the queue size use Java’'sresume(X) ; rather, we use thevait and
reaches 10. The server then becomes busy and serves anotify = methods to implement semaphores (Holub 2000)
new batch of customers. The size of this batch may exceed and use those to create our own safe and correct versions
10 if the server just completed the previous batch (and of resume(X) andsuspend . These were the ones used
was not suspended). After service completion, a number of in the BatchServer example.
tokens equal to the batch size is put on the bin, so that the To deal with real—not simulated—parallelism, newer
appropriate number of customers can resume their execution.implementations of Java use operating systemagive

239

L’Ecuyer, Meliani, and Vaucher

class BatchServer {

static final double meanArr = 1.0
static final double meanServl = 0.
static double meanServ2;

8;

RandMrg genArr = new RandMrg(); // For times between arrivals.
RandMrg genServl = new RandMrg(); // For service times at server 1.
RandMrg genServ2 = new RandMrg(); // For service times at server 2.

Resource serverl = new Resource (1, "Server 1%);
Server2 serverz;

Bin binServ2 = new Bin ("Server 2 Bin ");

Tally statSojourn = new Tally ("Sojourn times in one run");
Tally statDiff = new Tally ("Differences on averages");

public static void main (String[] args) { new BatchServer(); }

public BatchServer () {

for (int rep = O; rep < 10; rep++) {
meanServ2 = 12.0; simulOneRun();
double meanl = statSojourn.average();
genArr.resetStartSubstream ();
genServl.resetStartSubstream ();
genServ2.resetStartSubstream ();
meanServ2 = 13.0; simulOneRun();
statDiff.update (statSojourn.average() - meanl);
genArr.resetNextSubstream ();
genServl.resetNextSubstream ();
genServ2.resetNextSubstream ();

}
System.out.println (statDiff.printConfintStudent (0.90));

private void simulOneRun () {
statSojourn.init(); serverl.init(); binServ2.init();
Sim.init(); /I Note: this method Kills all processes.
server2 = new Server2(); server2.schedule(0.0);
new Customer().schedule(0.0);
Sim.start();

class Customer extends Process {

public void actions() {
new Customer().schedule (Randl.expon (genArr, meanArr));
double arrivalTime = Sim.time();
serverl.request(1);
delay (Randl.expon (genServl, meanServl));
serverl.release(1);
if (binServ2.waitList().size() >= 9 && !server2.busy)

server2.resume();

binServ2.take(1); /I Blocked until end of service.
statSojourn.update (Sim.time() - arrivalTime);
if (statSojourn.numberObs() >= 10000) Sim.stop();

}

class Server2 extends Process {
boolean busy = false;
int batchSize; /I Current batch size.
public void actions() {
while (true) {
if (binServ2.waitList().size() < 10) {
busy = false; suspend(); // Wait for enough customers.

busy = true; /I Starts serving new batch.
batchSize = Math.min (20, binServ2.waitList().size());

delay (Randl.expon (genServ2, meanServ2));

binServ2.put (batchSize); /I Unblocks customers in batch.

Figure 3: Simulation Program for Two Queues in Series with a Batch Server.
240

L’Ecuyer, Meliani, and Vaucher

REPORT on Tally stat. collector ==> Differences on averages
min max average standard dev. nb. obs
3.373 8.050 4.958 1.644 10

90.0% confidence interval for mean (4.005, 5.911)

Figure 4: Output of the Program of Figure 3.

threadsrather than manage their own locally. This means as fast as C (30% penalty in our example). Surprisingly,
that scheduling overhead has increased to the point where Java’s support for real parallel activity via théhread
the time required to create and start a new thread is easily class is ill-adapted to the pseudo-parallelism of simulation

the equivalent of creating 100 ordinary objects. processes.

To improve efficiency, we do not implement processes During the year 2002, we plan to beef up SSJ’s library
directly asThread s; rather we have an intermediate (pri- of alternate event listimplementations, random number gen-
vate) classThread2 which execute thactions method erators, support for quasi-Monte Carlo methods, statistical
of the Processes. The advantage of this organization is analysis tools, and to add classes adapted to specific areas
that we do not need to create a ndread for every of applications such as finance.

new Process . TheThread2 objects are organized in a
thread pool(Holub 2000). When a process ends its life, its ACKNOWLEDGMENTS
associatedhread2 objectis put on a stack of free threads.
When a new process is instantiated, anTidead2 object This work has been supported by NSERC-Canada Grant No.
is taken from the stack, or created if the stack is empty. ODGP0110050 and FCAR-Québec Grant No. 00ER3218
Thus, the total number of threads created does not exceedto the first author. We thank Guy Lapalme for his helpful
the maximum number of threads that are simultaneously comments on the design of SSJ classes.
active during the simulation. However, with native threads,
the number is limited and some complex simulations can REFERENCES
run out of threads.
Efficiency is also improved by sometimes by-passing Birtwistle, G. M. 1979.Demos—a system for discrete event

the executive. Initially, after every event, the executive takes modelling on SimulaLondon: MacMillan.
control and calls thactions method of the nexEvent Birtwistle, G. M., G. Lomow, B. Unger, and P. Luker. 1986.
or Process ; but, when it is time for a process to relinquish Process style packages for discrete event modelling.
control, its thread takes over from the executive, executing Transactions of the Society for Computer SimulaBen
the upcoming events (if any) from the event list, until it 4:279-318.
comes upon another process. Thermegumedirectly the Buss, A. H. 2000. Component-based simulation modeling. In
next process. This mechanism reduces by half the number Proceedings of the 2000 Winter Simulation Conference
of transfers between threads. 964-971. Pistacaway, New Jersey: IEEE Press.
Nevertheless, as tl@ueueProc andQueueEv2 tim- Buss, A. H. 2001. Discrete event programming with Simkit.
ings indicate, event models which only use method calls Simulation News Europ82/33: 15-26.
still run roughly 3 times faster than process models which Franta, W. R. 1977The process view of simulatiohlew
requireThread operations. York: North Holland.
Healy, K. J., and R. A. Kilgore. 1997. Silk: A Java-based
5 FUTURE DEVELOPMENTS AND CONCLUSION process simulation language Proceedings of the 1997
Winter Simulation Conferencet75-482. Piscataway,
We presented SSJ, a framework written in Java which allows NJ: IEEE Press.
both discrete and continuous simulation and supports both Healy, K. J., and R. A. Kilgore. 1998. Introduction to silk
events and processes. Its strength lies partly in the state- and Java-based simulation. Rmoceedings of the 1998
of-the-art support for random number generation, efficient Winter Simulation Conference8327—334. Piscataway,
implementation, and use of novel scheduling techniques NJ: IEEE Press.
adapted to Java's strengths and weaknesses. Holub, A. 2000.Taming Java threadsAPress (distributed
Our work allows us to draw some conclusions about the by Springer-Verlag, NY).
suitability of Java for simulation. For sequential program- Howell, F. W., and R. McNab. 1998. Simjava: a discrete
ming or event-oriented simulation, the code runs almost event simulation package for Java with applications in

241

L'Ecuyer, Meliani

computer systems modelling.froceedings of the First
International Conference on Web-based Modelling and
Simulation San Diego, CA: The Society for Computer
Simulation.

Kilgore, R. A. 2000. Silk, Java, and object-oriented simu-
lation. In Proceedings of the 2000 Winter Simulation
Conference246-252. Piscataway, NJ: IEEE Press.

Kleinrock, L. 1975.Queueing systems, vol. New York:
Wiley.

Kreutzer, W. 1986System simulation - programming styles
and languagesNew York: Addison Wesley.

Kreutzer, W., J. Hopkins, and M. van Mierlo. 1997.
SimJAVA—a framework for modeling queueing net-
works in Java. IrProceedings of the 1997 Winter Sim-
ulation Conference483-488. Pistacaway, New Jersey:
IEEE Press.

Law, A. M., and W. D. Kelton. 2000Simulation modeling
and analysis Third ed. New York: McGraw-Hill.

L'Ecuyer, P. 2001a. Software for uniform random number
generation: Distinguishing the good and the bad. In
Proceedings of the 2001 Winter Simulation Conference
95-105. Pistacaway, NJ: IEEE Press.

L'Ecuyer, P. 2001bSSJ: A Java library for stochastic sim-
ulation. Software user’s guide.

L'Ecuyer, P. 2002SSC: A library for stochastic simulation
in C. Software user’s guide.

L'Ecuyer, P., and N. Giroux. 1987. A process-oriented sim-
ulation package based on Modula-2. 1887 Winter
Simulation Proceedingsl65-174.

L'Ecuyer, P., and C. Lemieux. 2002. Recent advances in
randomized quasi-monte carlo methods.Miedeling
Uncertainty: An Examination of Stochastic Theory,
Methods, and Applicationsed. M. Dror, P. LEcuyer,
and F. Szidarovszki, 419-474. Boston: Kluwer Aca-
demic Publishers.

L'Ecuyer, P., R. Simard, E. J. Chen, and W. D. Kelton. 2002.
An object-oriented random-number package with many
long streams and substrear@perations Researciio
appear.

Little, M. C. 1999. JavaSim user’s guide. Available on-line
at <http://javasim.ncl.ac.uk/> .

Meliani, L. 2002. Un cadre d'application pour la simulation
stochastique en Java. Master's thesis, DIRO, Université
de Montréal. Forthcoming.

Miller, J. A., Y. Ge, and J. Tao. 1998. Component-based sim-
ulation environments: JSIM as a case study using Java
beans. InProceedings of the 1998 Winter Simulation
Conference373-381. Piscataway, NJ: IEEE Press.

Tyan, H.-Y., and C.-J. Hou. 2002. JavaSim on-line man-
uals and tutorials. Available on-line athttp://
javasim.cs.uiuc.edu>

242

, and Vaucher

AUTHOR BIOGRAPHIES

PIERRE LECUYER is professor in the “Département
d’Informatique et de Recherche Opérationnelle”, at the
University of Montreal. His main research interests are
random number generation, quasi-Monte Carlo methods,
efficiency improvement via variance reduction, sensitivity
analysis and optimization of discrete-event stochastic sys-
tems, and discrete-event simulation in general. He obtained
the prestigiou€. W. R. Steaci&rant in 1995-97 and the
Killam Grant in 2001-03. His recent research articles are
available on-line akhttp://www.iro.umontreal.

cal"lecuyer>

LAKHDAR MELIANI isa M.Sc. Student at the University
of Montreal. His main interests are software engineering
and objected-oriented programming.

JEAN VAUCHER is professor in the “Département
d’'Informatique et de Recherche Opérationnelle”, at the
University of Montreal. In the early seventies, he de-
sighed GPSSS, a simulation package based on Simula, and
made several contributions related to efficient event list
implementations. Presently, his main research interest are
in object-oriented programming, distributed systems and
intelligent agents.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 234
	02: 235
	03: 236
	04: 237
	05: 238
	06: 239
	07: 240
	08: 241
	09: 242

