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ABSTRACT

Simulation optimization has received considerable attenti
from both simulation researchers and practitioners. In th
tutorial we present a broad introduction to simulation opt
mization and the many techniques that have been sugge
to solve simulation optimization problems. Both continu
ous and discrete problems are discussed, but an emph
is placed on discrete problems and practical methods
addressing such problems.

1 INTRODUCTION

Many systems in areas such as manufacturing, supply ch
management, financial management, are too complex to
modeled analytically. Discrete event simulation has lon
been a useful tool for evaluating the performance of su
systems. However, a simple evaluation of performance
often insufficient and a more exploratory process may
needed in the form of simulation optimization. Simulatio
optimization is the process of finding the best values of som
decision variables for a system where the performance
evaluated based on the output of a simulation model of th
system. There has been a great deal of work on simulat
optimization in the research literature, and more recen
optimization routines has been incorporated into seve
commercial simulation packages.

Techniques for simulation optimization vary greatly de
pending on the exact problem setting. In this tutorial w
take the underlying structure of the decision variables, th
is discrete or continuous, to be the primary distinguishin
factor. There also appears to be a significant gap betwe
those methods that have been studied extensively in
research literature and those that are commonly use in pr
tice. In this tutorial we survey methods used for bot
continuous and discrete optimization and discuss which
these methods have been successfully implemented as
of commercial software packages. Previous review of sim
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ulation optimization include Andradóttir (1998), Azadivar
(1999), Swicher et al. (2000), and April et al. (2001).

The remainder of the paper is organized as follows. I
Section 2 we establish a common framework for simulatio
optimization problems and present the notation to be use
Section 3 surveys techniques for optimizing continuou
decision variables, and Section 4 does the same for discr
decision variables. In Section 5 we discuss simulatio
optimization software, and finally Section 6 contains som
concluding remarks.

2 PROBLEM SETTING

Simulation optimization is optimization where the perfor
mance is the output of a simulation model, and the proble
setting thus contains the usual optimization components

• Decision variables,
• objective function, and
• constraints.

We denote the decision variables asθ and the constraints
are represented by these variables having to be contain
in some feasible region2, that is θ ∈ 2. The objective
function is a real valued function defined on these variable
f : 2→ R, but due to the complexity and stochastic natur
of the underlying system an analytical expression does n
exit for f (·) and it must be estimated using a function o
the stochastic simulation output, sayX(θ), that we write as
a function of the decision variables. Typically, this migh
be an unbiased estimate of the true objective function, th
is f (θ) = E[X(θ)], but we will not be concerned with
this here nor how this performance output relates to th
simulation output variables.

Various simulation optimization techniques can be clas
sified based on the nature of the feasible region. If it i
a continuous set, that is2 ⊂ Rn, then it may be ap-
propriate to use a gradient based search method such
stochastic approximation. If it is finite and fairly small, say
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2 = {θ1, θ2, ..., θm}, wherem < 30 then it is possible to
use ranking and selection methods, whereas if it is finite b
combinatorially large a metaheuristic may be appropriat
Those and other methods are surveyed in the followin
sections.

3 CONTINUOUS DECISION VARIABLES

We start by considering the situation where the underlyin
variables are continuous, that is2 ⊂ Rn is uncountable and
infinite. This is perhaps the most studied problem settin
in the research literature but we will only briefly conside
those here as our main focus is on discrete methods.

3.1 Stochastic Approximation

Stochastic approximation (SA) is the iterative process
moving from one solution to another based on moving
the direction an estimate of the gradient. This process
analogous to the steepest descent gradient search in nonli
optimization, but as there is no analytical expression for th
objective function there is of course also no such expressi
for the gradient.

In mathematical notation, the general step of a S
algorithm proceeds as follows. Letθ(k) be the current
solution for the decision variables, the basic SA algorith
is of the following form (for minimization):

θ(k+1) = 5
(
θ(k) − αk∇̂f

(
θ(k)

))
.

Here ∇̂f (θ(k)) is an estimate of the gradient,αk is the
step size, and5 is a projection onto the feasible region
5 : Rn→ 2.

Extending back to the fundamental work of Robbins an
Monro (1951) and Kiefer and Wolfowitz (1952), stochas
tic approximation has received a great deal of attentio
The asymptotic convergence of SA can be guaranteed u
der certain conditions, which typically involve letting the
step size go to zero but at a sufficiently slow rate, e.
limk→∞ αk = 0 but

∑
k αk = ∞.

The simplest way to estimate the gradient∇̂f (θ) =[
∇̂f (θ1), ..., ∇̂f (θn)

]
is by looking at some small change

1θi ∈ R in each of the decision variables and using th
finite differences, either one-sided

∇̂f (θi) = X(θi +1θi)−X(θi)
1θi

or two-sided

∇̂f (θi) = X(θi +1θi)−X(θi −1θi)
21θi

,

t
.

f

s
ar

n

.
-

.

i = 1,2, ..., n. The one-sided estimate requiresn + 1 si-
multaneous simulations of the performance measure, a
the two-sided estimate requires 2n such simulations, a con-
siderable computational effort when optimizing comple
systems.

The computational efficiency and convergence pro
erties of SA can be dramatically improved with a direc
estimate of the gradient instead of finite differences an
a great deal of research has been devoted to develop
such methods. The most common types of approaches
such direct estimation are perturbation analysis (Glass
man, 1991, Ho and Cao, 1991) and likelihood ratio (Glynn
1989; Rubinstein, 1991, Rubinstein and Shapiro, 1993).

3.2 Other Methods

Although gradient search, and in particular those based
stochastic approximation, appear to have received the m
attention in continuous simulation optimization literature
several alternatives have been suggested. Here we will o
briefly mention a couple of these alternatives.

One such approach is the sample path method presen
by Gurkan et al. (1994). The basic idea here is to fix on
particular sample path, at which point the problem becom
deterministic and the powerful machinery of mathematic
optimization can be applied directly. The method the
iteratively moves towards an optimal solution by considerin
one sample path at time. Under certain conditions, th
approach can be shown to converge almost surely (Robins
1996).

Response surface methodology (RSM) is a well studie
statistical approach that attempts to find a functional rel
tionship between the input variables and the output functio
This can be applied to simulation optimization with the ou
put function being the stochastic output of simulation mod
(Kleijnen, 1998). More recently low cost response surfac
methods have been proposed for simulation optimizatio
(Allen and Yu, 2000).

4 DISCRETE DECISION VARIABLES

When the feasible region is countable or countable fini
then the methods of the previous sections do not usua
apply, although a few efforts have been made to apply f
example SA to discrete problems. In this case, we need
distinguish between problems where the feasible region
small and a complete enumeration is possible and proble
where it is impossible to evaluate every alternative an
some search method must be included to determine wh
solutions should be evaluated.
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4.1 Statistical Selection

When the optimization involves selecting the best of a fe
alternatives, that is2 = {θ1, θ2, ..., θm}, wherem is rel-
atively small, then it may be possible to evaluate eve
solution and compare the performance. In the determ
istic context this would be straightforward, but since th
performance must be estimated based on the stochastic
ulation output some further analysis is needed to comp
alternative solutions. Numerous different approaches h
been developed to address this problem, including sub
selection, indifference-zone ranking and selection (R&S
multiple comparisons procedures (MCP), and decision th
oretic methods.

Subset selection or screening does not attempt to find
optimal solution but simply to reduce the feasible regio
to a (small) subset of solutions. Early work develope
techniques that apply when the simulation output is norm
with common variance and the same number of simulati
observations are used for each solution (Gupta, 1956; 19
These assumptions are rarely satisfied for simulation outp
and although many methods are quite robust with resp
to the normality assumption, the assumption of comm
variance is quite restrictive and new techniques have b
developed that do not require this assumption (Nelson
al., 2001).

The subset selection procedures do not find a sin
best (optimal) solution, but this can be accomplished us
R&S methods. The most common approach is to defi
an indifference zoneδ for the performance and develop
a procedure that selects a solution with performance t
is within δ units of the optimal performance with a given
probability, that is, ifθ∗ is the optimal solution andθ is
the selection solution then

Prob
[∣∣f (θ)− f (θ∗)∣∣ < δ

] ≥ 1− α,

where 1− α is the desired probability. To achieve thi
guarantee, a two-stage procedure that prescribes how m
simulation estimates are needed for each alternative is c
monly applied (Dudewicz and Dalal, 1975; Rinott, 1978
A discussion of alternative indifference-zone procedure c
be found in standard simulation texts such as Law a
Kelton (2000). As they have complimentary functions,
natural approach is to combine subset selection for scre
ing with R&S for selection of a specific solution (Nelso
et al., 2001).

Another approach to selecting the best solution a
MCPs that calculate simultaneous confidence intervals
f (θi) − f (θ∗), i = 1, ..., m, where θ∗ is as before the
optimal solution (Hochberg and Tamhane, 1987). The
procedures are actually closely related to the R&S procedu
as indifference-zone procedures can automatically prov
such confidence intervals with the width of the interv
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corresponding to the selected indifference zone (Matejc
and Nelson, 1995; Nelson and Matejcik, 1995).

Most of the statistical selection procedures mentione
above involve a two stage process where in the first stage
mean and the variance of each solution is estimated and th
estimates used to determine how many more simulatio
are needed to make the desired selection. In implement
such methods a key issue is how much effort to put in
the first stage. If it is too little an inaccurate estimate ma
prescribe much more simulation in the second stage than
really needed and vice versa too much effort in the first sta
may spend more simulation time on each solution than w
needed. More recently there has been considerable eff
devoted to developing sequential procedures that solve t
problem and these methods have been found to perform v
favorably to the sequential procedures (Kim and Nelso
2001; Chen et al., 1997).

A completely different approach to selecting the be
system is the decision theoretic framework of Chick an
Inoue (1999, 2000) that uses Baysian analysis to develop b
two-stage and sequential statistical selection procedures

4.2 Random Search

When it is not possible to evaluate every solution usin
a statistical selection procedure, some procedure must
used to determine which solutions are to be considered a
simulated. This is most often some type of a random sear
approach.

Random search typically involves an iterative proces
where in each iteration the search progresses to a n
(possibly better) solution in the neighborhood of the curre
solution.

0. Select and initial solutionθ(0) and simulate its
performanceX

(
θ(0)

)
. Setk = 0.

1. Select a candidate solutionθc from the neighbor-
hoodN(θ(k)) of the current solution and simulate
its performanceX (θc).

2. If the candidateθc satisfies the acceptance crite
rion based on the simulated performance, then l
θ(k+1) = θ(k); otherwise letθ(k+1) = θ(k).

3. If stopping criterion is satisfied terminate the searc
otherwise letk = k + 1 and go back to Step 1.

The various random search methods that have been propo
in the literature can be though of as specifying the neig
borhood structure, how to select a candidate, the accepta
criterion, and the stopping criterion.

4.3 Metaheuristics

Various metaheuristics have been suggested for simulat
optimization. Such methods include genetic algorithm
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simulated annealing, tabu search, and neural networks.
though these methods are generally designed for com
natorial optimization in the deterministic context and ma
not have guaranteed convergence, they have been q
successful when applied to simulation optimization.

Simulated annealing (SA) can be though of with
the framework of the random search describe above a
can be adapted for simulation optimization (Haddock a
Mittenhall, 1992). Starting with an initial solution, SA
moves from one solution to the next, hopefully convergin
on the global optimum. All such random search metho
may, however, get stuck at a locally optimal solution, and S
attempts to rectify this by accepting inferior solutions wit
certain probability and thus allowing the search to esca
local optima. Thus, the main innovation of the SA approa
is in Step two of the generic algorithm, where in thek-th
iteration a randomly selected candidateθc is accepted with
the probability (assuming a minimization problem):

Prob
[
Acceptθc

] =
 1, L (θc) < L

(
θ(k)

)
e

L(θc)<L
(
θ(k)

)
Tk , otherwise.

In other words, the candidate solution is always accep
if it is better but it is also sometimes accepted even if it
inferior. The probability of accepting the inferior candidat
is higher if the difference in performance is small, an
it is higher if the constantTk, called the temperature, is
high. Usually, this temperature is allowed to decrease as
search progresses, the idea being that after a while no
moves up hill should be allowed and eventually no mov
should be made to an inferior solution. However, in th
context of simulation optimization there are indications th
a constant temperature search may work as well or be
(Alrefaei and Andradóttir, 1998).

Tabu search can also be placed within the framewo
of general random search (Glover and Laguna, 1997). O
of the unique features of this approach is a restriction of t
neighborhoodN(θ((k)) of the current solutionθ(k) as certain
solutions are made tabu. Specifically, solutions are tabu
they require the reverse move of a recently made mo
which forces the search to continue when it might otherw
get stuck at a local optimum. Although maintaining a li
of tabu moves may be considered the main feature of
method, it has numerous other properties. This includ
for example long term memory that allows the search
restart at a previously found good solution with a new li
of tabu moves that forces a different search direction fro
this good starting point. More details on using tabu sear
for simulation optimization can be found in Glover, Kelly
and Laguna (1999) and April et al. (2001).

Genetic algorithms (GA) and other evolutionary met
ods are again similar to the generic random search but w
with a population of solution rather than a single solutio
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Thus, in thek-th iteration, a pointθ(k) is actually a set
of solutions and the neighbors ofθ(k) are constructed by
operating on these solutions jointly. The most comm
such operators are cross-over and mutation. The cross-
operation typically takes two solutions from the setθ(k)

that have relatively good performance and combine th
to make two new solutions. This is meant to resemble
evolutionary process where two fit individuals are allowe
to reproduce to generate offspring that resemble the pare
The mutation operator, on the other hand, takes a sin
high performing solution and alters it slightly. From thi
it should be clear that the main innovative contribution
GA when placed in the context of general random sea
is a novel construction of a neighborhood based on natu
selection principals.

Another random search metaheuristic is the nested pa
tions (NP) method of Shi and Ólafsson (1997). This meth
takes a global approach to simulation optimization and g
erates iterative partitions of the entire feasible region. T
is, in the k-th iteration there is some subsetσ(k) ⊆ 2

that is considered the most promising (σ(0) = 2), and the
method attempts to narrow the search be looking at sub
σi(k) ⊂ σ(k), i = 1,2, ...,M of this region while simul-
taneously also looking at the surrounding region2 \ σ(k).
Thus, it focuses the computational effort while simultan
ously maintaining a global perspective. If one of the subse
sayσl(k), is found to be best this becomes the most prom
ing region in the next iteration (σ(k + 1) = σl(k)), but if
the surrounding region is found to be best the method ba
tracks (σ(k + 1) = σ(k − 1)). In terms of the general
random search framework, each pointθ(k) thus corresponds
to a subsetσ(k) and the neighbors are either subsets co
structed according to a specified partitioning method or
subset that was partitioned to createdσ(k):

N
(
θ(k) = σ(k)

)
= {σ1(k), ..., σM(k),2 \ σ(k)} .

Eventually, the subset become singletons and by assu
that the correct move is made with a given probability
each iteration, it is possible to guarantee that when t
happens a sufficiently good solution has been found w
a satisfactory high probability (Ólafsson, 1999; Ólafss
and Kim, 2001). Statistical selection methods, such
those reviewed in Section 4.1, can be used to determ
the amount of sampling needed from each region to ass
a proper selection in each iteration. Specifically, given
indifference zoneδ and a probability of eventually selecting
a singleton that has performance withinδ units of the optimal
performance is given, the probability by which the corre
selection in each iteration must be made is calculated. Gi
this probability the statistical selection procedure is us
to prescribe how many solutions are sampled from each
the subregions and the surrounding region.
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The methods described in this section have all be
successfully applied to industrial problems, and many ha
been incorporated into standard simulation software pa
ages. This issue of simulation optimization in practice w
be discussed next.

5 SIMULATION OPTIMIZATION IN PRACTICE

Recently there has been considerable research focused
how to combine simulation and optimization in practice (F
et al., 2000; April et al., 2001; Ólafsson and Kim, 2001
Fu, 2002). Although simulation optimization has been a
active area of research for considerable length of time, th
except for statistical selection methods that simply compa
all alternatives, optimization packages have only been
corporated into commercial simulation software in the la
decade. Examples of such optimization packages inclu
ProModel’s SimRunner (Harrel and Price, 2000) and A
toMod’s AutoStat (Bitron, 2000) that use evolutionary an
genetic algorithms, SIMUL8’s OPTIMIZ that uses neura
networks, and OptQuest package, which works with simu
tion software that includes Arena and Crystal Ball, and us
scatter search, tabu search, and neural networks (Glo
Kelly, and Laguna, 1999).

As one can see from the examples above, commerc
simulation optimization packages that do search in ad
tion to comparison of solutions are currently dominated b
metaheuristic approaches. Thus, in simulation optimizati
practice, such methods appear to take precedence over o
methods that have received more attention by the acade
research community and may have more appealing co
vergence properties. The reasons for this are undoubte
multiple, but some explanation include that convergen
properties such as asymptotic convergence have limited
evance in practice, and the metaheuristics are generally f
robust, and generate multiple alternative solutions while f
cused on finding the optimal solution.

However, we believe that combining the robustness
metaheuristics with the established methods for guarantee
performance is valuable and will be integral part of futur
simulation practice. There are several ways in which o
can imaging achieving this goal. For example, Boes
Nelson, and Ishii (1999) and Boesel, Nelson, and Kim (200
combine genetic algorithm for searching for solutions wit
rigorous statistical selection for comparing the solutions th
are generated. The solutions generated by the GA search
first screened using subset selection and then the best solu
is selected using a two-stage indifference-zone procedu
A different approach incorporating the same tools is tak
by Ólafsson (1999) that uses a two-stage indifference-zo
procedure to guarantee that the nested partitions rand
search method converges with a fixed probability to with
an indifference zone of the optimal solution. Note that
addition to providing a convergence guarantee this relax
n
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the goal of the optimization from finding the optimal solution
to finding a ‘good enough’ solution with a given probability,
a goal that may be more reasonable in practice. Similar goa
softening is also part of the ordinal optimization paradigm
(Ho et al., 1992; Ho et al., 2000). Finally, using the
nested partitions framework, metaheuristics such as GA
and tabu search can be incorporated to speed the searc
while simultaneously retaining the performance guarantees
(Ólafsson and Kim, 2001). For much more discussion on
simulation optimization theory and practice see Fu (2002).

6 CONCLUSION

Simulation optimization is an active field of research and
is also increasingly being used in practical simulation ap-
plications and being incorporated into simulation software
tools. In this tutorial we have given a broad overview of
simulation optimization but with an emphasis on problems
with discrete decision variables.

As should be apparent, there is still somewhat of a
gap between the academic work on simulation optimization,
which historically has focused on gradient-based approache
and convergence proofs, and practical implementations o
simulation optimization, which primarily implement meta-
heuristics. This difference has, however, been widely rec-
ognized and we have indicated some new effort in bridging
the gap.
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