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ABSTRACT

In this tutorial we provide answers to the top ten inpu
modeling questions that new simulation users ask, point o
common mistakes that occur and give relevant referenc
We assume that commercial input-modeling software w
be used when possible, and only suggest non-commerc
options when there is little else available. Detailed exampl
will be provided in the tutorial presentation.

1 WHY USE INPUT MODELS AT ALL?

This question could be rephrased as, “Why do stochas
simulation?” The premise behind stochastic simulation—
simulation that includes randomness—is that the uncertain
in the system cannot be wished away without painting a
unrealistic picture of system performance. Input mode
represent the uncertainty. For the purpose of this tutori
“input modeling” will mean selecting and fitting a probability
distribution (perhaps multivariate) to represent some proce
whose behavior cannot be predicted with certainty.

For example, suppose you are a supplier of a compon
that is supposed to last for one year, a component that y
know has a mean time to failure of 2 years. A client i
willing to pay $1000 for your component, but wants you
to pay a penalty of $5000 if failure occurs in less than on
year. Should you take this contract?

If you ignore the uncertainty in the component’s life
time and base your decision on the average two-year li
then this is a no-brainer: You will pocket $1000 for eac
component you sell. On the other hand, if you know tha
the distribution of time to failure is well modeled as being
exponentially distributed (an input model) with mean
years, then it turns out that you can expect tolose about
$967 on each component you sell. In this simple examp
the expected or long-run average profit can be comput
so you do not need simulation to estimate it, but the sam
point applies to simulation experiments: You cannot ju
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plug in mean values for all the uncertainties and expect t
discover the mean performance of the system itself.

2 DOES THE PARTICULAR
INPUT MODEL MATTER?

Absolutely! Simply injectingsomeuncertainty into the
simulation is not enough. The simulation outputs can b
quite sensitive to the particular input model chosen, an
matching the mean alone is rarely sufficient.

For instance, in the reliability example described in the
answer to Question 1, suppose you modeled the compone
life time as having a uniform distribution between 0 and 4
years, because this distribution has the right mean (2 year
and is easier to work with than the exponential. Under th
uniform model, the expected loss on each component
$3500, rather than $967. So if you were trying to negotiat
a different contract that was profitable, the uniform mode
would cause you to overprice the component (and los
business to a competitor who has better input models).

Input modeling error is particularly nasty because it is
very difficult to quantify. This is in contrast to theestima-
tion error in the simulation output performance measures
Estimation error can be measured via a confidence interv
or standard error, and reduced by making more replication
or longer runs. Unfortunately, you can not simulate you
way out of an inaccurate input model.

3 WHY NOT JUST REUSE THE DATA YOU HAVE?

When process data are available, then using that data
drive the simulation model can be a very good idea (we
discuss about how to use it appropriately in the answer t
Question 9). However, there are a number of reasons wh
it is often better to fit an input model. These include the
following:

• To fill in gaps and smooth the data: A finite sample
of data is nearly always an imperfect representatio
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of the process that produced it. There may be ga
in which values are possible, but none occurred
this particular sample. Or there may be collectio
of values that are overrepresented, just by chan
One way to think about input modeling is that yo
are trying to infer characteristics of the true un
derlying process that are not perfectly represen
in the data. In fact, the physics of the proce
may provide a basis for choosing a particular inp
model, independent of the data (see Question

• Insure that tail behavior is represented: This
similar to the previous point. By definition, highly
unusual events do not occur very often; therefo
they may not be appropriately represented in
sample of data, particularly if the sample size
small. But these rare events often correspond
the extreme conditions (power spikes, long servi
times, or early equipment failure) that make sy
tems perform badly. A simulation model that doe
not include the chance of extreme events will n
correctly represent the risks to the system. By fi
ting an input model you can infer the tail behavio
that may not be present in the data.

• Reflect dependencies in the inputs: For certa
types of data sets, specifically those that exhi
dependence or nonstationary behavior, the d
set cannot be naively resampled. Consider, for
stance, an input model that represents a custom
behavior on a commercial web site. The custom
may undertake a sequence of transactions, s
as connecting, logging in, browsing, adding to
shopping list, more browsing, comparative pri
ing, reading product information, more browsing
checking out, and disconnecting. Although diffe
ent customers will exhibit different behaviors, ce
tain patterns are more likely than others, and so
may even be forced to occur in sequence (one
to connect before logging in, for instance). Thu
it would be wrong to independently resample ind
vidual transactions because customers do not ch
their transactions independently. In this examp
you would need to resample the entire custom
session instead. Unfortunately, your simulatio
will not see any behavior patterns that were not
the sample, a particular problem if the number
observed sessions is small.

• Incorporate changes in the input process: Supp
you are not only interested in getting a good mod
for an input process, but also in seeing how t
system will react to changes in that input. Fo
instance, suppose that an input to your simulati
will be the time a worker requires to assemb
a component. You believe that a new piece
equipment will reduce the variability in this time
ps
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although it will not speed it up. With a parametric
input model (a probability distribution) you can
change its parameters, or even select a new dist
bution, to reflect the changes. If you are reusin
data then somehow you must change the data.

4 WHY ARE THERE SO MANY CHOICES?

Even a low-budget input modeling tool will have ten to
twelve different distributions from which to choose. Some
tools have twenty or more. One reason that there are so ma
choices is that distributions arise naturally when considerin
certain physical processes. The normal distribution is a we
known example. If the time to do some task—assemble th
components of a computer, for example—is the result o
adding together the times to do a large number of individu
tasks (each having some variability), then the total time t
complete the task may, according to the Central Lim
Theorem, be approximately normally distributed. Thus
the physical nature of the process (sums of random time
leads naturally to a particular type of distribution. To take
less well-known example, consider the Weibull distribution
The Weibull can be derived by considering the minimum
(think first event to occur) of a number of random variables
Because time to failure is often the time when the first of
number of possible breakdowns occurs, the Weibull aris
as a natural choice in reliability modeling. The numbe
of input model choices is large because the number
physical processes of interest is large. For descriptions
the physical basis of a number of standard distributions s
Banks et al. (2001, Chapter 9).

Although the number of choices is often large, there ma
be fewer distinct choices than it first appears. For instanc
input-modeling packages often include the gamma, Erlan
and exponential distributions. However, the Erlang an
exponential are special cases of the gamma (arising fro
restrictions on the gamma’s parameters), so there is rea
only one choice.

A practical consequence of this nesting of distribution
is that algorithms for automatically selecting input model
typically select the most flexible member of a family, and
not the others (e.g, gamma instead of Erlang or exponentia
This makes sense because a more flexible distribution c
more easily accommodate the hills and valleys present
a sample of data. To see this for yourself, try doing th
following exercise: Use your simulation software to genera
data sets of various sizes (100, 500, 1000, 5000) from
exponential distribution, then ask your software to find th
“best fit.” Frequently, the exponential will not be selected
until the sample size is very large, if it is selected at all.



Biller and Nelson

pu
th
re
d
d.

pu
r-
o

e
yo
s
th

e i

t t
yo
sa

re

e

y
st
it

a
el

fo
n

av
th

es
fit
sis
t a
st
u
lly
ly
n

e
ng

his

e
st
ity
r
e
m
e
s
no
-
to

ve
d
s.
l
ent
s.

at
the
the
nd
ns
ical
ng

ob-
d
d,
ap-

ter-
er,

es
re
o-
cal
on,
on

a
ri-
5 WHAT IS A “GOOD FIT?”

The direct answer is that a good fit occurs when an in
model represents the key features of the real process
have a significant impact on the simulation output measu
of interest. As a practical matter this definition of “goo
fit” is very difficult to quantify, so others have been derive

5.1 Goodness-of-Fit Tests

Undoubtedly the most popular approach to evaluating in
model fit is statistical goodness-of-fit (gof) testing. Unde
standing gof tests is important because they can be b
useful and misleading.

The gof test starts with the premise thatthere is a
true input model to discover; it then proceeds to determin
whether there is substantial evidence that the model
have chosen isnot the truth. In gof tests, the null or statu
quo hypothesis is that you are correct (you have found
true distribution and its parameters), and the alternativ
that you are wrong.The test will reject your choice only
if there is overwhelming evidence that you are wrong. The
more data that are available, the easier it is for the tes
deduce that you are wrong. This only makes sense: if
had a single data point, for instance, then who could
that any choice was incorrect?

One problem with gof tests is that you know, befo
you run the test, that your model choice is wrong!You
know this because real data come from real process
not probability distributions. Probability distributions are
mathematical entities thatapproximatereal processes, the
are not real processes.So if there are enough data, the te
will definitely reject your distribution choice, whatever
is. Thus, having lots of data—usually considered to be
good thing—is bad if your goal is to get your input mod
endorsed by a gof test. The statistical term for this ispower:
the more data there are, the more powerful the test is
detecting differences between your distribution choice a
the process data. On the other hand, if you do not h
much data then almost any choice will be accepted by
test.

So how should gof tests be used, if at all? We sugg
they should be advisory only. If you are happy with the
based on other factors (physical basis, graphical analy
and the gof test fails to reject your choice, then take tha
additional evidence in favor of your selection. If the gof te
rejects, then you may want to more carefully examine yo
choice, but not necessarily give up on it. This is especia
true if you have a large data set so that rejection is like
See Law and Kelton (2000, Chapter 6) for an excelle
treatment of gof testing.

We have been describing gof tests as if they provid
go/no-go decision. More typical is that the input-modeli
software will present ap-value for the test. Thep-value
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can be confusing, especially in this context, so keep t
simple rule in mind:A largep-value supports your choice
of input model, andp-values greater than0.10are typically
considered to be “large.”

5.2 Graphical Comparisons

A feature of all modern input-modeling software is th
facility to compare a fitted distribution to data. The mo
intuitive graphs are based on comparing a fitted dens
function to a histogram of the data. Unfortunately, you
perception of the fit is highly dependent on the width of th
histogram cells. The fit may look good when the histogra
is formed with a few, wide cells, but poor with a larg
number of small cells. In fact, if the number of cells i
too large (imagine one cell for each data point), then
distribution will appear to fit. Thus, if you use histogram
based graphical comparisons, try different cell divisions
see how they change your perception of fit.

Although less intuitive, graphs based on the cumulati
distribution function (cdf) do not require data grouping an
are sensitive to lack of fit and to where the lack of fit occur
Theq−q plot is a typical example of this type of graphica
assessment tool and is highly recommended. See Vinc
(1998) for a thorough discussion of graphical comparison

5.3 A Note on Parameter Estimates

Input models nearly always come with parameters th
can be tuned to the data set at hand. For instance,
Poisson distribution has one parameter, its mean, while
lognormal distribution has two parameters, its mean a
standard deviation (or variance). For some distributio
estimating the values of their parameters is a messy numer
analysis problem. One of the nice things that input-modeli
software does is parameter estimation.

When statisticians attack the parameter estimation pr
lem they look for criteria that lead to estimators with goo
statistical properties. The methods of maximum likelihoo
least squares and moment matching are three standard
proaches. Should you be worried about what parame
estimation methods your software implements? The answ
typically, is no. All of the standard methods have pluss
and minuses. What is more important is that the softwa
implements them correctly, using numerically stable alg
rithms, and provides diagnostics like gof tests and graphi
comparisons. If you are interested in parameter estimati
see Banks et al. (2001, Chapter 9) and Law and Kelt
(2000, Chapter 6).

6 WHY NOT JUST USE THE “BEST FIT?”

Commercial input-modeling software invariably includes
feature that will automatically select or recommend a dist
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bution that best fits the sample of data. To our knowled
these automated features only apply to models of indep
dent and identically distributed (i.i.d.) data (see Question
below for what to do with dependence, and Question 8
what to do with distributions that change over time). Th
following is a generic description of how these featur
work (details will differ from package to package):

1. Obtain information from the user that could elim
inate certain candidate distributions. Exampl
include whether the data are discrete or contin
ous valued; whether there are known, unknow
or no bounds on the range of possible values; a
specific candidate distributions to try.

2. Fit all feasible candidate distributions to the samp
of data by estimating values for any parameter

3. Rank all the fitted distributions by some summa
measure of fit, such as thep-value of a goodness-
of-fit test.

4. Recommend the distribution with the best summa
measure of fit.

There is nothing inherently wrong with this approac
and it never hurts to see what the software recommen
But it is a mistake to slavishly take the recommendati
for the following reasons:

• The selection is based on a summary measure of
and different summary measures lead to differe
recommendations. Which summary measure is
right one? The answer depends on characteris
of the data and on what sort of lack of fit bothe
you most. Do you want to get the tails or th
center of the distribution right? Are you intereste
in minimizing the largest discrepancy between t
data and the fitted distribution or the average
all the discrepancies? Do you believe that there
indeed a “true distribution” or are you only trying
to find a close approximation to the given data?

• Some measures of fit are sensitive to how your d
are grouped. In particular, the popular chi-squar
statistic depends on the number and size of the c
in your histogram, as described in Question 5.
you change the grouping of your data you ma
end up with a different recommendation.

• The software usually does not account for the phy
ical basis of the data (see Question 4), and t
physical basis may provide the best indication
the right family of distributions to choose.

• You are smarter than the software.

Our recommendation is to use every graphical to
available in the software to examine the fit, and if it is
histogram-based tool to be sure to play with different widt
of the cells. If there is a strong physical basis for a particu
e
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distribution choice, then use it even if it is not the “best fit.
And avoid histogram-based summary measures, if possib
when asking the software for its recommendation.

7 WHAT IF THERE IS DEPENDENCE
IN THE PROCESS?

First and foremost, don’t ignore it!
Here are some examples of input processes that mig

exhibit dependence:

1. A distributor places monthly orders for your prod
uct. Because the distributor may hold inventor
(which is outside the scope of your model), a larg
order from the distributor one month is likely to be
followed by a smaller order the following month,
followed by a larger order the next month, etc
Modeling the monthly orders as independent ran
dom variables misses this month to month depe
dence.

2. Customers who log on to your web site have cha
acteristics that influence their behavior, including
age, sex, income level and where they live. T
treat these customer characteristics as independ
random variables misses the obvious relationsh
between age and income, for instance.

3. In the first example, suppose that the distributor h
several warehouses and each places monthly ord
for your product. The month-to-month dependenc
still exists, but there may also be dependence b
tween the orders from different warehouses in th
same month if they are able to share inventory o
supply the same customers.

The first example calls for atime seriesinput model,
a sequence of random variables that all have the sa
probability distribution, but exhibit dependence. The de
pendence is often measured by theautocorrelation, which
is the correlation between observations within the series

The second example calls for arandom vectorinput
model, where each component of the vector—age, sex,
come level and location—may be described by a differe
probability distribution, but the components depend on th
other. This dependence is often characterized by acorre-
lation matrix whose elements are the pairwise correlation
between the components.

The third example calls for avector time seriesinput
model that has dependence in sequence (month to month)
across components (the orders from different distributors

All simulation software includes input models for i.i.d.
processes, and all input modeling packages fit distributio
to i.i.d. data. Few of the products include facilities fo
modeling dependent input processes. Thus, there is
almost overwhelming temptation to use i.i.d. models. Un
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fortunately, many studies have shown that ignoring depe
dence can greatly distort the simulation output performan
measures. For instance, if there is actually positive au
correlation between the interarrival times of customers to
queue but you ignore it, then the simulation of the que
can grossly underestimate the congestion that will actua
occur. Vincent (1998) describes techniques for assess
whether or not there is dependence in a data set.

Multivariate input models based on the norm
distribution—including time series, random vectors, an
vector time series—are well known to statisticians and ea
to fit and simulate. Recently, researchers have develo
tools that transform input models with normal distribution
into input models with (any) other distributions. See Nelso
and Yamnitsky (1998) for an overview, and<www.iems.
northwestern.edu/˜nelsonb> for software.

8 WHAT IF THE PROCESS
CHANGES OVER TIME?

Again, don’t ignore it!
Input processes that change over time are said to

nonstationary. A typical example is an arrival process in
which the arrival rate varies by the time of day, day o
the week, etc. For instance, nonstationarity occurs in
arrival of customers to a restaurant (rate is greater arou
meal times), arrival of e-mail messages to a mail serv
(lower rate at night), and the times of discovery of bugs
a software product (rate tends to decrease over time).

The Poisson arrival process—where times between
rivals of customers are independent, exponential rand
variables—is a standard input model used when arriv
occur “at random” (as opposed to, say, on a schedule). T
Poisson arrival process has a constant or stationary arr
rate. A generalization of the Poisson arrival process allo
the arrival rate to vary with time. Such a process is called
nonstationaryor nonhomogeneousPoisson arrival process
Good references are Law and Kelton (2000, Chapter 6) a
Nelson and Yamnitsky (1998).

9 HOW CAN I REUSE THE DATA I HAVE?

As mentioned in the answer to Question 3, there are reas
not to reuse input data that you have collected. Howev
when an adequate sample is available, the data are tho
to be representative and there is no compelling reason to
a probability model (including the case that nothing appe
to fit well), then using the data themselves is clearly
option. The idea is to resample the data to produce inp
for the simulation.

When the data are believed to be approximately i.i.
then they should be sampled, with replacement, in suc
way all the data points are equally likely. This is known a
using theempirical cdfand it has good statistical properties
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However, if you believe that values between the observ
data points are possible, then there are various interpolat
schemes that can be used to smooth the empirical cdf, a
even add tails. We highly recommend these. Banks et
(2001, Chapter 8) shows one way to do it.

As mentioned in the answer to Question 3, simpl
resampling is not appropriate when the process exhib
dependence or nonstationary. Dependence can occur in
of two ways, or both: (1) There is dependence in sequen
(a time series), such as the values of a stock index record
every 10 minutes; or (2) there is dependence across differ
input processes, such as the dependence between sale
new cars and the sales of car tires. In case (1) you sho
resample an entire series of values, while in case (2) y
should resample pairs (or in general vectors) of values th
were observed together.

Nonstationarity means that the input process chang
over time. For instance, consider the number of use
connected to an Internet Service Provider (ISP) by tim
of day. There are clearly peaks and valleys in the us
load. Similar to the case of dependence, when there
nonstationary behavior then entire cycles must be resamp
(entire days of user load profiles in the example).

10 WHAT IF I HAVE NO DATA?

The short answer is, be resourceful and be creative. Wh
no data are available you have to use anything you can fi
as a basis for your input models: engineering standards a
ratings; expert opinion; physical or conventional limits o
bounds; and the physics of the process itself. Here are
few examples:

• To model the time it takes to do computer dat
entry you could research the world record for typin
speed to provide an upper bound, and spend a fe
minutes doing some one-finger typing to find a
lower bound. You probably would not use eithe
of these numbers, but any input model you selecte
should clearly take values between these extreme

• In designing a new work cell containing a numbe
of machining processes you might use the man
facturers’ ratings for cycle time as a basis for inpu
models on actual cycle times.

• If your model requires the number of defective
items found in a shipment of parts, and each item
is independently good or bad, then the physics o
the situation implies that a binomial distribution
is appropriate. You then have to supply a siz
for the shipment and a probability that an item i
defective.

By far the most common approach when data are n
available is to use “expert opinion,” meaning that you dra
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on the knowledge and experience of people who are famil
with the process you want to model. Experts are often ab
to estimate the center and the extremes. However, e
though people may feel comfortable provide an avera
value, what they may mean by “average” is “most likely
which is not necessarily the same thing. Thus, it is bett
to ask for the most likely value directly and interpret wha
you get that way.

The triangular distribution is a an easy-to-use inp
model that is specified by minimum, most likely and max
mum possible values, things experts often can supply. Avo
the temptation to use the uniform distribution, which onl
requires minimum and maximum values. There are ve
few real processes in which the extremes are as likely
the center, but that is what the uniform distribution implie

If there are a small number of discrete outcomes, th
you want to ask the expert for the percentage chance
each. For instance, if the event is whether or not yo
win the contract, then elicit the expert’s subjective chan
of each outcome. Even when there are a large num
of outcomes—far too many to specify the chance of ea
one individually—an expert might be able to provide
probability of meeting or exceeding several targets. As
example, sales people are sometimes comfortable mak
statements such as the following: “We will definitely do
$300,000 in sales because we have those orders locked
I think we have a 50% chance of exceeding $600,000, an
10% chance of beating $700,000. The absolute limit in sa
for next year is $850,000 if we get the entire market.” The
breakpoints—numerical values and the chance of exceedin
(or, equivalently, not exceeding) them—can be used
specify the piecewise continuous distributions incorporat
into nearly all simulation languages. See Banks et al. (200
Chapter 9) for a detailed example.

In some contexts an expert may be willing to supp
a central value and a percentage variation around it. F
instance, “the average time to pick an order is 20 minute
plus or minus 10%.” This might suggest a normal distribu
tion for picking time with mean 20 minutes and standar
deviation 20× 0.10= 2 minutes. This could be fine, but
there are some cautions to keep in mind. As mention
above, the mean and the most likely value do not alwa
have to be the same. More critically, people do not natura
think in terms of “standard deviations.” In this context yo
would need to insure that “plus or minus 10%” means th
averagedeviation from 20 minutes, not the most extrem
deviation. For a normal distribution with meanµ and stan-
dard deviationσ , roughly 33% of the values will be outside
the range[µ− σ,µ+ σ ]. If the expert meant thatvirtually
all orders take between 18 and 22 minutes, then 2 minu
might better correspond to 3 standard deviations, not o
Finally, be careful with models like the normal that hav
an infinite range. If 0 is within 3 standard deviations o
the mean then there is a nontrivial chance that a negat
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value will be generated, which makes no sense in this e
ample. When an input model with infinite range is used
then be sure to check for values that are generated outs
the feasible range for that process.

Assessing the sensitivity of simulation output result
to the input models chosen is always important, and this
especially true when the input models are determined witho
data. Sensitivity to both the center of the distribution an
its variability should be checked. For instance, if you wer
using a triangular distribution, then you could shift the mos
likely value and move the minimum and maximum close
together and farther apart. Those distributions that ha
a substantial impact on the simulation output should b
reexamined with more care.
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