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ABSTRACT

We review two types of adaptive Monte Carlo methods fo
rare event simulations. These methods are based on
portance sampling. The first approach selects importan
sampling distributions by minimizing the variance of im
portance sampling estimator. The second approach sel
importance sampling distributions by minimizing the cros
entropy to the optimal importance sampling distribution
We also review the basic concepts of importance sampl
in the rare event simulation context. To make the bas
concepts concrete, we introduce these ideas via the st
of rare events of M/M/1 queues.

1 INTRODUCTION

Rare events, although are seldom happened as its na
suggests, are important when they do happen in many
plication areas. For example, the buffer overflow event
rare in a high quality telecommunication network, but is sig
nificant when it happens; A system break down event is ra
in a fault-tolerant computing system, but has a consequ
tial effect when it happens. Therefore, accurate estimat
of the probabilities of such rare events is important. How
ever, if the probabilities of rare events are really sma
estimation of these probabilities is often computational
intractable when studied using conventional Monte Car
simulation. Therefore, powerful efficiency improvemen
techniques (see, e.g. (Glynn (1994)) and (Bratley, Fox, a
Schrage (1987))) are needed. The most suitable techni
for rare event simulations is importance sampling (see, e
Hammersley and Handscomb (1965), and we will revie
the basic concepts in Section 3.) When applied approp
ately, importance sampling can improve the efficiency ma
orders of magnitude. Unfortunately, it is not a simple tas
to apply importance sampling appropriately on rare eve
simulations. The main difficulty lies in the selection of a
effective importance sampling distribution. The selectio
-
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usually requires simulationists have a good understand
of the structure of the system being simulated.

To overcome this difficulty, researchers have develop
adaptive procedures for selecting effective importance sa
pling distributions. This paper’s main purpose is to revie
these procedures. We reviewed two adaptive importa
sampling methods in this paper. The first method sele
effective importance sampling distributions by minimizin
the variance of importance sampling estimator. The sec
method selects effective importance sampling distributio
by minimizing the cross entropy to the optimal importan
sampling distribution (see Section 3.2). For applications
these methods in selecting effective importance sampl
distributions for queueing models and financial derivati
models, see the citations of Section 4.

The rest of the paper is organized as follows. In Sect
2, we describe a simple M/M/1 queue model and the r
event of interest. In Section 3, we review the basic co
cepts of importance sampling via the study of rare events
M/M/1 queues. Several criteria of evaluating the goodne
of importance sampling estimators are given. In sect
4, we reviewed two types of adaptive importance sampli
methods for rare event simulations. The first method
lects importance sampling distributions by minimizing th
variance of importance sampling estimator. The seco
one selects importance sampling distributions by minim
ing the cross entropy to the optimal importance sampli
distribution. Finally, the paper is summarized in Section
This section remarks some properties of these two type
methods.

2 A SIMPLE RARE EVENT
SIMULATION PROBLEM

Let us consider a stable M/M/1 queue with arrival rateλ = 1,
service rateµ > 1, and the buffer limit of the systemK > 1,
see Figure 1. LetX(t) be the number of customers in th
system at timet . Then,X = (X(t) : t ≥ 0) is a continuous
time Markov chain with state spaceS = {0,1,2, . . . K}.
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Suppose thatX(0) = 1 and we are interested in using
importance sampling to estimate

γK = P(X(T ) = K), (1)

where

T = inf {t > 0 : X(t) = 0 or X(t) = K}.

It is well known thatX is an irreducible, positive recurrent
Markov chain andT is a stopping time, also known as
Markov time (see p. 255 & p. 318 of Karlin and Taylo
(1975)).

���0 �µ ���1 -λ�
µ ���2 · · · -λ�

µ ���K-1
-λ ���K

Figure 1: Transition Diagram of the M/M/1 Queue Exampl

If K is large, thenγK is a small number. Thus,
estimatingγK in (1) is a rare event simulation problem.

For this simple problem, the analytical solution forγK
is known. In particular,

γK = µ− 1

µK − 1
. (2)

Of course with a known analytical result there is no nee
to simulate. We just use this problem as a vehicle for t
basic ideas to follow. Throughout this paper, the concep
of importance sampling and adaptive importance sampli
methods will be introduced via this simple problem.

3 THE BASIC CONCEPTS OF
IMPORTANCE SAMPLING

3.1 Importance Sampling

SinceX is an irreducible, positive recurrent chain andT
is a stopping time, it is well known thatP({ω : T (ω) <
∞}) = 1. Thus, without loss of generality, we can choos
� = {ω : T (ω) < ∞} being the sample space. Letf (·)
denote the (original) density function ofX givenX(0) = 1
and let

A = {ω : X(T (ω)) = K}.
Then, we can representγK as∫

I (ω ∈ A)f (ω)dω = Ef [I (A)],

whereI (·) is the indicator function.
To estimateγK via simulation, the direct approach

would be to generaten independent sample paths
d
e
ts
g

ω1, . . . , ωn, from the probability density functionf (·) and
form the estimator

γ̂K = 1

n

n∑
k=1

I (ωk ∈ A).

By the central limit theorem,

√
n(γ̂K − γK)⇒

√
γK(1− γK)N(0,1),

asn→∞, whereN(0,1) denotes a normal random variable
with mean 0 and variance 1. Thus, to construct a 95%
confidence interval forγK with relative half-length of 1%,
we need sample sizen ≈ 1/(0.012)×1.962× (1−γK)/γK .
Therefore, if γK = 10−9, then n ≈ 3.84× 1013. This
demonstrates the main problem of rare event simulation

Let g(·) be a density function such thatω ∈ A and
f (ω) > 0 implies g(ω) > 0. Then we have another
representation forγK :

γK =
∫
I (ω ∈ A)f (ω)

g(ω)
g(ω)dω

=
∫
I (ω ∈ A)Lf,g(ω)g(ω)dω

= Eg[I (A)Lf,g], (3)

whereLf,g(ω) = f (ω)/g(ω) is called the likelihood ratio
andEg(·) denotes the expectation underg(·).

Identity (3) suggests an alternative estimation schem
generaten samples,ω1, . . . , ωn, from g(·). By (3),

γ̂Kg = 1

n

n∑
k=1

Lf,g(ωk)I (ωk ∈ A) (4)

is an unbiased estimate ofγK . This alternative estimation
scheme is calledimportance sampling. To apply impor-
tance sampling to more general stochastic systems includ
discrete-time Markov chains (DTMC’s), continuous-time
Markov chains (CTMC’s), and generalized semi-Markov
processes (a mathematical formalization of discrete-eve
simulations), consult Glynn and Iglehart (1989).

Before proceeding to next subsection, let us derive th
explicit formula of the likelihood ratio for our M/M/1 queue
example. A typical sample pathω of X is

((X0, h0), (X1, h1), . . . , (XN−1, hN−1), XN)

whereN is the number of jumps before the stochastic proce
X hits 0 orK, X0, X1, · · · , XN is the sequence of states
of the embedded discrete time Markov chain, andhn is the
holding time in stateXn for n = 0,1, . . . , N−1. Thus, for
the probability density functionf (ω) of the sample pathω
of the processX for which Pf (·, ·) denotes the transition
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probabilities of the embedded discrete time Markov chai
we have

f (ω) =
N−1∏
n=0

(1+ µ)e−(1+µ)hnPf (Xn,Xn+1). (5)

Now, let us consider a generalized M/M/1 queue, whos
arrival rates and service rates vary. In particular, its arriv
rate is λk and service rate isµk when it is at statek,
k = 1,2, · · · ,K − 1; see Figure 2. For such a generalize
M/M/1 queue, the densityg(ω) is equal to

N−1∏
n=0

(λXn + µXn)e−(λXn+µXn)hnPg(Xn,Xn+1), (6)

wherePg(·, ·) is the transition probabilities of the embedde
DTMC of this generalized M/M/1 queue.

���0 �µ1
���1 -λ1�

µ2
���2 · · · -λK−2

�
µK−1
���K-1

-λK−1���K
Figure 2: Transition Diagram of the Generalized M/M/1
Queue Example

Thus, if we choose such a generalized M/M/1 to d
importance sampling, then the likelihood ratio ofω

Lf,g(ω) =∏N−1
n=0 (1+ µ)e−(1+µ)hnPf (Xn,Xn+1)∏N−1

n=0 (λXn + µXn)e−(λXn+µXn)hnPg(Xn,Xn+1)
. (7)

See Glynn and Iglehart (1989) for explicit formulas o
likelihood ratios for a variety of more general stochasti
processes.

3.2 The Optimal Importance Sampling Distribution

Is importance sampling always better than direct simulatio
This answer depends on the choice of importance sampl
distribution g. An ideal g is a distribution which has the
property Varg[I (A)Lf,g] � Varf [I (A)], where Varg(·) and
Varf (·) denote the variance under distributionsg(·) andf (·),
respectively. And the bestg is a distribution which has the
property Varg[I (A)Lf,g] = 0.
Definition 1 A distributiong is called the optimal im-
portance sampling distributionof distributionf if

Varg[I (A)Lf,g] = 0,

whereA is the rare event of interest.
,

e
l

?
g

Does suchg exist? If we define the following probability
density function on the sample pathω,

g∗(ω) = f (ω)I (ω ∈ A)
γK

, (8)

then we have

Eg∗ [(I (A)Lf,g∗)2] = Ef [I (A)Lf,g∗ ]
=
∫
I (ω ∈ A) f (ω)

g∗(ω)
f (ω)dω

= γ 2
K.

Thus,

Varg∗ [I (A)Lf,g∗ ] =
Eg∗ [(I (A)Lf,g∗)2] − E2

g∗ [I (A)Lf,g∗ ] = 0.

Therefore,g∗ is the optimal importance sampling distribu-
tion.

In most practical problems, the optimal importance
sampling distribution is not achievable, since it contains the
quantityγK , which is unknown. However, it is computable
in our simple problem. We will demonstrate how to compute
the optimal importance sampling distribution in this simple
M/M/1 queue example.
Example 1[The Optimal Importance Sampling Distribution]
From (8), it is easy to see thatLf,g∗(ω) = γK (a constant)
for ω ∈ A. Now, consider two sample pathsω1, ω2 ∈ A

ω1 = ((1,1), (2,1), . . . ,
(k,1), (k + 1,1), · · · , (K − 1,1),K)

and

ω2 = ((1,1), . . . , (k,1), (k + 1,1),

(k,1), (k + 1,1) · · · , (K − 1,1),K)

where 2≤ k ≤ K − 2. If we choose a generalized M/M/1
queue to do importance sampling, then by (7), we have

Lf,g(ω1) = e−(K−1)(1+µ)∏K−1
n=1 λne

−(λn+µn)

and

Lf,g(ω2) =
µe−(K+1)(1+µ)

λke−(λk+µk)µk+1e−(λk+µk)
∏K−1
n=1 λne

−(λn+µn) .
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We can substantially simplify our expressions forLf,g(ω2)

andLf,g(ω2) by setting

λk + µk = 1+ µ, 1≤ k ≤ K − 1;

and this yields

Lf,g(ω1) = 1∏K−1
n=1 λn

Lf,g(ω2) = µ

λkµk+1
∏K−1
n=1 λn

.

It is easy to seeLf,g(ω1) = Lf,g(ω2) if µk+1 = µ/λk.
Therefore, the recursion

µk = µ

λk−1
, λk = 1+ µ− µk, 2 ≤ k ≤ K − 1

is necessary for a generalized M/M/1 queue being the optim
importance sampling distribution. With suitably chosen
boundary condition, above recursion does define the optim
importance sampling distribution:

µ1 = 0, λ1 = 1+ µ
µk = µ

λk−1
, λk = 1+ µ− µk, 2 ≤ k ≤ K − 1. (9)

Note thatµ1 = 0 is necessary for the generalized M/M/1
queue to serve as the optimal importance sampling di
tribution. Since, otherwise there existsω 6∈ A such that
P(ω) > 0.

3.3 Asymptotically Optimal Importance
Sampling Distributions

In the queueing and random walks literature, there is
notion called asymptotically optimal for measuring the ef
fectiveness of an importance sampling distribution in th
rare event simulation context. See, e.g. Siegmund (1976
Lehtonen and Nyrhinen (1992), and Heidelberger (1995)
Definition 2 Let AK = {ω : X(T (ω)) = K}. If

lim
K→∞

logEg[I (AK)L2
f,g]

logγK
= 2, (10)

we call g an asymptotically optimal importance sampling
distribution.

Note that

Eg[I (AK)L2
f,g] = Var[I (AK)Lf,g] + (Eg[I (AK)Lf,g])2
= Var[I (AK)Lf,g] + γ 2

K

≥ γ 2
K.
l

l

-

),

In view of the preceding development, we obtain the fol-
lowing inequality,

logEg[I (AK)L2
f,g] ≥ 2 logγK,

for all valid distributiong. LettingK →∞ yields

lim inf
K→∞

logEg[I (AK)L2
f,g]

logγK
≥ 2.

Thus, asymptotically optimal importance sampling distri-
butions are optimal on the logarithmic scale.
Example 2 [Asymptotical Optimality]
Let us consider a M/M/1 queue with with arrival rateµ and
service rate 1, i.e., by switching the service rate and arriva
rate of the original M/M/1 queue. If we use such a M/M/1
queue to do importance sampling, then

Lf,g(ω) = 1

µK−1 ,

for all ω ∈ A, i.e.,Lf,g(ω) is constant for allω ∈ A. Now,

Eg[I (AK)L2
f,g] =

1

µ2(K−1)
Eg[I (AK)] = 1

µK−1

µ− 1

µK − 1

γK = µ− 1

µK − 1
.

Thus,

lim
K→∞

logEg[I (AK)L2
f,g]

logγK
= 2.

Such a change-of-measure is, therefore, an asymptotica
optimal importance sampling distribution. This type of sim-
ple but effective change-of-measures exist in more gener
setting, see Heidelberger (1995) for a complete survey.

It is interesting to note that if the boundary condition
of (9) is set toµ1 = 1 andλ1 = µ, the resulting M/M/1
queue is this asymptotically optimal one.

3.4 Bounded Relative Error

Definition 3 Let AK = {ω : X(T (ω)) = K}. If

lim sup
K→∞

√
Varg[I (AK)Lf,g]

γK
<∞ (11)

we call importance sampling distributiong has bounded
relative error property.

Importance sampling distributions with bounded rela-
tive error property are desirable, since they require only
finite number of samples to construct a confidence interva
with a given precision, no matter how small theγK is.
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Example 3 [Bounded Relative Error]
The importance sampling distribution of Example 2 h
bounded relative error property, since

√
Varg[I (AK)Lf,g]

γK
=
√

uK−1− 1

µK−1(µ− 1)
<

1√
µ− 1

.

4 ADAPTIVE IMPORTANCE
SAMPLING METHODS

To use importance sampling in rare event simulations,
is good to have an importance sampling distribution wi
asymptotical optimality or bounded relative error propert
However, to have such an importance sampling distributio
it is usually required to have a good understanding of t
large deviation behavior of the rare event of interest; this
the major obstacle to wide-spread application of importan
sampling in rare event simulations. (Large deviations is
body of asymptotic theory which may be used to obta
the rare event asymptotics that we are interested in;
Bucklew (1990) and Dembo and Zeitouni (1993) for gene
background.) Thus, it is nice to have more automatic
ways of finding good importance sampling distribution
regardless of what rare event problem we are interested
this section, we review two types of adaptive importan
sampling methods, which are to serve this need.

The effectiveness of the importance sampling estima
depends on the choice of importance sampling distribut
g. To make the selection simpler, we usually only consid
a family of importance sampling distributions parameteriz
by θ ∈ 2 ⊆ <d ; e.g., the family of exponential twisting
distributions.

4.1 Approach via Minimizing Estimator’s Variance

The most direct measure of effectiveness of an estimato
its variance. From Section 3, we know the variance of an i
portance sampling estimator is 1/m times Varg[I (A)Lf,g]
if the estimator is computed bym independent copies of
I (A)Lf,g sampling from the importance sampling distribu
tion g. Let fθ denote the family of distributions. Then
selecting the best importance sampling distribution fromfθ
can be formulated as

min
θ

Varfθ [I (A)Lθ ], (12)

whereLθ(ω) = f (ω)/fθ (ω). But

Varfθ [I (A)Lθ ] = Efθ [I (A)L2
θ ] − (Efθ [I (A)Lθ ])2

= Efθ [I (A)L2
θ ] − γ 2

K.
at
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it
h
y.
n,
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Thus, the variance-minimization problem (12) is is easily
seen to be equivalent to

min
θ
Efθ [I (A)L2

θ ]. (13)

How does one compute an (approximate) minimize
of (13)? Since (13) is a stochastic optimization problem
traditional stochastic approximation algorithms, Robbins
Monro algorithm (Robbins and Monro (1951)) and Kiefer-
Wofowitz algorithm (Kiefer and Wolfowitz (1952)) comes
naturally for use.

R-M algorithm basically is the following recursion

θn+1 = 52(θn − a

n+ 1
∇̂h(θn)), (14)

where52 is the projection operator onto2, h(·) is the objec-
tive function (Efθ [I (A)L2

θ ] in our example) and̂∇h(θn) is an
estimate of∇hatθn. There exist several different approaches
for obtaining the gradient estimation̂∇h(θn): infinitesimal
perturbation analysis (Glasserman (1991)), likelihood rati
methods (Glynn (1986), Glynn (1990)), Conditional Monte
Carlo (Fu and Hu (1997)), and the “push-out” approach
(Rubinstein (1992)).

K-W algorithm also uses recursion (14). The difference
between these two algorithms is on the method of estimatin
∇h(·). K-W algorithm use finite differences to estimate
∇h(·).

Using importance sampling for accelerating simulation
by finding an approximate minimizer of (13) has been applie
in various applications, especially in queueing and reliabil
ity models; see, e.g. Al-Qaq, Devetsikiotis, and Townsen
(1995), Devetsikiotis and Townsend (1993a, 1993b), Ru
binstein (1997, 1999), and Rubinstein and Melamed (1998
Similar idea has also been applied to speeding up th
simulation for pricing financial derivative, such as (out-
of-the-money) Asian options. See Su and Fu (2000) an
Vazquez-Abad and Dufresne (1998).

It is sometimes advantageous to rewrite (13) as

min
θ
Ef [I (A)Lθ ]. (15)

See Su and Fu (2000) for a successful example of usin
(15).

4.2 Approach via Minimizing Cross Entropy

4.2.1 Cross Entropy

Given a probability density functionf , cross entropy defines
a measurement of “distance tof ”. Let g be a probability
density function defined on the same sample space such th
f (ω) > 0 impliesg(ω) > 0. Then thecross entropy, also
known as relative entropyor Kullback Leibler distance,
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of the probability density functiong with respect to the
probability density functionf is

D(f, g) =
∫

log

(
f (ω)

g(ω)

)
f (ω)dω

= Ef [log(Lf,g)]. (16)

For more details on this definition, see Kapur and Kesava
(1992). However, beware that this definition of cross entrop
is not universal. For example, Jelinek (1997) defines cros
entropy as

H(f, g) = −
∫

log(g(ω))f (ω)dω.

There are some important properties ofD(·):
1. D(·) is non-symmetric; i.e.,D(f, g) 6= D(g, f )
2. D(f, g) ≥ 0
3. D(f, f ) = 0

SinceD(·)measures the distance between distributions
it is reasonable to expectD(·) can be used to select impor-
tance sampling distributions. In particular, we want to find
a distributiong such thatg is the minimizer of

min
g

∫
log

(
g∗(ω)
g(ω)

)
g∗(ω)dω.

Of course,g∗ solves this problem. However,g∗ is usually
unattainable. So, the candidate distributions is again
family of importance sampling distributions parameterized
by θ ∈ 2 ⊆ <d . Thus, the problem to be solved becomes

min
θ

∫
log

(
g∗(ω)
fθ (ω)

)
g∗(ω)dω = Eg∗ [logLg∗,fθ ], (17)

whereLg∗,fθ (ω) = g∗(ω)/fθ (ω) is the likelihood ratio.
But

D(g∗, fθ ) =
∫

log

(
g∗(ω)
fθ (ω)

)
g∗(ω)dω

=
∫
g∗(ω) logg∗(ω)dω −

∫
g∗(ω) logfθ (ω)dω

=
∫
g∗(ω) logg∗(ω)dω +H(g∗, fθ ).

Since the first term is independent ofθ , the minimizer of
H(g∗, fθ ) is also a minimizer of (17).
s

t
.

s

,

We obtain the following alternative formulation of the
functionH(g∗, fθ ):

H(g∗, fθ ) = −
∫

log(fθ (ω))g
∗(ω)dω

= −
∫

log(fθ (ω))f (ω)I (ω ∈ A)/γKdω

= − 1

γK

∫
log(fθ (ω))I (ω ∈ A)f (ω)dω

= − 1

γK
Ef [I (A) log(fθ )].

Thus, the maximizer of

max
θ
Ef [I (A) log(fθ )] (18)

is also the minimizer of (17).

4.2.2 Algorithm

Based on (18), it is straightforward to derive an iterative
procedure for computing an approximate minimizer of (17)
The key idea is to express (17) as

max
θ
Efθ ′ [I (A)Lθ ′ log(fθ )], (19)

for θ ′ ∈ 2, whereLθ ′(ω) = f (ω)/fθ ′(ω) for ω ∈ A.
Combine (18) and (19), the iterative procedure is now

clear:

1. Select an initial guessθ0 of (18); setn = 0
2. Compute an approximate minimizer of (19) with

θ ′ = θn
3. θn+1← approximate minimizer computed in Step

2; n← n+ 1
4. (convergence test) If‖θn−θn−1‖ < ε (ε is a small

positive number), stop; otherwise, goto Step 2

This adaptive approach for minimizing cross entropy
has been adopted in Lieber, Rubinstein and Elmakis (1997
Rubinstein (1997, 1999), and de Boer, Nicola and Rubinste
(2000).

5 CONCLUDING REMARKS

We have reviewed the basic concepts of importance sam
pling and selection criteria of good importance sampling
distributions in rare event simulation context. Also, we
have reviewed two adaptive importance sampling method
in the literature. In this section, we will emphasize some
properties of these two methods.

Both methods adaptively look for parameters which le
an importance sampling distribution optimal in their settings
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But cross entropy method has an advantage on computing
approximate solution on each iteration for certain stochas
models. For example, the optimal transition probabilitie
of DTMC can be computed analytically because of th
logarithm of likelihood ratio; see Section 3.1 of de Boe
Nicola and Rubinstein (2000) for details.

The key optimization problem (18) in cross entrop
method is equivalent to

min
θ
Ef [I (A) log(Lθ )].

Since

arg max
θ
Ef [I (A) log(fθ )]

=arg min
θ
Ef [−I (A) log(fθ )]

=arg min
θ
Ef [I (A) log(f )− I (A) log(fθ )]

=arg min
θ
Ef [I (A) log(Lθ )].

In other words, under original densityf , minimizing es-
timator’s variance is equivalent to minimize the expecte
likelihood ratioconditioned on the rare event happens; an
minimizing cross entropy is equivalent to minimize th
expectedlogarithm of likelihood ratioconditioned on the
rare event happens. Therefore, minimizing cross entro
in some sense is close to, but definitely is different fro
minimizing estimator’s variance.

In terms of estimator’s variance, cross entropy meth
does not seek for the optimal solution. Although intuitively
the optimizers of both methods are close to each other.
would be beneficial to know how close they are.
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