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ABSTRACT

Various stochastic programming problems can be formulated
as problems of optimization of an expected value function.
Quite often the corresponding expectation function cannot
be computed exactly and should be approximated, say by
Monte Carlo sampling methods. In fact, in many practical
applications, Monte Carlo simulation is the only reasonable
way of estimating the expectation function. In this talk we
discuss converges properties of the sample average approx-
imation (SAA) approach to stochastic programming. We
argue that the SAA method is easily implementable and
can be surprisingly efficient for some classes of stochastic
programming problems.

1 INTRODUCTION

Consider the optimization problem

min
x∈X

{
g(x) := EP [G(x, ω)]}, (1)

where G : R
n × � → R, the expectation is taken with

respect to probability measure P defined on a sample space
(�,F), and X ⊂ R

n . We assume that for every x ∈ X the
expectation g(x) is well defined.

The function G(x, ω) in itself can be defined by an
optimization problem. For example, in two-stage stochastic
programming with recourse, G(x, ω) is given by the opti-
mal value of the corresponding second stage problem. In
particular, in two-stage linear stochastic programming with
recourse, G(x, ω) is the optimal value of

Miny cT x + qT y
s.t. T x + W y = h, y ≥ 0,

(2)

where (q(ω), h(ω), T (ω), W (ω)) is the random data of the
problem.
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If the space � is finite, say � := {ω1, ..., ωK } with
respective probabilities pk , k = 1, ..., K , then

g(x) =
K∑

k=1

pkG(x, ωk). (3)

Consequently problem (1) can be viewed as a deterministic
optimization problem. Note, however, that the number K
of possible realizations (scenarios) of the data can be very
large. Suppose, for instance, that ω is a random vector with
100 stochastically independent components each having 3
realizations. Then the total number of scenarios is K = 3100.
No computer in a foreseeable future will be able to handle
that number of scenarios.

One can try to solve the optimization problem (1) by a
Monte Carlo simulation. That is, by generating a random
(say iid) sample ω1, ..., ωN ∼ P one can estimate the
expectation g(x) by the corresponding sample average

ĝN (x) := N−1
N∑

j=1

G(x, ω j ). (4)

There are two basic approaches to solving the optimization
problem (1) by using such Monte Carlo sampling approxi-
mations. In one approach the sampling is performed inside
a particular algorithm with a new sample generated at each
iteration of the corresponding numerical procedure. In the
other approach ĝN (x) is considered as a function of x ,
associated with a generated random sample, and the “true"
(expected value) problem (1) is approximated by the opti-
mization problem

min
x∈X

ĝN (x). (5)

It is assumed that for a given ω ∈ �, the function G(·, ω),
and may be its derivatives, is computable at any point
x ∈ X . Therefore, once the random sample is generated,
problem (5) becomes a deterministic optimization problem.
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Required values of the sample average function ĝN (x) can
be calculated either by keeping the generated random sample
in the computer memory or by using the common random
numbers generation. We refer to this approach as the sample
average approximation (SAA) method. Note that the SAA
method is not an algorithm since one still has to choose a
particular numerical procedure in order to solve the SAA
problem (5).

In this talk we discuss various properties of the SAA
method. We argue that in many instances the SAA method
can be very efficient and easily implementable. It is difficult
to point at the origin of that approach. The idea is simple
and natural, and variants of the SAA method were suggested
by various authors over the years. In a context of simulation
models a variant of the SAA method, based on Likelihood
Ratio transformations, was suggested in Rubinstein and
Shapiro (1993). Independently, and more or less at the
same time, similar ideas were employed in Statistics for
computing Maximum Likelihood estimates by Monte Carlo
techniques based on Gibbs sampling, Geyer and Thompson
(1992). Let us also remark that the terminology “sample
average approximation" is not uniform in the literature. For
example, the term “sample-path optimization" was used in
Plambeck, Fu, Robinson and Suri (1996).

2 RATES OF CONVERGENCE

Let us denote by v0 and S0 the optimal value and the set of
optimal solutions, respectively, of the “true" problem (1),
and similarly by v̂N and ŜN the optimal value and the set
of optimal solutions, respectively, of the SAA problem (5).
By the Law of Large Numbers we have that for a given x ,
the sample average ĝN (x) converges to the corresponding
expectation g(x) w.p.1. It is possible then to show that,
under mild regularity conditions, v̂N converges to v0 and
dist(x̂N , S0) converges to zero w.p.1 as N → ∞, for any
x̂N ∈ ŜN . That is, the estimators v̂N and x̂N are consistent.

However, by the Central Limit Theorem, ĝN (x) con-
verges to g(x) at a rate of Op(N−1/2), and therefore the
convergence is slow. That is, in order to improve the ac-
curacy of the estimator ĝN (x) by one digit, one needs to
increase the sample size 100 times. It appears that this slow
convergence is inherited by the estimator v̂N of the optimal
value. It is possible to show (Shapiro, 1991) that

v̂N = min
x∈S0

ĝN (x) + op(N−1/2). (6)

In particular, if S0 = {x0} is a singleton, then v̂N converges
to v0 at the same rate as ĝN (x0) converges to g(x0).

Let us consider an estimator x̂N ∈ ŜN . In the Statistics
literature such estimators are called M-estimators, and it
is well known that under certain regularity conditions, and
in particular if S0 = {x0} is a singleton and the expecta-
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tion function g(x) is smooth near x0, then N1/2(x̂N − x0)

converges in distribution to normal (Huber, 1967). That is,
x̂N converges to x0 also at a rate of the square root of the
sample size. Moreover, in such cases x̂N is asymptotically
equivalent to stochastic approximation estimators imple-
mented with optimal step sizes (Shapiro, 1996) (see, e.g.,
Kushner and Clark (1978) for a discussion of the stochastic
approximation method).

It appears from the above discussion that the SAA
approach inherits the slow convergence properties of the
Monte Carlo sampling method. However, the situation
changes drastically in cases where the expectation function
g(x) is not smooth (differentiable). It happens quite often
in such cases that the true problem (1) has a sharp optimal
solution x0. That is, there exists a constant κ > 0 such that

g(x) ≥ g(x0) + κ ‖x − x0‖ (7)

for all x ∈ X . For example, if G(x, ω) is given by the
optimal value of the linear program (2), then G(·, ω) is a
piecewise linear convex function. If, moreover, � is finite
(i.e., there is a finite number of scenarios), then g(·) is also
piecewise linear and convex. If, further, the set X is defined
by linear constraints and the set S0 of optimal solutions is
nonempty, then the following inequality always holds

g(x) ≥ v0 + κ dist(x, S0) (8)

for all x ∈ X . Of course, property (7) is a particular case
of (8) if S0 = {x0} is a singleton.

The following results are derived in Shapiro and
Homem-de-Mello (2001).

Theorem 2.1 Suppose that � is finite, for every
ω ∈ � the function G(·, ω) is convex piecewise linear, the
set X is polyhedral and the set S0 is nonempty and bounded.
Then the following holds:
(i) w.p.1 for N large enough, the set ŜN of optimal solutions
of the SAA problem is nonempty and ŜN ⊂ S0,
(ii) there exists a constant γ > 0 such that

lim
N→∞

1

N
log P(ŜN �⊂ S0) = −γ. (9)

Property (i) of the above theorem asserts that for N large
enough, any optimal solution x̂N of the SAA problem solves
the “true" problem (1) exactly. Moreover, (9) implies that
the probability of that event approaches one exponentially
fast with increase of the sample size N . If, in addition to the
assumptions of theorem 2.1, the set S0 = {x0} is a singleton,
then for N large enough, the SAA problem has unique
optimal solution x̂N and x̂N = x0, and moreover probability
of that event approaches one exponentially fast. Under
the condition (7) the same holds for a general distribution,
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provided that the corresponding moment generating function
is finite valued near zero.

The exponential rate of convergence indicates that one
may not need a large sample in order to solve polyhedral
problems (as, for example, the linear two-stage problems
with a finite number of scenarios) exactly by using the
SAA method. The exponential constant γ depends on
how well the set of optimal solutions of the true problem
is conditioned. The conditioning of stochastic problems,
from the point of view of the SAA approach, is discussed
in Shapiro, Homem-de-Mello and Kim (2000).

3 COMPLEXITY OF THE SAA METHOD

Suppose now that the feasible set X of the problem (1) is
finite, although may be very large. That is, problem (1) is a
discrete (or integer) stochastic programming problem. One
may still use the same approach by applying an appropriate
numerical algorithm to the SAA problem (5). Suppose
that the SAA problem can be solved with a given accuracy
δ ≥ 0. Denote by Sε the set of ε-optimal solutions of (1),
i.e., x̄ ∈ Sε iff x̄ ∈ X and g(x̄) ≤ v0 + ε. Similarly, denote
by Ŝδ

N the set of δ-optimal solutions of the SAA problem
(5).

Consider a mapping u : X \ Sε → S0 and let

H (x, ω) := G(u(x), ω) − G(x, ω).

Note that since X is finite, the set S0 of optimal solutions of
the true problem is nonempty, and therefore such mapping
u(x) always exists. The following result is due to Kleywegt,
Shapiro and Homem-de-Mello (2000).

Theorem 3.1 Suppose that for every x ∈ X the
moment generating function of H (x, ω) is finite valued in
a neighborhood of zero, and let ε and δ be nonnegative
numbers such that δ ≤ ε. Then there is a constant γ (δ, ε) >

0 such that

P(Ŝδ
N �⊂ Sε) ≤ |X |e−Nγ (δ,ε). (10)

For small ε and δ the above constant γ (δ, ε) can be
estimated as follows

γ (δ, ε) ≥ (ε∗ − δ)2

3σ 2 >
(ε − δ)2

3σ 2 , (11)

where

ε∗ := min
x∈X\Sε

g(x) − v0 (12)

and

σ 2 := max
x∈X\Sε

Var[H (x, ω)]. (13)
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Note that since X is finite, ε∗ is always greater than ε,
although the difference ε∗ − ε can be small.

For ε > δ ≥ 0 and a given significance level α ∈ (0, 1),
the above analysis gives the following estimate of the sample
size N that guarantees that the probability P(Ŝδ

N ⊂ Sε) is
greater than or equal to 1 − α:

N ≥ 3σ 2

d(ε, δ)

(
log |X | − log α

)
, (14)

where

d(ε, δ) := (ε − δ)2.

This estimates shows that the sample size N required to
compute an ε-optimal solution of (1) with a probability at
least 1 − α, by solving the corresponding SAA problem
with accuracy δ, grows as a logarithm of |X |.

Suppose now that X is a bounded (not necessarily finite)
subset of R

n . For a given ν > 0, consider a finite subset
Xν of X such that for any x ∈ X there is x ′ ∈ X satisfying
‖x − x ′‖ ≤ ν. If D is the diameter of the set X , then
such set Xν can be constructed with |Xν | ≤ (D/ν)n . By
reducing the feasible set X to its subset Xν , we obtain the
following estimate of the sample size, required to solve the
reduced problem:

N ≥ 3σ 2

d(ε, δ)

(
n log

D

ν
− log α

)
. (15)

Suppose, further, that the expectation function g(x) is Lip-
schitz continuous on X modulus L. Then an ε-optimal
solution of the reduced problem is an ε′-optimal solution
of problem (1) with ε′ = ε + Lν. By taking

ν := (ε − δ)/(2L)

we obtain the following estimate of the sample size N
required to solve the true problem (1):

N ≥ κ (n log β − log α) , (16)

where

κ := 12σ 2

(ε − δ)2

and

β := 2DL

(ε − δ)2 .

Although the estimates like (14) and (16) typically are too
conservative for practical calculations, they indicate that the
required sample size grows slowly with dimension of the



Shapiro
data. In particular, estimate (16) shows that the required
sample size grows linearly in dimension n of the problem.

One can also solve the SAA problem repeatedly M times
using M independent samples each of size N . Let x̂1

N , ..., x̂ M
N

be optimal solutions of the corresponding SAA problems.
Probability that at least one of x̂m

N , m = 1, ..., M , is an
optimal solution of the true problem is at least 1 − (pN )M ,
where pN := P(ŜN �⊂ S0). By the above exponential bounds
we obtain that if complexity of solving SAA problems grows
faster than at a linear rate in the sample size of the problem,
then it may be advantages to solve a number, say M , of
SAA problems with sample size N each than to solve one
SAA problem with the sample size M N . Similar remark
applies to ε-optimal solutions.
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