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ABSTRACT 
 
Virtual reality offers a new frontier for human interaction 
with simulation models.  A virtual environment, such as 
that created with a CAVE, imposes either real-time or 
quasi-real-time performance on the simulation model.  Be-
yond that general requirement, what others can be identi-
fied for simulation programs that drive a virtual reality or 
virtual environment interface? Based on experience with 
the Virginia Tech CAVE augmented by a literature search, 
we propose three key requirements for successful CAVE-
based simulations: (1) Portability among CAVE-specific 
input/output devices, (2) effective and efficient inter-
process communication, and (3) overcoming the limita-
tions associated with input/output device interaction. Each 
requirement is described in some detail to both explain and 
justify its inclusion. Limitations and near- and intermedi-
ate-term research needs are identified. 
 
1 INTRODUCTION  
 
1.1  A Paradigm Shift 
 
When we have learned how to take good advantage of it, it 
may--indeed, I believe it will--be the greatest boon to sci-
entific and technical communication, and to the teaching 
and learning of science and technology, since the invention 
of writing on a flat surface (Licklider 1967). 
   

The above quotation comes from a paper written in the 
mid-1960s. The author is referring to the difference be-
tween a static model and an interactive dynamic model. 
The former produces the same results on every execution, 
or allows variation in the values of input variables that lead 
to different values for a fixed set of output variables. The 
model is defined in terms of static components that do not 
change throughout model execution.  A dynamic model, by 
Licklider’s definition, is a model that possesses compo-
nents, which change during model execution. An interac-
tive dynamic model allows a human to dynamically change 
model components while the program is executing. Lick-
lider (1967, p. 281) claims that interactive dynamic models 
hold the key to “communicating ideas about complex sys-
tems and processes.”  

The static model defined above is the classical simula-
tion model, vintage 1960-1970. The rudimentary capability 
of an interactive dynamic model is introduced in OPS-3, a 
mid-1960s research system well known to Licklider (Nance 
1996, p. 366-367).  In the early 1970s a version of GPSS de-
veloped by Reitman’s group at Norden (Nance 1996, p. 399) 
couples the dynamic interactive modeling with vector graph-
ics capability.  GPSS/NORDEN represents the first example 
of visual interactive simulation that becomes a prime re-
search topic in the mid-1980s.  Licklider’s vision is con-
firmed today in the enormous number of commercial soft-
ware products that use interactive graphical simulations as 
their primary mode of user interaction. 

We are now entering a second or extended phase of the 
Licklider prophecy: one or more humans exchanging data 
with and within a 3-D virtual environment. The human ele-
ment is not confined to the modeler as Licklider describes; 
in fact the technical knowledge of the human participants 
might be unimportant in the interactive experience.   

This form of dynamic interactive modeling is provided 
by the CAVE automatic virtual environment, or simply 
CAVE, first implemented in 1991 by Carolina Cruz-Neira, 
at the University of Illinois at Chicago and described in 
Cruz-Neira et al. (1993).  The CAVE is composed of three 
to six projection screens driven by a set of coordinated im-
age-generation systems. It is assisted by a head and hand 
tracking system that produces a stereo perspective and iso-
lates the position and orientation of a spatial 3-D input de-
vice. Audio interaction can also be used in a CAVE simu-
lation, but that is not the focus of this paper. 
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1.2 Motivation 
 
The utility of a simulation model driving a VR interface 
seems almost obvious in a training exercise. A simulation of 
a planned mission drives an interface that represents the 
buildings, streets, and enemy emplacements that might be 
encountered in a future urban combat setting. Trainees 
physically move through this virtual environment, via some 
specialized locomotive device (Darken 1997).  Moreover, 
the potential uses motivating the coupling are extensive: 

 
• An architect, now providing an impressive 2-D 

rendering of a building design through a desktop 
interface, enables the prospective client to access 
the interior, experiencing many of the stimuli af-
fected by the completed structure (Cruz-Neira, et 
al. 1993).  

• A computer scientist navigates through a source 
code visualization system depicting the code 
execution in 3-D space, in which geometric shapes 
not only represent memory being consumed by the 
system but also the function calls and objects that 
are created and destroyed (Maletic et al. 2001).  

• An individual or group in hotel or tour manage-
ment experiences virtual travel in an open-air ele-
vator located in the Waldorf Astoria Hotel in 
downtown Manhattan. The simulation program 
driving the 3-D environment enables the feel of 
the jerk from upward acceleration and creates the 
virtual panoramic view from ten stories above the 
main lobby of the hotel floor (Preddy 2002). 

 
1.3  Objectives 
 
Opinions likely vary on the criticality of universal re-
quirements for CAVE simulations. We attempt to be re-
strictive in the designation of key requirements, and the fo-
cus is limited to three:  

 
• Portability among virtual environment interfaces 

is achieved through an application-programming 
interface (API) accommodation of multiple levels 
of abstraction. 

• Inter-process communication among the concur-
rent processes composing the CAVE simulation 
must be effective and efficient. Data transfer and 
synchronization requirements among processes on 
a single computer, or distributed over several com-
puters, can be imposed on a CAVE simulation.  

• Device flexibility refers to the ability to incorpo-
rate specialized CAVE input/output (IO) devices 
as interfaces with the simulation model. The im-
portance of this criterion is easily underestimated, 
but we argue that it is essential.  
2 PORTABILITY AMONG VIRTUAL 
ENVIRONMENT INTERFACES 

 
2.1  The Importance of Portability 
 
The motivation to create simulations that operate in the 
CAVE leads to the question: What concerns should a de-
veloper anticipate when designing a simulation for this en-
vironment? Portability among the devices intended to work 
in the CAVE is an issue that needs to be addressed during 
the early developmental stages of the simulation. A major 
portion of the development for a CAVE simulation can be 
allocated to a desktop machine if an API exists that ab-
stracts the underlying details of CAVE-specific IO devices 
(CIODs).  

On a fundamental level, CIODs can be divided into 
two categories: continuous and discrete. Discrete devices, 
as the name implies, take samples of input at specified dis-
crete time intervals. Input devices like pinch gloves, 
wands, and keyboards are examples. Continuous devices 
produce a steady stream of data that are sampled at various 
times by the system for a “snapshot” of state (Bowman 
2002). Understanding how a simulation program can po-
tentially interact with CIODs and what is entailed in 
achieving the mandated smoothness of interplay is critical. 
The API used to develop CAVE applications should ab-
stract most of the details of CIOD usage. A developer 
should be able to work with abstractions that enable an 
easy port of CIODs from the desktop to the CAVE. The 
savings from desktop development of a CAVE simulation 
increases with the size and complexity of the project. 

The claim that CIOD portability is a key requirement 
is based on its influence on development time and cost for 
a CAVE simulation. Utilizing a workstation, or desktop 
environment, for development is almost mandatory.  This 
potential raises the question: Are CIODs used in the CAVE 
correctly abstracted into a desktop interface? Fortunately, 
the majority of current API’s used for CAVE development 
do this reasonably well. Two API’s that do an exceptional 
job of abstracting CIODs are VR Juggler from Iowa State 
University (http://www.vrjuggler.org), and DIVERSE from 
Virginia Tech (http://www.diverse.vt.edu ). The former is 
the product of a group under the leadership of Carolina 
Cruz-Neira, and the latter, a group led by Ron Kriz at Vir-
ginia Tech.   

VR Juggler and DIVERSE (from Device Independent 
Virtual Environments -- Reconfigurable, Scalable, Exten-
sible) employ similar approaches in the CIOD abstraction.  
VR Juggler provides abstractions based on functionality, 
assigning a CIOD to one of several basic classes such as 
positional, orientation, digital, analog, glove, etc. An im-
portant feature of this approach to abstraction is the use of 
inheritance from base classes to represent varieties of the 
same type of device. Therefore any instance of CIOD ob-
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ject typed as “positional” presents the same software inter-
face to the developer (Bierbaum et al. 2001). VR Juggler’s 
inheritance mechanism substantially simplifies the device 
interface presented to a developer.  

The DIVERSE API extends CIOD abstraction even 
further by treating all CIODs as “services.” The developer 
of a CAVE simulation need not be concerned with the spe-
cifics of the underlying CIOD hardware. In fact, the devel-
oper need not possess a priori knowledge of the type of 
CIOD used in the simulation. The DIVERSE abstraction of 
the service concept for CIODs is implemented through pro-
tocols embedded in Dynamic Shared Objects (DSOs) 
(Arsenault and Kelso 2001). A DSO is implemented as a 
small pre-compiled program that is loaded into the execu-
table system at runtime. Using the DSO-enabled abstrac-
tion of service reduces development time by hiding the im-
plementation details of the CIOD.  
 
2.2  More on Dynamic Shared Objects 
 
The DSO implementation of the service concept, specific 
to DIVERSE, is capable of completely abstracting hard-
ware interaction from the developer, allowing a simple, 
common interface to be presented for all CIODs. The DSO 
representing the abstraction for a specific CIOD is loaded 
into the executable program through the command line or 
by hard coding its name in the application. The effect is 
transparent; irrespective of where the specification of the 
DSO occurs, it is always loaded at runtime as a separate 
program (Arsenault and Kelso 2001).  

An example is the interaction with the wand, the 
CAVE equivalent of a mouse. The main application loads 
the appropriate DSO associated with wand interaction, 
which, using DIVERSE syntax, is achieved by DPF 
app(desktopCaveSimGroup,NULL), where the name of the 
DSO is desktopCaveSimGroup. Next, the application needs 
to specify how the input from the wand, which is obtained 
from the DSO, is received into the main application. A 
simple method for doing this is DPFInButton *button = 
caveInput->button, which simply creates a button object 
that the main application uses to read from the wand. This 
example illustrates the significant level of abstraction that 
DIVERSE achieves in using CIODs. More examples are 
readily seen at <http://www.diverse.vt.edu/ 
share/dgiPf/examples/>. 
 
2.2.1 VR Juggler 
 
VR Juggler has a concept similar to DSO for CIOD ab-
straction. Providing a system known as the Device Store, 
VR Juggler enables the separation of all CIOD from the 
main library.  This “selection catalog” allows devices to be 
loaded dynamically. The Device Store supports the addi-
tion of new devices at run-time, or at link time, without 
having to recompile the application that uses them. A 
CIOD can be reconfigured at run-time without affecting 
the main application. A reconfiguration request is sent to 
the VR Juggler input manager calling for a specific proxy 
to point to a different CIOD. Using proxies to abstract the 
CIOD implementation details provides a uniform interface 
for the using application. The application developer never 
directly interacts with the hardware or the specific input 
classes that control the device. New devices can be added 
by deriving a new class to manage the new device. The ad-
vantage of VR Juggler’s approach to device abstraction, 
like that of DIVERSE, is the delayed binding of specific 
runtime configuration. The CIOD drivers do not have to be 
compiled with the application that uses those (Arsenault et 
al. 2001).  
 
2.3  Shared Libraries 
 
Shared libraries furnish effective mechanisms for standard-
izing CAVE applications. The goal of any API supporting 
CAVE development should be to provide a standard for 
developers of every CAVE application. The API should 
not be specific to an individual CAVE. Few standards 
guarantee developers that integration is successful for any 
CAVE platform. Without a standardized API, CAVE ap-
plications cannot be guaranteed to possess portability. The 
lack of standardization stems in part from the fact that most 
CAVEs are located in academic institutions that view API 
development as a creative challenge.  

Despite the non-uniformity in the API’s that litter the 
virtual reality field, some standards have emerged. One 
such standard is a proprietary software product called 
CAVELib, provided by VRCO (Costigan 2002). CAVELib 
represents one of the few standards that CAVE developers 
depend on when developing applications that are truly 
portable. CAVELib supports a large variety of operating 
systems: SGI Irix, Sun Solaris, Hewlett Packard HP-UX, 
Red Hat Linux and Win32. The disadvantage in using 
CAVELib is that it is proprietary, and the distribution is in 
the form of pre-compiled libraries that only expose header 
files as an API interface. 

 
2.3.1 CAVELib 
 
VRCO claims that CAVELib is the industry standard API 
for support and creation of CAVE applications. CAVELib 
is OpenGL based, and requires only three functions for a 
basic CAVE application. The API is extensive, and VRCO 
maintains that the developer can use only what is needed. 
CAVELib is externally configured, with windowing and 
graphics contexts provided for the developer. Automatic 
data synchronization between processes, threads, and clus-
ter nodes are provided, and the product furnishes multi-
channel and multi-pipe support (Costigan 2002). 

http://www.diverse.vt.edu/ share/dgiPf/examples/
http://www.diverse.vt.edu/ share/dgiPf/examples/
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2.3.2 The Non-Proprietary Alternatives 
 
Most of the features in CAVELib are also provided by VR 
Juggler and DIVERSE. An important restriction of 
CAVELib is that it only exposes the header files of pre-
compiled binaries to the developer. While currently toler-
ated in the VR community, this limitation might have a 
short future. Developers are likely to avoid a work-around 
of a pre-compiled API that cannot be customized according 
to their needs when non-proprietary alternatives like 
DIVERSE and VR Juggler are widely known. 
 
2.4  Closing Remarks 
 
The importance of portability in CAVE development can-
not be overstated. An API such as DIVERSE or VR Jug-
gler, which gives a CAVE developer the freedom to de-
velop the majority of a CAVE application at the desktop is 
invaluable. An API should provide a clean, portable inter-
face to CIODs to alleviate the time spent learning the spe-
cifics of device hardware. CAVELib provides a clean in-
terface to CIODs, but the code is not customizable and 
therefore restrictive. We are of the opinion that open-
source API is the future in CAVE development.   
 
3 INTER-PROCESS COMMUNICATION  
 
3.1 Motivation    
 
Whether local to the machine, or occurring among multiple 
machines, communication is a particular concern. Commu-
nication can take the form of data exchange among proc-
esses or process synchronization.  A discrete event simula-
tion using the CAVE is replete with examples of both 
forms in the requirement to impose temporal causality (the 
correct representation of the time ordering of events). Ro-
boCup (Renambot et al. 2000), a distributed soccer simula-
tion that allows multiple users to play a soccer match in a 
CAVE environment, serves as an example from the enter-
tainment domain. The authors describe the game best: 
 

The simulation consists of the Soccer Server and a set 
of processes modeling the players. The server keeps 
track of the  state of the game, provides the players 
with information on the game, and enforces the rules. 
The players request state information and autono-
mously calculate a behavior, sending the server com-
mands that consist of dashes (accelerations), turns, 
and kicks. The server discretizes time into slots of 100 
msec. Only one command of a player is executed per 
time slot. The kick command requires the player to be 
close to the ball (1 m). 

 

Obviously a simulation program of this nature requires 
tight coordination between the client and server nodes of 
the distributed system. High latency times  for computation 
and/or data transfer are unacceptable. The designer of the 
simulation model must give attention to the communica-
tions capabilities of the API used for CAVE development. 
The capabilities of the CAVE hardware must be assessed 
before attempting to develop the simulation. If network 
bandwidth is unacceptably low, or if processor speed is in-
adequate, then a distributed CAVE simulation might not be 
feasible. Consequently, a realistic assessment of CAVE 
hardware affecting network performance should be carried 
out before the decision to develop a distributed CAVE 
simulation. 

Not all inter-process communication is distributed. 
Local inter-process communication is typically required for 
synchronization. Shared memory is a popular architecture 
for achieving local inter-process communication. The  
DIVERSE API has abstracted shared memory to the degree 
that its usage is relatively straightforward. In fact, the 
DIVERSE API abstraction in the shared memory architec-
ture supplies some practical advantages over message pass-
ing. Although quantitative comparison has not been per-
formed, experience shows that well structured shared 
memory architecture is more than adequate for many 
CAVE simulations (Arsenault 2001b). 

CAVE applications of minimal complexity require 
some means of inter-process communication. Again using 
the RoboCup example, precise inter-process communica-
tion among distributed processors executing the simulation 
must be achieved or the simulation quickly loses any sense 
of realism. A second example is the elevator simulation 
where tightly integrated inter-process communication must 
be provided between the graphics application and the pro-
gram that feeds position coordinates to the motion plat-
form. If an unacceptable lag is encountered while commu-
nicating data, then the physical movement of the 
simulation is not coordinated with the visual portrayal.  

 
3.2 Shared Memory for Inter-Process  

Communication 
 
3.2.1 The Shared Memory Debate  
 
One of the most hotly debated topics in collaborative simu-
lation is the use of shared memory. In concept, shared mem-
ory is a physical “address space” with an interconnection 
mechanism that permits access by multiple processes. The 
multiple processes might employ a synchronous or asyn-
chronous access protocol, and the “address space” might be 
a shared data segment. A universal system clock regulates 
synchronous shared memory access by cooperative simula-
tion processes; e.g. using a signal and wait. Asynchronous 
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access is more complicated to implement but avoids the 
blocking imposed in the process synchronization. 

Both synchronous and asynchronous access is needed, 
and each has its proponents. The synchronous camp argues 
that a clock must regulate shared memory access to control 
the busy waiting incurred by the blocked process(es). Data 
loss is an important issue for some applications, particu-
larly computationally-intensive ones where the conse-
quences might invalidate the results.  

The asynchronous camp argues that blocking by any 
process is unacceptable in certain situations. Real-time 
simulations involving multiple participants may not allow 
a single node of the simulation to block while maintaining 
proper state information. Instead, the asynchronous camp 
argues that data continuity should be traded for decreased 
accuracy (Carter et al. 1995).   

The access protocol debate is fueled by the fact that 
the wrong choice can have obvious adverse effects on exe-
cution time, results or both in a CAVE simulation. For the 
majority of cases asynchronous access serves well, espe-
cially considering that most shared memory usage is for 
CIOD signaling. Note that operating system services are 
likely to be required to implement the protocol correctly.  
In the cases where a shared address space is used in a com-
putationally-intensive CAVE simulation, data loss is an is-
sue, and synchronous shared memory access is desired. 
 
3.2.2  Example Scenarios of Shared Memory  

use and Efficiency  
 
CAVE simulations requiring shared memory usage can also 
be categorized as synchronous or asynchronous. Computa-
tionally-intensive CAVE applications involving scientific 
visualization at first glance might be grouped into the syn-
chronous camp. After all, how realistic is a simulation that 
models fluid dynamics when the graphical refresh rate is 
faster than the rate of arrival of the data coordinates at a 
shared memory location? The more revealing question is: 
What is the nature of this data? If the answer is “graphics 
data,” schemes that compensate for lost data (such as dead 
reckoning (Macedonia 1997) could be adopted to reduce the 
need for blocking on a data read. Most CAVE applications 
are graphically-intensive, and many do not rely on exacting 
accuracy. These applications become candidates for asyn-
chronous shared memory usage. If data in a shared memory 
segment is periodically overwritten, then this problem can 
be rectified by the output display. The trade-off is that the 
asynchronous shared memory access should not cause the 
application(s) to block on the shared memory access. If effi-
ciency is measured in access time, then the asynchronous 
protocol is more efficient. 

CAVE simulations promote user interaction via some 
sort of input device such as the wand. This lends to asynchro-
nous shared memory coordination because wand input is 
normally not time-critical and definitely not computationally- 
intensive. Furthermore, most distributed CAVE simulations 
are real-time, so a process (running on a single processor) 
cannot afford to block on data access and remain coordinated 
with the other nodes of the simulation. For this reason the cur-
rent trend in real-time simulation programs such as those pro-
vided by the CAVE is towards asynchronous shared memory 
access (Arsenault 2001b). 
 
3.3  Networked Distributed Simulation in the CAVE 
 
Currently most CAVE applications are not constructed to 
require extensive networking capabilities. In the rare case 
that the CAVE simulation is distributed, few users (nodes) 
are typical, and the amount of data shared between nodes 
of the simulation is small.  However, the existence of many 
nodes or high data transfers among nodes forces two issues 
to be addressed: (1) the feasibility of adequate network 
performance to support a CAVE environment, and (2) the 
necessity for embedding the CAVE simulation in a net-
work architecture. 

If a CAVE simulation is created with the requirement of 
non-local collaboration, then shared memory might not be 
the best alternative. A distributed CAVE simulation could 
require the collaboration of multiple non-local entities, even 
including other CAVE’s.  The traditional client/server model 
is acceptable if few non-local entities are planned. However, 
dealing with many nodes and the consequences of signifi-
cant data transfer latency requires the consideration of alter-
natives. Once again the notion of asynchronous versus syn-
chronous data sharing becomes an issue.  

Asynchronous data sharing is the preferred protocol if 
the simulation is real-time (Macedonia 1997). The reason-
ing here is that a synchronous protocol requires all entities 
of the distributed simulation to have a state consistent with 
a global clock. Maintaining consistency with a global clock 
inevitably causes blocking at some point in time due to lost 
packets, latency, network congestion, etc. An asynchro-
nous protocol does not require processes to wait on state 
changes from their distributed counterparts. However, the 
issue of model validity with data loss becomes a major 
concern. Resolution of this issue can be challenging, and 
many schemes exist to reduce the amount of lost data and 
the latency effects. 

A method to reduce data loss and latency in a distrib-
uted CAVE simulation of moderate size is entitled “area of 
interest” (AoI).  AoI assumes a client/server architecture, 
where clients send state information to a server which in 
turn notifies other clients of the state change.  AoI parti-
tions the virtual space of the distributed simulation into 
subsections where clients of the same subsection exchange 
information exclusively with each other.  This information 
is sent to the server, however the server only sends the 
state information to clients that are in its area of interest. 
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The presumption is that each client or user has its own 
“aura” that is relevant only to members of its subsection.  

An example using AoI is a CAVE simulation com-
posed of a group of users who move cooperatively through 
a virtual space. Those users within close proximity to each 
other become a subsection, sharing their “aura.” The simu-
lation is partitioned so that members of different subsec-
tions do not exchange information.  

Although this protocol works when the total number 
of clients is moderate, it fails when the number of clients 
becomes high, and the aura of each client becomes exten-
sive (Hori 2001). One solution to this problem is to in-
crease the number of servers that manage the virtual spaces 
(subsections) composing the simulation. Servers must 
maintain states of other servers and decide whether infor-
mation needs to be exchanged between them (Houatra 
2000).  In the typical situation previously described, 
CAVE simulations are local. Distributed applications in-
volve few users (nodes) and the data exchange rate is low. 
In such cases AoI is an acceptable protocol for distributed 
CAVE simulations. 
 
4 CAVE-SPECIFIC IO DEVICES:  

USES AND LIMITATIONS 
 
4.1 The Motivation for using  

CAVE-Specific IO Devices 
 
As technology continues to evolve, CIODs are becoming 
more complex. An emerging class of CIODs provides 
physical motion capabilities to simulation developers. 
CAVE-specific motion devices provide a new dimension 
to simulation, one that cannot be achieved through graph-
ics alone. Graphics capture much that influence   the hu-
man perceptions of reality, and a deficiency in graphical 
content diminishes the verisimilitude (appearance of real-
ity). However, if a graphically sound CAVE simulation in-
corporates CAVE-specific motion devices into a simula-
tion, the simulation produces an effect beyond that  
achievable through graphics alone.  

Glove devices are another example of a CIOD.  Glove 
input is quite similar to the wand; glove output creates tac-
tile sensations for the wearer.  This sensory illusion can be 
extended to include pressure, temperature, twist, etc. – re-
actions mediated by skin, muscle, tendons or joints 
(NCITS 1999).   

Envisioning the ultimate collection of CIODs leads to 
a virtual world that is probably not realizable with current 
technology.  Increases in verisimilitude gained by the in-
clusion of CIODs exact an increasingly demanding penalty 
in simulation execution time.  Clearly, for a given applica-
tion a point exists where the gain from alternative mecha-
nisms for enhancing the CAVE simulation fails to match 
the penalty exacted. 
4.2 Limitations of CAVE-Specific IO Devices 
 
The effect on an API of providing abstract interfaces to a 
broad range of CIODs is an issue that has experienced lim-
ited attention. One frame of reference is obtained through 
the experiences of one of the authors with an elevator 
simulation program, which is discussed in the next section. 
A conclusion derived from this experience it that a key is-
sue with motion devices is the need of the API to furnish a 
sufficient set of abstracted services. Advanced simulation 
developers who concentrate exclusively on a motion de-
vice might not require a specialized abstraction to that de-
vice. However, less advanced developers, and/or those tar-
geting a wide range of CAVE simulations, benefit from a 
well-abstracted, highly functional interface to the underly-
ing hardware. 

Beyond providing a wide-range of services to CAVE-
specific motion devices, advanced developers should al-
ways have the option of bypassing a standardized interface 
if they require lower-level features not accessible from the 
API. A second aspect of this key requirement is to enable a 
compromise between the two poles in design strategy: (1) 
limited, easily used, standardized services or (2) broad, 
more complicated, specialized capabilities.   

A third aspect of this requirement is the provision of an 
automatic synchronization mechanism between CIODs and 
the graphical coordinate system imposed by the simulation. 
In general, the refresh rate of the graphical component of the 
simulation is faster than the refresh rate of a CAVE-specific 
motion device. If the API cannot provide either a wide-range 
of abstracted services or an automatic mechanism for 
graphical synchronization, then development of the CAVE 
simulation may prove too great a challenge. 
 
4.3 Examples of Effects on Simulations  

using Motion Devices 
 
An example of a CAVE simulation utilizing a motion 
CIOD is the Omni-Directional Treadmill (Darken et al. 
1997). The Omni-Directional Treadmill (ODT) is a loco-
motion device that enables a human (subject) to physically 
walk or run through a graphical environment while remain-
ing in a fixed space. The ODT is composed of two perpen-
dicular treadmills, one inside of the other. The construction 
of the ODT allows a subject to move forward, backward, 
perpendicular to the left or right, and diagonally. While 
this device is not necessarily CAVE-specific, its size per-
mits placement in the floor of a CAVE. 

Integrating the ODT into a simulation is not an easy 
task. The subject can walk or run in any direction at vary-
ing degrees of velocity. Any application requiring the use 
of the ODT requires an interface that abstracts a significant 
portion of the complexity of the ODT hardware. Without a 
sufficient level of abstraction, any useful incorporation of 
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the device into a CAVE simulation is futile. Coordination 
between the platform and the graphical components of the 
simulation introduces another serious problem. Darken 
states that the coordination between the graphics of a simu-
lation and the movements of the treadmill are approximate 
at best (Darken et al. 1997 p. 220).  

The interface to the ODT should provide easy access 
to the coordinates generated by the device. A well-
designed ODT interface should allow access to the coordi-
nates and supply procedures for automatic transformation 
of these coordinates to a scale that is useful for the graphi-
cal portion of the simulation. Clearly progress is needed in 
facilitating the synchronization requirements for using the 
ODT in other than elementary simulation models. 

Another example of using motion CIOD is the Eleva-
tor Simulation Program (ESP). The ESP uses the CAVE as 
a simulation platform. ESP is unique in that it uses a mo-
tion platform to simulate the physical effects of accelera-
tion. The motion platform is a hydraulic device slightly 
smaller than the base of the CAVE. The platform can rise 
about a meter from the CAVE floor. The motion platform 
moves in an x-y-z coordinate system and incorporates 
head, pitch, and roll.  

An adequate interface to the motion platform does not 
exist. Usage of the platform, even for the most rudimentary 
tasks, can be tedious. ESP requires the motion platform to 
move only in a vertical direction. The simplicity of single 
directional movement belies the difficulty in using the de-
vice efficiently.  The motion platform does not synchronize 
with the graphical portion of the simulation, requiring a 
compensation between the two entities. Therefore a set of 
generalized services must be provided by an API that 
serves as an interface to the motion platform.  

The examples serve to affirm that the specific func-
tionality of a CIOD should be independent of its usage. If 
an API lacks the capability to provide a reasonable abstrac-
tion to the device and a set of basic services for using it, 
then serious questions should be raised concerning the fea-
sibility for inclusion in a CAVE simulation. A device 
might demonstrate high potential in providing complex 
functionality, but if the functionality is inaccessible, then 
the device is likely to be underutilized.  
 
5 CURRENT METHODS AND FUTURE  

NEEDS: A SUMMARY 
 
The current methods of CAVE simulation development 
appear to be generally adequate for the intended applica-
tions.   However, the vision of what can be is likely con-
strained by what is possible.  That is to say, CAVE-based 
simulation at this stage is probably influenced to a greater 
degree by “technology pull” than by “needs push.”  The 
newness of the VR and VE technology limits the human 
ability to conceive of usable and useful applications.  
The CAVE interface can be used to advantage in situa-
tions where the driving application has much less complex-
ity than is exemplified in contemporary discrete event 
simulations. The research focus described herein dwells on 
the key requirements for simulation applications: (1) port-
ability among CIODs, (2) effective and efficient inter-
process communications, and (3) simple, usable  methods 
that extend the API to more complex devices. 

Portability among CIODs is a requirement that has a 
high potential for relaxing barriers to innovative advances. 
Popular APIs used currently in CAVE applications achieve 
adequate levels of portability only among relatively simple 
CIODs. In contrast, portability among CIODs specializing 
in physical motion is lacking. Software is needed that emu-
lates the functionality of motion-specific CIODs. A device 
such as the ODT cannot be brought to the desktop during 
development; thus emulation in software is mandatory. 
The software emulation approach does not eliminate the 
need for testing the ODT hardware, but can reduce the cost 
associated with direct implementation  of interfaces to the  
ODT hardware. 

The second key requirement for a CAVE simulation is 
effective and efficient inter-process communication. Local 
data sharing is an important concern. Meeting this re-
quirement in current applications is challenging, even 
when limited to local communications. Shared memory is 
the most popular protocol for inter-process data sharing, 
however its scalability is a concern. As graphics usage con-
tinues to increase, rendering a more computationally-
intensive demand, the need expands to share data with an 
increasing number of computational nodes. 

The future is already appearing on the horizon: multi-
ple CAVEs participating in a distributed simulation.  Dis-
tributed shared memory introduces a significant increase in 
complexity.  More ambitious forms of process architec-
tures, such as that described in Varadarajan (2002), are 
likely to offer advantages. Such a protocol requires low 
overhead associated with memory accesses, while allowing 
the data to be shared by a number of nodes.  While near-
term research is expected to concentrate on protocols em-
phasizing local communication, the context for this re-
quirement is anticipated to extend to systems distributed on 
a moderate scale. 

The third key requirement covers the necessary inter-
action between more advanced CIODs, particularly those 
involving subject motion, and the CAVE simulation. Cur-
rent interaction methods enabled by API’s are inadequate, 
burdening the model developer with too much responsibil-
ity for effecting interoperability . Developers should not be 
required to have expert knowledge of a device in order to 
use it. In some cases, the creators of CIODs are unsure 
about its full capabilities. We argue that the complexity of 
the device needs to be abstracted from developers who re-
quire only a subset its services. Lacking a reasonable inter-
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face to a CIOD, even one that offers very attractive ser-
vices, developers in many cases are likely to forego the an-
ticipated cost of creating their own. Interaction with ad-
vanced CIODs is a critical research area in CAVE 
simulation.  
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