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ABSTRACT

This paper discusses some connections between adaptive
Monte Carlo algorithms and general state space Markov
chains. Adaptive algorithms are iterative methods in which
previously generated samples are used to construct a more
efficient sampling distribution at the current iteration. In
this paper, we describe two such adaptive algorithms, one
arising in a finite-horizon computation of expected reward
and the other arising in the context of solving eigenvalue
problems. We then discuss the connection between these
adaptive algorithms and general state space Markov chain
theory, and offer some insights into some of the technical
difficulties that arise in trying to apply the known theory
for general state space chains to such adaptive algorithms.

1 INTRODUCTION

This paper discusses the connection between adaptive Monte
Carlo algorithms and Markov chain theory in general state
space. An adaptive algorithm is basically a learning algo-
rithm which proceeds iteratively by using previously gener-
ated samples to essentially build a current best guess of the
solutions. The current best guess is then used to create a
more effective sample on the current iteration. The hope is
that by learning from previous iterations, such an adaptive
algorithm can obtain faster rates of convergence than those
enjoyed by conventional sampling based algorithms.

As the above informal discussion suggests, such an
algorithm can be viewed as a Markov chain taking values
in a general state space. In particular, the best guess of the
solution at the next iteration is basically just a (complicated)
function of the current best guess and the newly generated
sample that is required for the next iteration. This suggests
that the sequence of best guesses is Markovian. Of course,
the space required to describe the current best guess generally
needs to be continuous. Consequently , the Markov chain
of best guesses is a general state space chain
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This paper is organized as follows. In Section 2,
we discuss an adaptive algorithm for computing expected
reward to absorption in the finite state Markov chain setting.
Section 3 describes a new adaptive algorithm for solving
eigenvalue problems for non-negative matrices. Finally,
Section 4 discusses our two examples through the prism of
general state space Markov chain theory. In particular, we
show that much of the standard tool-set that is available for
the analysis of general state space chains is inapplicable to
the class of chains that arise in the adaptive Monte Carlo
context. This means that one must work hard to create
specific techniques that can handle the chains that arise in
the adaptive context; see Kollman et al. (1996) and Desai
(2001) for more discussion of the specific tool-set that is
effective in analyzing such algorithms.

2 AN ADAPTIVE ALGORITHM FOR COMPUTING
EXPECTED REWARD TO ABSORPTION

Suppose that Y = {Yn : n ≥ 0} is a Markov chain taking
values in a finite state space S and possessing a transition
matrix P̃ = (P̃(x, y) : x, y ∈ S). For a non-empty target set
Bc ⊆ S and a nonnegative real-valued function f : S → R,
consider the random variable

R =
T −1∑
n=0

f (Yn),

where T = inf{n ≥ 0 : Yn ∈ Bc} is the first hitting time of
Bc. If we interpret f (x) as the reward earned by spending
one unit of time in x ∈ S, then R is the cumulative reward
accumulated by Y up to absorption in the set Bc

For x ∈ S, let u∗(x) = Ẽx R, where Ẽx(·) is the
expectation operator on the path-space of Y under which
Y0 = x . It is well known that (u∗(x) : x ∈ S) is the minimal
non-negative solution to the linear system of equations

u = f + P̃u (1)
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subject to the boundary condition u(x) = 0 for x ∈ Bc.
The conventional Monte-Carlo algorithm for computing

u∗(x) involves simulating the Markov chain Y , conditional
on Y0 = x , up to the random time T . From such a simulation,
R can be computed. By independently replicating this
experiment n independent and identically distributed (iid)
times, we obtain iid copies R1, R2, . . . , Rn of the random
variable R. The quantity u∗(x) can then be estimated via
the sample mean of the Ri ’s. We now describe an ingenious
adaptive algorithm for computing u∗ that is due to Booth
(1985) and has been analyzed by Kollman et al. (1996).
Let u = (u(x) : x ∈ B) be our current best guess of the
solution. (Note that u∗(x) = 0 for x ∈ Bc, so only those
components of u∗ corresponding to B need to be computed.)
We will use u to construct an importance distribution that
will drive our sampling of the chain on the next iteration.

Given a current (non-negative) guess u, we let Q(u) =
(Q(x, y, u) : x, y ∈ S)be the transition matrix given by

Q(x, y, u) =




P̃(x,y)( f (x)+u(y))
N(x)

, x ∈ B, y ∈ B
P̃(x,y)
N(x)

, x ∈ B, y ∈ Bc

P̃(x, y), x ∈ Bc, y ∈ S

(2)

where N(x) is the normalization factor given by

N(x) =
∑
y∈B

P̃(x, y)( f (x) + u(y)) +
∑
y∈Bc

P̃(x, y) f (x).

(3)
Rather than simulating Y up to time T using the original

dynamics associated with P̃ , we instead simulate Y up to
time T using the transition matrix Q(u), and adjust the
simulation output using the appropriate likelihood ratio (see
Glynn and Iglehart (1989) for background on importance
sampling):

R̃ =
T −1∑
n=0

f (Yn)

n−1∏
i=0

P̃(Yi , Yi+1)

Q(Yi , Yi+1, u)
. (4)

By replicating R̃ k iid times, conditional on Y0 = x , we
can estimate u∗(x) via the corresponding sample mean. By
repeating this process for each x ∈ B , we obtain an estimator
for the entire solution vector u∗ = (u∗(x) : x ∈ B). This
estimator for u∗ can be used to compute the transition
matrix Q(u) for the next iteration of the algorithm.

This best guess at iteration n is the estimator of u∗
obtained at that iteration. Let Xn be the estimator at iteration
n. Note that Xn ∈ R

d+, where d is the number of states in
B . It is clear intuitively (and easily proved rigorously) that
X = (Xn : n ≥ 0) is a (time-homogeneous) Markov chain.
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Obviously, the goal in designing such an algorithm is
that Xn converges to u∗ as n → ∞. If such a convergence
is to occur, it seems reasonable to expect that the solution
u∗ = (u∗(x) : x ∈ B) is an absorbing point for X .

Proposition 1. Suppose P̃ is irreducible. Then, if X0 = u∗,
it follows that X1 = u∗ a.s.

Proof The irreducibility of P̃ ensures that u∗ is finite-
valued. Note that if u = u∗, then the normalization factor
N(x) appearing in the definition of Q(u∗) can be written
as

N(x) = f (x)
∑
y∈S

P̃(x, y) +
∑
y∈Bc

P̃(x, y)u∗(y)

= f (x) +
∑
y∈Bc

P̃(x, y)u∗(y)

= u∗(x)

for x ∈ B . Consequently, R̃ takes the form

R̃ =
T −1∑
n=0

f (Yn)

n∏
i=0

u∗(Yi )

f (Yi ) + u∗(Yi+1)
.

The proposition follows if we can show that R̃ = u∗(Y0)

a.s. We prove this by induction on the length T of the path.
Note that if T = 1, then

R̃ = f (Y0) · u∗(Y0)

f (Y0) + u∗(Y1)
. (5)

But, if T = 1, then Y1 ∈ Bc and u∗(Y1) = 0, proving that
R̃ = u∗(Y0).

Suppose that the result is correct for all paths of length
less than or equal to n. If T = n + 1, then

R̃ = f (Y0)
u∗(Y0)

f (Y0) + u∗(Y1)

+ u∗(Y0)

f (Y0) + u∗(Y1)

T̃ −1∑
j=0

f (Y1+ j )

j∏
i=0

u∗(Y1+i )

f (Y1+i ) + u∗(Y1+i+1)

where T̃ = inf{n ≥ 0 : Y1+n ∈ Bc}. If T = n + 1, then
T̃ = n and the induction hypothesis guarantees that

R̃ = f (Y0)
u∗(Y0)

f (Y0) + u∗(Y1)
+ u∗(Y0)

f (Y0) + u∗(Y1)
· u∗(Y1),

(6)
from which we may conclude that R̃ = u∗(Y0).

Consequently, the Markov chain X has the property
that the solution vector u∗ is a fixed point of the algorithm.



Desai and Glynn
3 AN ADAPTIVE ALGORITHM FOR MONTE
CARLO SOLUTION OF EIGENVALUE
PROBLEMS

Let G = (G(x, y) : x, y ∈ S) be a finite non-negative
irreducible matrix. The Perron-Frobenius theorem (see, for
example, Chapter 1 of Seneta (1973)) then guarantees the
existence of a unique strictly positive eigenvalue λ and a
corresponding strictly positive column eigenvector u∗ such
that

Gu∗ = λu∗. (7)

The eigenvalue problem associated with G involves
solving for λ and u∗ . Such eigenvalue problems arise in
many different application settings; (see Chapter 1 of Desai
(2001)).

We will now describe an adaptive Monte Carlo algorithm
for solving such eigenvalue problems; a complete discussion
can be found in Desai and Glynn (2001). We start by
describing a probabilistic representation for λ and u∗ that
can be found in Glynn (1996). We assume, without loss
of generality, that G has been normalized so as to be
substochastic. We expand the state space S to S̃ = S

⋃{�}
where � is a cemetery state not in S, and let P̃ = (P̃(x, y) :
x, y ∈ S̃) be the stochastic matrix with entries

P̃(x, y) =



G(x, y), x, y ∈ S
1 − ∑

y∈S G(x, y), x ∈ S, y = �

1, x = y = �.

Let Y = (Yn : n ≥ 0) be the S̃-valued Markov chain
having transition matrix P̃ . Select a return state z ∈ S,
and let τ = inf{n ≥ 1 : Yn = z} be the first time Y enters
z. Also, let T = inf{n ≥ 0 : Yn = �} be the first hitting
time of �. As in Section 2, let Ẽx(·) be the expectation
operator on the path-space of Y under which Y0 = x . For
x ∈ S and β > 0, put

v(x) = Ẽxβ
−τ I(τ < T ), (8)

where I(A) is an indicator random variable that is one or zero
depending upon whether or not A occurs. By conditioning
on Y1, we find that for x ∈ S,

v(x) = β−1
∑
y �=z

G(x, y)v(y) + β−1G(x, x). (9)

Suppose we select β∗ so that

v(z) = Ẽzβ
−τ∗ I(τ < T ) = 1. (10)
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Then, equation (9) may be written as

v(x) = β−1∗
∑

y

G(x, y)v(y)

or, equivalently,

β∗v = Gv.

In other words, if β∗is the root of equation (10), then
necessarily β∗ = λ and v = u∗. Consequently, equations
(8) and (10) together provide a probabilistic representation
of the solution of our eigenvalue problem.

We now turn to describing an adaptive Monte Carlo
algorithm that takes advantage of this representation. As
in Section 2, the algorithm involves use of importance
sampling. In particular, given a current strictly positive best
guess u for the eigenvector u∗, let Q(u) = (Q(x, y, u) :
x, y ∈ S̃) be the transition matrix with the entries given by

Q(x, y, u) =
{

P(x,y)u(y)∑
x∈S P(x,z)u(z), x, y ∈ S

1, x = y = �.
(11)

Rather than simulate Y under the dynamics of P̃ , we instead

simulate Y up to T ∧ τ (
	= min(T, τ )) using the transition

matrix Q(u) and adjust the simulation output using the
appropriate likelihood ratio:

R̃(β) = β−τ I(τ < T )

τ−1∏
i=1

P(Yi , Yi+1)

Q(Yi , Yi+1, u)
.

By replicating R̃(β) k iid times, conditional on Y0 = x ,

we can estimate vβ(x)
	= Ẽxβ

−τ I(τ < T ) via the corre-
sponding sample mean. In particular for x = z, we can
compute the empirical root λn to estimate the root λ sat-
isfying Ẽzλ

−τ I(τ < T ) = 1. Having obtained λn we can
then simulate R̃(λn) for each of the other states x �= z
in S, so that the R̃(λn)’s are (conditional on λn) unbiased
estimators for vλn (x), x ∈ S. These estimators then form
our best guess of the eigenvector u∗ for the next iteration
of the algorithm.

As in Section 2, the sequence of best guesses X =
(Xn : n ≥ 0) is a general state space Markov chain. The
state space of X is the space in which the candidate best
guess solutions live, namely R

d+ (where d is the number of
states in S).

Again, as in Section 2, one hopes that Xn converges to
u∗ as n → ∞ and that u∗ is a fixed point of the algorithm.

Proposition 2. Suppose that u∗ is the unique eigenvector
solving the eigenvalue problem for which u∗(z) = 1. Then,
if X0 = u∗, it follows that X1 = u∗ a.s.
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Proof If X0 = u∗ (with u∗(z) = 1), then∑
z∈S P(x, z)u∗(z) = λu∗(x) for x ∈ S. Consequently,

Q(x, y, u∗) = (P(x, y)u∗(y))/(λu∗(x)) for x, y ∈ S. Not-
ing that T < τ is impossible under Q(u∗), it follows that

R̃(β) = β−τ I(τ < T )

τ−1∏
i=0

P(Yi , Yi+1)

Q(Yi , Yi+1, u∗)

= β−τ

τ−1∏
i=0

(
λu∗(Yi )

u∗(Yi+1)
)

= (β/λ)−τ u∗(Y0)/u∗(Yτ )

= (β/λ)−τ u∗(Y0)/u∗(z)
= (β/λ)−τ u∗(Y0).

Since u∗(z) = 1, the empirical root λn estimated by
simulating Y under Q(u∗) with initial condition Y0 = z
will equal λ a.s. Thus, the random variables

R̃(λn) = (λn/λ)−τ u∗(Y0)

= u∗(Y0)

generated under Q(u∗) for all the other initial states x ∈ S
will also almost surely equal u∗(Y0), proving that the next
best guess X1 will again equal u∗.

Thus, our second adaptive algorithm again has the
characteristic that the desired solution u∗ is a fixed point
of the corresponding general state space Markov chain X .

4 A MARKOV CHAIN PERSPECTIVE

In Sections 2 and 3, we provided two examples of adaptive
algorithms in which the algorithmic progress, as a function
of the iteration count, can be viewed as a general state space
Markov chain X = (Xn : n ≥ 0). In addition, we showed
that for both examples, the desired solution u∗ is a fixed
point of the chain X .

Typically, in discussing the long-run behavior of a
Markov chain, the key concept is that of a stationary distri-
bution or steady-state distribution. However, the notion of a
fixed point is easily expressed in terms of such distributions.
In particular, asserting that u∗ is a fixed point for X (in
the sense that if X0 = u∗, then X1 = u∗) is equivalent to
requiring that δu∗ be a stationary distribution for X , where
δx is a unit point mass distribution at x . Thus, the chains X
that typically arise in the analysis of adaptive Monte Carlo
algorithms have the interesting (and unusual) property that
they possess deterministic stationary distributions.

Given that δu∗ is the stationary distribution for X , we
can now proceed to hypothesize the likely implications for
the chain. In substantial generality, nicely behaved general
state space Markov chains are aperiodic and geometrically
ergodic; see Chapter 15 of Meyn and Tweedie (1993) for
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details. In particular, if π is the associated stationary
distribution for X and if Px (·) is the probability on the
path-space of X under which X0 = x , then such chains
have the characteristic that there exists ρ ∈ (0, 1) and a > 0
such that

‖Px (Xn ∈ ·) − π(·)‖ ≤ aρn

for n ≥ 1, where ‖·‖ is the so-called total variation norm on
the space of probabilities. (See Meyn and Tweedie (1993)
for the definition.) In our current setting, the stationary
distribution is the probability δu∗ , so this suggests that we
can reasonably expect

‖Px (Xn ∈ ·) − δu∗(·)‖ ≤ aρn (12)

to hold for n ≥ 1. The relation (12) states that the distribution
of Xn converges to a point mass at u∗at a geometrically
fast rate as n → ∞.

This conclusion is very suggestive of what is cur-
rently known about adaptive algorithms. Specifically both
Kollman et al. (1996) and Desai (2001) have shown that
their respective algorithms generate a sequence of Xn’s that
converge almost surely to u∗ at a geometric rate. As a
consequence, one might reasonably expect that a natural
approach to establishing such geometric convergence results
is to verify the geometric ergodicity of X , and to then invoke
the general theory that is known for such chains.

Unfortunately, while such an approach seems reason-
able, it cannot be applied to the chains that arise from the
analysis of adaptive algorithms. The problem is that the
Markov chain X is essentially never geometrically ergodic.
In fact, such chains are essentially never Harris recurrent.
This notion of recurrence, which we shall discuss further
momentarily, is much more general than that of geometric
ergodicity. Thus, the almost sure exponential convergence
verified by Kollman et al. (1996) and Desai (2001) must be
established via very different methods of proof. The need
to look for alternative proof methods in analyzing adaptive
algorithms is one of the main messages of the current paper.

Definition 4.1. A R
d+-valued Markov chain X = (Xn : n ≥

0) is said to be Harris recurrent if there exists a set A, a
positive number λ, an integer m > 1, and a probability ϕ

such that:

1. Px(Xn ∈ A infinitely often) = 1 for x ∈ R
d+;

2. Px(Xm ∈ ·) ≥ λϕ(·) for x ∈ A.

If such a Harris recurrent Markov chain X has a sta-
tionary distribution π , it must be that for x ∈ R

d+,

‖n−1
n−1∑
j=0

Px (X j ∈ ·) − π(·)‖ → 0
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as n → ∞; see Meyn and Tweedie (1993). In particular,
if π = δu∗ , then

n−1
n−1∑
j=0

Px (X j = u∗) → 1 (13)

as n → ∞. Let 	 = inf{n ≥ 0 : Xn = u∗}. Relation (13)
implies that Px (	 < ∞) = 1 for x ∈ R

d+, so that u∗ is
visited in finite time by X . Of course, once u∗ is visited,
X remains in u∗. Thus, if the chain X is Harris recurrent,
evidently the associated adaptive algorithm converges to the
exact solution u∗ in a finite number of iterations. Intuitively,
however, it seems clear that such adaptive algorithms only
converge to u∗ in the limit.

To verify rigorously that X is not Harris recurrent on
R

d+, note that the support of X1 is a countably infinite
discrete set D1(x), depending on the initial state X0 = x .
If D∞(x) is the union (over n ∈ {1, 2, . . .}) of the supports
of the random vectors Xn , D∞(x) is also a countably infinite
set. If Px (	 < ∞) = 1 for x ∈ R

d+, then u∗ ∈ D∞(x)

for x ∈ R
d+. But it is easily seen that there exist distinct

points x1, x2 ∈ R
d+ for which D∞(x1) and D∞(x2) are

disjoint. This contradiction implies that X can not be a
Harris recurrent chain.

Given that the chain X is not Harris recurrent, it is natural
to search for alternative proof techniques for establishing
the desired almost sure convergence of Xn to u∗. We now
discuss one such alternative.

By using Lyapunov function methods, one might hope
that one could establish that X visits every ε-neighborhood
of u∗ almost surely infinitely often; see Appendix B of Meyn
and Tweedie (1993) for details on Lyapunov functions and
their applicability to such a problem. Furthermore, u∗ is a
fixed point for the chain X . It therefore appears reasonable
to expect that if the transition dynamics of X are suitably
continuous in a neighborhood of u∗, then X should converge
to u∗.

Definition 4.2. A R
d+-valued Markov chain X = (Xn : n ≥

0) is said to be weakly continuous if Pxn (X1 ∈ ·) =⇒
Px (X1 ∈ ·) whenever xn → x ∈ R

d+ (where =⇒ denotes
weak convergence).

In other words, we would like to conclude that if
X = (Xn : n ≥ 0) is a weakly continuous Markov chain on
R

d+ for which Px(| Xn − u∗ |< ε infinitely often) = 1 for
x ∈ R

d+ with δu∗ a stationary distribution, then Xn → u∗
a.s. as n → ∞. Unfortunately, as we shall see in the
example below, this conclusion is invalid in general. Thus,
we again conclude that different tools are needed to establish
convergence for such algorithms.
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Example 1
Consider the Markov chain X = (Xn : n ≥ 0) on [0,∞)

with the following transition structure:

Px (X1 ∈ ·) = (1 − p(x))δx/2(·) + p(x)δ1(·)

for x > 0, and

P0(X1 ∈ ·) = δ0(·).
Assume that 0 ≤ p(x) ≤ 1 and that p(·) is continuous on
[0,∞) with p(0) = 0. Then, δ0 is a stationary distribution
for X and X is weakly continuous on R

d+.
Suppose X visits 1 infinitely often. On such sample

paths, Xn → 0 a.s. as n → ∞, so that X visits each ε-
neighborhood of the origin. On the other hand, for ε > 0,
there exists n = n(ε) such that 2−n < ε, so that P1(Xn <

ε) > 0. If X visits 1 infinitely often, a geometric trials
argument therefore establishes that X will eventually visit
the ε-neighborhood. It follows that for each initial state
x ∈ R+, X visits the ε-neighborhood of the origin infinitely
often.

We now show that Xn fails to converge to 0 a.s. as
n → ∞. To see this, we apply the conditional Borel-Cantelli
lemma (p. 323 of Doob (1953)). Note that the condi-
tional Borel-Cantelli lemma ensures that

∑∞
n=1 I(Xn = 1)

converges/diverges on precisely the same set of sam-
ple outcomes as does

∑∞
n=1 Px (Xn = 1 | Xn−1). But∑∞

n=1 I(Xn = 1) < ∞ implies that L, the last time at
which X visits 1, is finite. Also,

∞∑
n=1

Px (Xn = 1 | Xn−1) ≥
∞∑

n=L

Px (Xn = 1 | Xn−1)

=
∞∑

n=0

p(2−n X L).

So, if we choose p(·) so that p(x) ↓ 0 with x ↓ 0 in such
a way that

∑∞
n=0 p(2−n) = ∞ (e.g. p(2− j ) = 1/j ), the

latter sum diverges and it follows that Px (Xn = 1 | Xn−1) is
diverging on a set of outcomes on which

∑∞
n=1 I(Xn = 1)

is converging. This contradiction of the conditional Borel-
Cantelli lemma forces us to conclude that

∑∞
n=1 I(Xn =

1) = ∞ a.s. Hence, we conclude that Xn does not converge
almost surely to zero.

The above counterexample shows that our proposed
proof technique fails. This example illustrates the need
for the set of special tools developed in Kollman et al.
(1996) and Desai (2001) to analyze adaptive Monte Carlo
algorithms. The reader is referred to those works for a full
exposition of the theory.
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