
Proceedings of the 2002 Winter Simulation Conference
E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.

KEY REQUIREMENTS FOR CAVE SIMULATIONS

Scott M. Preddy
Richard E. Nance

Department of Computer Science

and
Systems Research Center

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, U.S.A.

ABSTRACT

Virtual reality offers a new frontier for human interaction
with simulation models. A virtual environment, such as
that created with a CAVE, imposes either real-time or
quasi-real-time performance on the simulation model. Be-
yond that general requirement, what others can be identi-
fied for simulation programs that drive a virtual reality or
virtual environment interface? Based on experience with
the Virginia Tech CAVE augmented by a literature search,
we propose three key requirements for successful CAVE-
based simulations: (1) Portability among CAVE-specific
input/output devices, (2) effective and efficient inter-
process communication, and (3) overcoming the limita-
tions associated with input/output device interaction. Each
requirement is described in some detail to both explain and
justify its inclusion. Limitations and near- and intermedi-
ate-term research needs are identified.

1 INTRODUCTION

1.1 A Paradigm Shift

When we have learned how to take good advantage of it, it
may--indeed, I believe it will--be the greatest boon to sci-
entific and technical communication, and to the teaching
and learning of science and technology, since the invention
of writing on a flat surface (Licklider 1967).

The above quotation comes from a paper written in the
mid-1960s. The author is referring to the difference be-
tween a static model and an interactive dynamic model.
The former produces the same results on every execution,
or allows variation in the values of input variables that lead
to different values for a fixed set of output variables. The
model is defined in terms of static components that do not
change throughout model execution. A dynamic model, by
Licklider’s definition, is a model that possesses compo-
nents, which change during model execution. An interac-
tive dynamic model allows a human to dynamically change
model components while the program is executing. Lick-
lider (1967, p. 281) claims that interactive dynamic models
hold the key to “communicating ideas about complex sys-
tems and processes.”

The static model defined above is the classical simula-
tion model, vintage 1960-1970. The rudimentary capability
of an interactive dynamic model is introduced in OPS-3, a
mid-1960s research system well known to Licklider (Nance
1996, p. 366-367). In the early 1970s a version of GPSS de-
veloped by Reitman’s group at Norden (Nance 1996, p. 399)
couples the dynamic interactive modeling with vector graph-
ics capability. GPSS/NORDEN represents the first example
of visual interactive simulation that becomes a prime re-
search topic in the mid-1980s. Licklider’s vision is con-
firmed today in the enormous number of commercial soft-
ware products that use interactive graphical simulations as
their primary mode of user interaction.

We are now entering a second or extended phase of the
Licklider prophecy: one or more humans exchanging data
with and within a 3-D virtual environment. The human ele-
ment is not confined to the modeler as Licklider describes;
in fact the technical knowledge of the human participants
might be unimportant in the interactive experience.

This form of dynamic interactive modeling is provided
by the CAVE automatic virtual environment, or simply
CAVE, first implemented in 1991 by Carolina Cruz-Neira,
at the University of Illinois at Chicago and described in
Cruz-Neira et al. (1993). The CAVE is composed of three
to six projection screens driven by a set of coordinated im-
age-generation systems. It is assisted by a head and hand
tracking system that produces a stereo perspective and iso-
lates the position and orientation of a spatial 3-D input de-
vice. Audio interaction can also be used in a CAVE simu-
lation, but that is not the focus of this paper.

Preddy and Nance
1.2 Motivation

The utility of a simulation model driving a VR interface
seems almost obvious in a training exercise. A simulation of
a planned mission drives an interface that represents the
buildings, streets, and enemy emplacements that might be
encountered in a future urban combat setting. Trainees
physically move through this virtual environment, via some
specialized locomotive device (Darken 1997). Moreover,
the potential uses motivating the coupling are extensive:

• An architect, now providing an impressive 2-D

rendering of a building design through a desktop
interface, enables the prospective client to access
the interior, experiencing many of the stimuli af-
fected by the completed structure (Cruz-Neira, et
al. 1993).

• A computer scientist navigates through a source
code visualization system depicting the code
execution in 3-D space, in which geometric shapes
not only represent memory being consumed by the
system but also the function calls and objects that
are created and destroyed (Maletic et al. 2001).

• An individual or group in hotel or tour manage-
ment experiences virtual travel in an open-air ele-
vator located in the Waldorf Astoria Hotel in
downtown Manhattan. The simulation program
driving the 3-D environment enables the feel of
the jerk from upward acceleration and creates the
virtual panoramic view from ten stories above the
main lobby of the hotel floor (Preddy 2002).

1.3 Objectives

Opinions likely vary on the criticality of universal re-
quirements for CAVE simulations. We attempt to be re-
strictive in the designation of key requirements, and the fo-
cus is limited to three:

• Portability among virtual environment interfaces

is achieved through an application-programming
interface (API) accommodation of multiple levels
of abstraction.

• Inter-process communication among the concur-
rent processes composing the CAVE simulation
must be effective and efficient. Data transfer and
synchronization requirements among processes on
a single computer, or distributed over several com-
puters, can be imposed on a CAVE simulation.

• Device flexibility refers to the ability to incorpo-
rate specialized CAVE input/output (IO) devices
as interfaces with the simulation model. The im-
portance of this criterion is easily underestimated,
but we argue that it is essential.
2 PORTABILITY AMONG VIRTUAL
ENVIRONMENT INTERFACES

2.1 The Importance of Portability

The motivation to create simulations that operate in the
CAVE leads to the question: What concerns should a de-
veloper anticipate when designing a simulation for this en-
vironment? Portability among the devices intended to work
in the CAVE is an issue that needs to be addressed during
the early developmental stages of the simulation. A major
portion of the development for a CAVE simulation can be
allocated to a desktop machine if an API exists that ab-
stracts the underlying details of CAVE-specific IO devices
(CIODs).

On a fundamental level, CIODs can be divided into
two categories: continuous and discrete. Discrete devices,
as the name implies, take samples of input at specified dis-
crete time intervals. Input devices like pinch gloves,
wands, and keyboards are examples. Continuous devices
produce a steady stream of data that are sampled at various
times by the system for a “snapshot” of state (Bowman
2002). Understanding how a simulation program can po-
tentially interact with CIODs and what is entailed in
achieving the mandated smoothness of interplay is critical.
The API used to develop CAVE applications should ab-
stract most of the details of CIOD usage. A developer
should be able to work with abstractions that enable an
easy port of CIODs from the desktop to the CAVE. The
savings from desktop development of a CAVE simulation
increases with the size and complexity of the project.

The claim that CIOD portability is a key requirement
is based on its influence on development time and cost for
a CAVE simulation. Utilizing a workstation, or desktop
environment, for development is almost mandatory. This
potential raises the question: Are CIODs used in the CAVE
correctly abstracted into a desktop interface? Fortunately,
the majority of current API’s used for CAVE development
do this reasonably well. Two API’s that do an exceptional
job of abstracting CIODs are VR Juggler from Iowa State
University (http://www.vrjuggler.org), and DIVERSE from
Virginia Tech (http://www.diverse.vt.edu). The former is
the product of a group under the leadership of Carolina
Cruz-Neira, and the latter, a group led by Ron Kriz at Vir-
ginia Tech.

VR Juggler and DIVERSE (from Device Independent
Virtual Environments -- Reconfigurable, Scalable, Exten-
sible) employ similar approaches in the CIOD abstraction.
VR Juggler provides abstractions based on functionality,
assigning a CIOD to one of several basic classes such as
positional, orientation, digital, analog, glove, etc. An im-
portant feature of this approach to abstraction is the use of
inheritance from base classes to represent varieties of the
same type of device. Therefore any instance of CIOD ob-

Preddy and Nance
ject typed as “positional” presents the same software inter-
face to the developer (Bierbaum et al. 2001). VR Juggler’s
inheritance mechanism substantially simplifies the device
interface presented to a developer.

The DIVERSE API extends CIOD abstraction even
further by treating all CIODs as “services.” The developer
of a CAVE simulation need not be concerned with the spe-
cifics of the underlying CIOD hardware. In fact, the devel-
oper need not possess a priori knowledge of the type of
CIOD used in the simulation. The DIVERSE abstraction of
the service concept for CIODs is implemented through pro-
tocols embedded in Dynamic Shared Objects (DSOs)
(Arsenault and Kelso 2001). A DSO is implemented as a
small pre-compiled program that is loaded into the execu-
table system at runtime. Using the DSO-enabled abstrac-
tion of service reduces development time by hiding the im-
plementation details of the CIOD.

2.2 More on Dynamic Shared Objects

The DSO implementation of the service concept, specific
to DIVERSE, is capable of completely abstracting hard-
ware interaction from the developer, allowing a simple,
common interface to be presented for all CIODs. The DSO
representing the abstraction for a specific CIOD is loaded
into the executable program through the command line or
by hard coding its name in the application. The effect is
transparent; irrespective of where the specification of the
DSO occurs, it is always loaded at runtime as a separate
program (Arsenault and Kelso 2001).

An example is the interaction with the wand, the
CAVE equivalent of a mouse. The main application loads
the appropriate DSO associated with wand interaction,
which, using DIVERSE syntax, is achieved by DPF
app(desktopCaveSimGroup,NULL), where the name of the
DSO is desktopCaveSimGroup. Next, the application needs
to specify how the input from the wand, which is obtained
from the DSO, is received into the main application. A
simple method for doing this is DPFInButton *button =
caveInput->button, which simply creates a button object
that the main application uses to read from the wand. This
example illustrates the significant level of abstraction that
DIVERSE achieves in using CIODs. More examples are
readily seen at <http://www.diverse.vt.edu/
share/dgiPf/examples/>.

2.2.1 VR Juggler

VR Juggler has a concept similar to DSO for CIOD ab-
straction. Providing a system known as the Device Store,
VR Juggler enables the separation of all CIOD from the
main library. This “selection catalog” allows devices to be
loaded dynamically. The Device Store supports the addi-
tion of new devices at run-time, or at link time, without
having to recompile the application that uses them. A
CIOD can be reconfigured at run-time without affecting
the main application. A reconfiguration request is sent to
the VR Juggler input manager calling for a specific proxy
to point to a different CIOD. Using proxies to abstract the
CIOD implementation details provides a uniform interface
for the using application. The application developer never
directly interacts with the hardware or the specific input
classes that control the device. New devices can be added
by deriving a new class to manage the new device. The ad-
vantage of VR Juggler’s approach to device abstraction,
like that of DIVERSE, is the delayed binding of specific
runtime configuration. The CIOD drivers do not have to be
compiled with the application that uses those (Arsenault et
al. 2001).

2.3 Shared Libraries

Shared libraries furnish effective mechanisms for standard-
izing CAVE applications. The goal of any API supporting
CAVE development should be to provide a standard for
developers of every CAVE application. The API should
not be specific to an individual CAVE. Few standards
guarantee developers that integration is successful for any
CAVE platform. Without a standardized API, CAVE ap-
plications cannot be guaranteed to possess portability. The
lack of standardization stems in part from the fact that most
CAVEs are located in academic institutions that view API
development as a creative challenge.

Despite the non-uniformity in the API’s that litter the
virtual reality field, some standards have emerged. One
such standard is a proprietary software product called
CAVELib, provided by VRCO (Costigan 2002). CAVELib
represents one of the few standards that CAVE developers
depend on when developing applications that are truly
portable. CAVELib supports a large variety of operating
systems: SGI Irix, Sun Solaris, Hewlett Packard HP-UX,
Red Hat Linux and Win32. The disadvantage in using
CAVELib is that it is proprietary, and the distribution is in
the form of pre-compiled libraries that only expose header
files as an API interface.

2.3.1 CAVELib

VRCO claims that CAVELib is the industry standard API
for support and creation of CAVE applications. CAVELib
is OpenGL based, and requires only three functions for a
basic CAVE application. The API is extensive, and VRCO
maintains that the developer can use only what is needed.
CAVELib is externally configured, with windowing and
graphics contexts provided for the developer. Automatic
data synchronization between processes, threads, and clus-
ter nodes are provided, and the product furnishes multi-
channel and multi-pipe support (Costigan 2002).

http://www.diverse.vt.edu/ share/dgiPf/examples/
http://www.diverse.vt.edu/ share/dgiPf/examples/

Preddy and Nance
2.3.2 The Non-Proprietary Alternatives

Most of the features in CAVELib are also provided by VR
Juggler and DIVERSE. An important restriction of
CAVELib is that it only exposes the header files of pre-
compiled binaries to the developer. While currently toler-
ated in the VR community, this limitation might have a
short future. Developers are likely to avoid a work-around
of a pre-compiled API that cannot be customized according
to their needs when non-proprietary alternatives like
DIVERSE and VR Juggler are widely known.

2.4 Closing Remarks

The importance of portability in CAVE development can-
not be overstated. An API such as DIVERSE or VR Jug-
gler, which gives a CAVE developer the freedom to de-
velop the majority of a CAVE application at the desktop is
invaluable. An API should provide a clean, portable inter-
face to CIODs to alleviate the time spent learning the spe-
cifics of device hardware. CAVELib provides a clean in-
terface to CIODs, but the code is not customizable and
therefore restrictive. We are of the opinion that open-
source API is the future in CAVE development.

3 INTER-PROCESS COMMUNICATION

3.1 Motivation

Whether local to the machine, or occurring among multiple
machines, communication is a particular concern. Commu-
nication can take the form of data exchange among proc-
esses or process synchronization. A discrete event simula-
tion using the CAVE is replete with examples of both
forms in the requirement to impose temporal causality (the
correct representation of the time ordering of events). Ro-
boCup (Renambot et al. 2000), a distributed soccer simula-
tion that allows multiple users to play a soccer match in a
CAVE environment, serves as an example from the enter-
tainment domain. The authors describe the game best:

The simulation consists of the Soccer Server and a set
of processes modeling the players. The server keeps
track of the state of the game, provides the players
with information on the game, and enforces the rules.
The players request state information and autono-
mously calculate a behavior, sending the server com-
mands that consist of dashes (accelerations), turns,
and kicks. The server discretizes time into slots of 100
msec. Only one command of a player is executed per
time slot. The kick command requires the player to be
close to the ball (1 m).

Obviously a simulation program of this nature requires
tight coordination between the client and server nodes of
the distributed system. High latency times for computation
and/or data transfer are unacceptable. The designer of the
simulation model must give attention to the communica-
tions capabilities of the API used for CAVE development.
The capabilities of the CAVE hardware must be assessed
before attempting to develop the simulation. If network
bandwidth is unacceptably low, or if processor speed is in-
adequate, then a distributed CAVE simulation might not be
feasible. Consequently, a realistic assessment of CAVE
hardware affecting network performance should be carried
out before the decision to develop a distributed CAVE
simulation.

Not all inter-process communication is distributed.
Local inter-process communication is typically required for
synchronization. Shared memory is a popular architecture
for achieving local inter-process communication. The
DIVERSE API has abstracted shared memory to the degree
that its usage is relatively straightforward. In fact, the
DIVERSE API abstraction in the shared memory architec-
ture supplies some practical advantages over message pass-
ing. Although quantitative comparison has not been per-
formed, experience shows that well structured shared
memory architecture is more than adequate for many
CAVE simulations (Arsenault 2001b).

CAVE applications of minimal complexity require
some means of inter-process communication. Again using
the RoboCup example, precise inter-process communica-
tion among distributed processors executing the simulation
must be achieved or the simulation quickly loses any sense
of realism. A second example is the elevator simulation
where tightly integrated inter-process communication must
be provided between the graphics application and the pro-
gram that feeds position coordinates to the motion plat-
form. If an unacceptable lag is encountered while commu-
nicating data, then the physical movement of the
simulation is not coordinated with the visual portrayal.

3.2 Shared Memory for Inter-Process

Communication

3.2.1 The Shared Memory Debate

One of the most hotly debated topics in collaborative simu-
lation is the use of shared memory. In concept, shared mem-
ory is a physical “address space” with an interconnection
mechanism that permits access by multiple processes. The
multiple processes might employ a synchronous or asyn-
chronous access protocol, and the “address space” might be
a shared data segment. A universal system clock regulates
synchronous shared memory access by cooperative simula-
tion processes; e.g. using a signal and wait. Asynchronous

Preddy and Nance
access is more complicated to implement but avoids the
blocking imposed in the process synchronization.

Both synchronous and asynchronous access is needed,
and each has its proponents. The synchronous camp argues
that a clock must regulate shared memory access to control
the busy waiting incurred by the blocked process(es). Data
loss is an important issue for some applications, particu-
larly computationally-intensive ones where the conse-
quences might invalidate the results.

The asynchronous camp argues that blocking by any
process is unacceptable in certain situations. Real-time
simulations involving multiple participants may not allow
a single node of the simulation to block while maintaining
proper state information. Instead, the asynchronous camp
argues that data continuity should be traded for decreased
accuracy (Carter et al. 1995).

The access protocol debate is fueled by the fact that
the wrong choice can have obvious adverse effects on exe-
cution time, results or both in a CAVE simulation. For the
majority of cases asynchronous access serves well, espe-
cially considering that most shared memory usage is for
CIOD signaling. Note that operating system services are
likely to be required to implement the protocol correctly.
In the cases where a shared address space is used in a com-
putationally-intensive CAVE simulation, data loss is an is-
sue, and synchronous shared memory access is desired.

3.2.2 Example Scenarios of Shared Memory

use and Efficiency

CAVE simulations requiring shared memory usage can also
be categorized as synchronous or asynchronous. Computa-
tionally-intensive CAVE applications involving scientific
visualization at first glance might be grouped into the syn-
chronous camp. After all, how realistic is a simulation that
models fluid dynamics when the graphical refresh rate is
faster than the rate of arrival of the data coordinates at a
shared memory location? The more revealing question is:
What is the nature of this data? If the answer is “graphics
data,” schemes that compensate for lost data (such as dead
reckoning (Macedonia 1997) could be adopted to reduce the
need for blocking on a data read. Most CAVE applications
are graphically-intensive, and many do not rely on exacting
accuracy. These applications become candidates for asyn-
chronous shared memory usage. If data in a shared memory
segment is periodically overwritten, then this problem can
be rectified by the output display. The trade-off is that the
asynchronous shared memory access should not cause the
application(s) to block on the shared memory access. If effi-
ciency is measured in access time, then the asynchronous
protocol is more efficient.

CAVE simulations promote user interaction via some
sort of input device such as the wand. This lends to asynchro-
nous shared memory coordination because wand input is
normally not time-critical and definitely not computationally-
intensive. Furthermore, most distributed CAVE simulations
are real-time, so a process (running on a single processor)
cannot afford to block on data access and remain coordinated
with the other nodes of the simulation. For this reason the cur-
rent trend in real-time simulation programs such as those pro-
vided by the CAVE is towards asynchronous shared memory
access (Arsenault 2001b).

3.3 Networked Distributed Simulation in the CAVE

Currently most CAVE applications are not constructed to
require extensive networking capabilities. In the rare case
that the CAVE simulation is distributed, few users (nodes)
are typical, and the amount of data shared between nodes
of the simulation is small. However, the existence of many
nodes or high data transfers among nodes forces two issues
to be addressed: (1) the feasibility of adequate network
performance to support a CAVE environment, and (2) the
necessity for embedding the CAVE simulation in a net-
work architecture.

If a CAVE simulation is created with the requirement of
non-local collaboration, then shared memory might not be
the best alternative. A distributed CAVE simulation could
require the collaboration of multiple non-local entities, even
including other CAVE’s. The traditional client/server model
is acceptable if few non-local entities are planned. However,
dealing with many nodes and the consequences of signifi-
cant data transfer latency requires the consideration of alter-
natives. Once again the notion of asynchronous versus syn-
chronous data sharing becomes an issue.

Asynchronous data sharing is the preferred protocol if
the simulation is real-time (Macedonia 1997). The reason-
ing here is that a synchronous protocol requires all entities
of the distributed simulation to have a state consistent with
a global clock. Maintaining consistency with a global clock
inevitably causes blocking at some point in time due to lost
packets, latency, network congestion, etc. An asynchro-
nous protocol does not require processes to wait on state
changes from their distributed counterparts. However, the
issue of model validity with data loss becomes a major
concern. Resolution of this issue can be challenging, and
many schemes exist to reduce the amount of lost data and
the latency effects.

A method to reduce data loss and latency in a distrib-
uted CAVE simulation of moderate size is entitled “area of
interest” (AoI). AoI assumes a client/server architecture,
where clients send state information to a server which in
turn notifies other clients of the state change. AoI parti-
tions the virtual space of the distributed simulation into
subsections where clients of the same subsection exchange
information exclusively with each other. This information
is sent to the server, however the server only sends the
state information to clients that are in its area of interest.

Preddy and Nance
The presumption is that each client or user has its own
“aura” that is relevant only to members of its subsection.

An example using AoI is a CAVE simulation com-
posed of a group of users who move cooperatively through
a virtual space. Those users within close proximity to each
other become a subsection, sharing their “aura.” The simu-
lation is partitioned so that members of different subsec-
tions do not exchange information.

Although this protocol works when the total number
of clients is moderate, it fails when the number of clients
becomes high, and the aura of each client becomes exten-
sive (Hori 2001). One solution to this problem is to in-
crease the number of servers that manage the virtual spaces
(subsections) composing the simulation. Servers must
maintain states of other servers and decide whether infor-
mation needs to be exchanged between them (Houatra
2000). In the typical situation previously described,
CAVE simulations are local. Distributed applications in-
volve few users (nodes) and the data exchange rate is low.
In such cases AoI is an acceptable protocol for distributed
CAVE simulations.

4 CAVE-SPECIFIC IO DEVICES:

USES AND LIMITATIONS

4.1 The Motivation for using

CAVE-Specific IO Devices

As technology continues to evolve, CIODs are becoming
more complex. An emerging class of CIODs provides
physical motion capabilities to simulation developers.
CAVE-specific motion devices provide a new dimension
to simulation, one that cannot be achieved through graph-
ics alone. Graphics capture much that influence the hu-
man perceptions of reality, and a deficiency in graphical
content diminishes the verisimilitude (appearance of real-
ity). However, if a graphically sound CAVE simulation in-
corporates CAVE-specific motion devices into a simula-
tion, the simulation produces an effect beyond that
achievable through graphics alone.

Glove devices are another example of a CIOD. Glove
input is quite similar to the wand; glove output creates tac-
tile sensations for the wearer. This sensory illusion can be
extended to include pressure, temperature, twist, etc. – re-
actions mediated by skin, muscle, tendons or joints
(NCITS 1999).

Envisioning the ultimate collection of CIODs leads to
a virtual world that is probably not realizable with current
technology. Increases in verisimilitude gained by the in-
clusion of CIODs exact an increasingly demanding penalty
in simulation execution time. Clearly, for a given applica-
tion a point exists where the gain from alternative mecha-
nisms for enhancing the CAVE simulation fails to match
the penalty exacted.
4.2 Limitations of CAVE-Specific IO Devices

The effect on an API of providing abstract interfaces to a
broad range of CIODs is an issue that has experienced lim-
ited attention. One frame of reference is obtained through
the experiences of one of the authors with an elevator
simulation program, which is discussed in the next section.
A conclusion derived from this experience it that a key is-
sue with motion devices is the need of the API to furnish a
sufficient set of abstracted services. Advanced simulation
developers who concentrate exclusively on a motion de-
vice might not require a specialized abstraction to that de-
vice. However, less advanced developers, and/or those tar-
geting a wide range of CAVE simulations, benefit from a
well-abstracted, highly functional interface to the underly-
ing hardware.

Beyond providing a wide-range of services to CAVE-
specific motion devices, advanced developers should al-
ways have the option of bypassing a standardized interface
if they require lower-level features not accessible from the
API. A second aspect of this key requirement is to enable a
compromise between the two poles in design strategy: (1)
limited, easily used, standardized services or (2) broad,
more complicated, specialized capabilities.

A third aspect of this requirement is the provision of an
automatic synchronization mechanism between CIODs and
the graphical coordinate system imposed by the simulation.
In general, the refresh rate of the graphical component of the
simulation is faster than the refresh rate of a CAVE-specific
motion device. If the API cannot provide either a wide-range
of abstracted services or an automatic mechanism for
graphical synchronization, then development of the CAVE
simulation may prove too great a challenge.

4.3 Examples of Effects on Simulations

using Motion Devices

An example of a CAVE simulation utilizing a motion
CIOD is the Omni-Directional Treadmill (Darken et al.
1997). The Omni-Directional Treadmill (ODT) is a loco-
motion device that enables a human (subject) to physically
walk or run through a graphical environment while remain-
ing in a fixed space. The ODT is composed of two perpen-
dicular treadmills, one inside of the other. The construction
of the ODT allows a subject to move forward, backward,
perpendicular to the left or right, and diagonally. While
this device is not necessarily CAVE-specific, its size per-
mits placement in the floor of a CAVE.

Integrating the ODT into a simulation is not an easy
task. The subject can walk or run in any direction at vary-
ing degrees of velocity. Any application requiring the use
of the ODT requires an interface that abstracts a significant
portion of the complexity of the ODT hardware. Without a
sufficient level of abstraction, any useful incorporation of

Preddy and Nance
the device into a CAVE simulation is futile. Coordination
between the platform and the graphical components of the
simulation introduces another serious problem. Darken
states that the coordination between the graphics of a simu-
lation and the movements of the treadmill are approximate
at best (Darken et al. 1997 p. 220).

The interface to the ODT should provide easy access
to the coordinates generated by the device. A well-
designed ODT interface should allow access to the coordi-
nates and supply procedures for automatic transformation
of these coordinates to a scale that is useful for the graphi-
cal portion of the simulation. Clearly progress is needed in
facilitating the synchronization requirements for using the
ODT in other than elementary simulation models.

Another example of using motion CIOD is the Eleva-
tor Simulation Program (ESP). The ESP uses the CAVE as
a simulation platform. ESP is unique in that it uses a mo-
tion platform to simulate the physical effects of accelera-
tion. The motion platform is a hydraulic device slightly
smaller than the base of the CAVE. The platform can rise
about a meter from the CAVE floor. The motion platform
moves in an x-y-z coordinate system and incorporates
head, pitch, and roll.

An adequate interface to the motion platform does not
exist. Usage of the platform, even for the most rudimentary
tasks, can be tedious. ESP requires the motion platform to
move only in a vertical direction. The simplicity of single
directional movement belies the difficulty in using the de-
vice efficiently. The motion platform does not synchronize
with the graphical portion of the simulation, requiring a
compensation between the two entities. Therefore a set of
generalized services must be provided by an API that
serves as an interface to the motion platform.

The examples serve to affirm that the specific func-
tionality of a CIOD should be independent of its usage. If
an API lacks the capability to provide a reasonable abstrac-
tion to the device and a set of basic services for using it,
then serious questions should be raised concerning the fea-
sibility for inclusion in a CAVE simulation. A device
might demonstrate high potential in providing complex
functionality, but if the functionality is inaccessible, then
the device is likely to be underutilized.

5 CURRENT METHODS AND FUTURE

NEEDS: A SUMMARY

The current methods of CAVE simulation development
appear to be generally adequate for the intended applica-
tions. However, the vision of what can be is likely con-
strained by what is possible. That is to say, CAVE-based
simulation at this stage is probably influenced to a greater
degree by “technology pull” than by “needs push.” The
newness of the VR and VE technology limits the human
ability to conceive of usable and useful applications.
The CAVE interface can be used to advantage in situa-
tions where the driving application has much less complex-
ity than is exemplified in contemporary discrete event
simulations. The research focus described herein dwells on
the key requirements for simulation applications: (1) port-
ability among CIODs, (2) effective and efficient inter-
process communications, and (3) simple, usable methods
that extend the API to more complex devices.

Portability among CIODs is a requirement that has a
high potential for relaxing barriers to innovative advances.
Popular APIs used currently in CAVE applications achieve
adequate levels of portability only among relatively simple
CIODs. In contrast, portability among CIODs specializing
in physical motion is lacking. Software is needed that emu-
lates the functionality of motion-specific CIODs. A device
such as the ODT cannot be brought to the desktop during
development; thus emulation in software is mandatory.
The software emulation approach does not eliminate the
need for testing the ODT hardware, but can reduce the cost
associated with direct implementation of interfaces to the
ODT hardware.

The second key requirement for a CAVE simulation is
effective and efficient inter-process communication. Local
data sharing is an important concern. Meeting this re-
quirement in current applications is challenging, even
when limited to local communications. Shared memory is
the most popular protocol for inter-process data sharing,
however its scalability is a concern. As graphics usage con-
tinues to increase, rendering a more computationally-
intensive demand, the need expands to share data with an
increasing number of computational nodes.

The future is already appearing on the horizon: multi-
ple CAVEs participating in a distributed simulation. Dis-
tributed shared memory introduces a significant increase in
complexity. More ambitious forms of process architec-
tures, such as that described in Varadarajan (2002), are
likely to offer advantages. Such a protocol requires low
overhead associated with memory accesses, while allowing
the data to be shared by a number of nodes. While near-
term research is expected to concentrate on protocols em-
phasizing local communication, the context for this re-
quirement is anticipated to extend to systems distributed on
a moderate scale.

The third key requirement covers the necessary inter-
action between more advanced CIODs, particularly those
involving subject motion, and the CAVE simulation. Cur-
rent interaction methods enabled by API’s are inadequate,
burdening the model developer with too much responsibil-
ity for effecting interoperability . Developers should not be
required to have expert knowledge of a device in order to
use it. In some cases, the creators of CIODs are unsure
about its full capabilities. We argue that the complexity of
the device needs to be abstracted from developers who re-
quire only a subset its services. Lacking a reasonable inter-

Preddy and Nance
face to a CIOD, even one that offers very attractive ser-
vices, developers in many cases are likely to forego the an-
ticipated cost of creating their own. Interaction with ad-
vanced CIODs is a critical research area in CAVE
simulation.

REFERENCES

Arsenault, L., J. Kelso, R. Kriz, and F. Das Neves. 2001.

DIVERSE: A software toolkit to integrate distributed
simulations with heterogeneous virtual environments
i.e. the DIVERSE kitchen sink paper university visuali-
zation and animation group. Virginia Tech, Blacksburg,
VA. <http://www.diverse.vt.edu/papers/
2001-whitePaper/Main.html> [accessed April
11, 2002].

Arsenault, L., and J. Kelso. 2001. The DIVERSE Toolkit:
A toolkit for distributed simulations and peripheral
device services. Department of Computer Science,
Virginia Tech. <http://www.diverse.vt.edu
/papers/2001-09-01_DTK_IEEEVR2002/>
[accessed April 22, 2002].

Bierbaum, A., C. Just, P. Hartling, K. Meinert, A. Baker,
and C. Cruz-Neira. 2001. VR juggler: a virtual plat-
form for virtual reality application development. Vir-
tual Reality. Proceedings. Institute of Electrical and
Electronics Engineers, 89 -96.

Bowman, D. A. Spring 2002. VE input devices Course lec-
ture notes for Computer Science 5984, Virginia Tech.
<http://people.cs.vt.edu/~bowman/cs5
984/lectures/input.pdf> [accessed April 3,
2002].

Carter, J. B., D. Khandekar, and L. Kamb. 1995. Distrib-
uted shared memory: where we are and where we
should be headed, in Fifth Workshop on Hot Topics in
Operating Systems (HotOS-V), 1995, 119-122.

Costigan, Jim. VRCO Online Presentation: <ftp://
vrtigo.com/pub/ODU_CLASS/oduClass032
82002.ppt > [accessed April 5, 2002].

Cruz-Neira, C., J. Leigh, M. Papka, C. Barnes,
S. M. Cohen, S. Das, R. Engelmann, R. Hudson,
T. Roy, L. Siegel, C. Vasilakis, T. A. DeFanti, and
D. J. Sandin,. 1993. Scientists in wonderland: A re-
port on visualization applications in the CAVE virtual
reality environment. Virtual Reality. Proceedings, In-
stitute of Electrical and Electronics Engineers Sympo-
sium on Research Frontiers, 59-66.

Darken, R. P., W. R. Cockayne, and D. Carmein. 1997.
The omni-directional treadmill: a locomotion device
for virtual worlds. Proceedings of the Association for
Computing Machinery Symposium on User Interface
Software and Technology, 213-221.

Hori, M., T. Iseri, K. Fujikawa, S. Shimojo, and
H. Miyahara. 2001. Scalability issues of dynamic
space management for multiple-server networked vir-
tual environments. Institute of Electrical and Electron-
ics Engineers Pacific Rim Conference on Communica-
tions, Computers and Signal Processing,
Victoria, BC, Canada. <http://ieeexplore.ie
ee.org/iel5/7568/20620/00953557.pdf>
[accessed April 13, 2002].

Houatra, D. 2000. QoS-constrained event communications
in distributed virtual environments. Antwerp, Bel-
gium: Distributed Objects and Applications.
<http://ieeexplore.ieee.org/iel5/702
2/18922/00874178.pdf> [accessed April 10,
2002].

International Committee for Information Technology Stan-
dards (NCITS) 1999. American National Standard
Dictionary for Information Technology,
<http://www.ncits.org/press/k5press.
htm> [accessed July 2, 2002].

Licklider, J. C. R. 1967. Interactive dynamic modeling. In
Prospects for Simulation and Simulators of Dynamic
Systems, eds. G. Shapiro and M. Rogers, New York:
Spartan Books.

Macedonia, M. R. and M. J. Zyda. 1997. A taxonomy for
networked virtual environments. Institute of Electrical
and Electronics Engineers Multimedia, 48-56.
<http://ieeexplore.ieee.org/iel4/93/
12582/00580395.pdf> [accessed April 15,
2002].

Maletic, J. I.; J. Leigh, A. Marcus, and G. Dunlap. 2001.
Program visualizing object-oriented software in virtual
reality. Proceedings International Workshop on Pro-
gram Comprehension, 26 -35.

Nance, R. E. 1996. A history of discrete event simulation
programming languages. In History of Programming
Languages, eds. T. J. Bergin and R. G. Gibson, 369-
427. New York: Association for Computing Machin-
ery Press and Addison-Wesley Publishing Company.

Preddy, Scott and R. Hall. 2002. <http://filebox.
vt.edu/users/spreddy/CaveElevReport.
doc> [accessed July 9, 2002].

Renambot, H. J. W. L., D. Germans, and H. E. Bal. 2002.
Man multi-agent interaction in VR: a case study with
RoboCup Spoelder, Virtual Reality, Proceedings. In-
stitute of Electrical and Electronics Engineers, 291.

Varadarajan, S. 2002. Weaving a code tapestry: a frame-
work for reconfigurable programming, Technical Re-
port, Dept. of Computer Science, Virginia Tech.

AUTHOR BIOGRAPHIES

SCOTT M. PREDDY is a first year graduate computer
science student at Virginia Polytechnic Institute and State
University (VPI&SU) in Blacksburg, Virginia. He gradu-
ated from VPI with a Bachelors degree in Computer Sci-

http://www.diverse.vt.edu/papers/2001-whitePaper/Main.html
http://www.diverse.vt.edu/papers/2001-whitePaper/Main.html
http://www.diverse.vt.edu/papers/2001-09-01_DTK_IEEEVR2002/
http://www.diverse.vt.edu/papers/2001-09-01_DTK_IEEEVR2002/
http://people.cs.vt.edu/~bowman/cs5984/lectures/input.pdf
http://people.cs.vt.edu/~bowman/cs5984/lectures/input.pdf
ftp://vrtigo.com/pub/ODU_CLASS/oduClass03282002.ppt
ftp://vrtigo.com/pub/ODU_CLASS/oduClass03282002.ppt
ftp://vrtigo.com/pub/ODU_CLASS/oduClass03282002.ppt
http://ieeexplore.ieee.org/iel5/7568/20620/00953557.pdf
http://ieeexplore.ieee.org/iel5/7568/20620/00953557.pdf
http://ieeexplore.ieee.org/iel5/7022/18922/00874178.pdf
http://ieeexplore.ieee.org/iel5/7022/18922/00874178.pdf
http://www.ncits.org/press/k5press.htm
http://www.ncits.org/press/k5press.htm
http://ieeexplore.ieee.org/iel4/93/12582/00580395.pdf
http://ieeexplore.ieee.org/iel4/93/12582/00580395.pdf
http://filebox.vt.edu/users/spreddy/CaveElevReport.doc
http://filebox.vt.edu/users/spreddy/CaveElevReport.doc
http://filebox.vt.edu/users/spreddy/CaveElevReport.doc

Preddy and Nance
ence in the fall of 2001. Mr. Preddy’s current interests in-
clude virtual reality aided simulations, and other cutting
edge computing technologies. His email address is
<spreddy@vt.edu>.

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the Director
of the Systems Research Center at Virginia Tech
(VPI&SU). Dr. Nance is also Chairman of the Board of
Orca Computer, Inc. He has served on the faculties of
Southern Methodist University and Virginia Tech, where
he was department head of Computer Science, 1973-1979.
He held a distinguished visiting honors professorship at the
University of Central Florida for the spring semester, 1997.
Dr. Nance has held research appointments at the Naval
Surface Weapons Center and at the Imperial College of
Science and Technology (UK). He has held a number of
editorial positions and was the founding Editor-in-Chief of
the ACM Transactions on Modeling and Computer Simu-
lation, 1990-1995. Currently, he is a member of the Edito-
rial Board, Software Practitioner Series, Springer. He
served as Program Chair for the 1990 Winter Simulation
Conference. Dr. Nance received a Distinguished Service
Award from the TIMS College on Simulation in 1987. In
1995 he was honored by an award for “Distinguished Ser-
vice to SIGSIM and the Simulation Community” by the
ACM Special Interest Group on Simulation. He was named
an ACM Fellow in 1996. He is a member of Sigma Xi, Al-
pha Pi Mu, Upsilon Pi Epsilon, ACM, IIE, and INFORMS.
His email address is <nance@vt.edu>.

mailto:spreddy@vt.edu
mailto:nance@vt.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 127
	02: 128
	03: 129
	04: 130
	05: 131
	06: 132
	07: 133
	08: 134
	09: 135

