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ABSTRACT

Providing accurate and automated input modeling support is
one of the challenging problems in the application of com-
puter simulation. In this paper, we present a general-purpose
input-modeling tool for representing, fitting, and generating
random variates from multivariate input processes to drive
computer simulations. We explain the theory underlying
the suggested data fitting and data generation techniques,
and demonstrate that our framework fits models accurately
to both univariate and multivariate input processes.

1 INTRODUCTION

Building a large-scale discrete-event stochastic simulation
model may require the development of a large number of,
possibly multivariate, input models. Development of these
models is facilitated by accurate and automated (or nearly
automated) input modeling support. Typical examples from
manufacturing and service applications include the process-
ing times of a workpiece across several work-centers, the
medical characteristics of organ-transplant donors and re-
cipients, and the times between arrivals of calls to a call
center. We believe that the ability of an input model to
represent the uncertainty in these phenomena is essential
because even the most detailed logical model combined with
a sound experimental design and thorough output analysis
cannot compensate for inaccurate or irrelevant input models.

Interest among researchers and practitioners in model-
ing and generating input processes for stochastic simulation
has led to commercial development of a number of input
modeling packages, including ExpertFit (Averill M. Law
and Associates, Inc.), the Arena Input Processor (Rockwell
Software Inc.), Stat::Fit (Geer Mountain Software Corpora-
tion), and BestFit (Palisade Corporation). The input models
incorporated in these packages sometimes fall short of what
is needed because they emphasize good representations for
the marginal distributions of independent and identically
distributed (i.i.d.) processes. However, dependent and mul-
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tivariate time-series input processes occur naturally in the
simulation of many service, communications, and manufac-
turing systems (e.g., Melamed, Hill, and Goldsman 1992,
Ware, Page, and Nelson 1998). Ignoring dependence can
lead to performance measures that are seriously in error and
a significant distortion of the simulated system.

The approach that the input modeling packages typi-
cally take for modeling the marginal distribution of i.i.d.
data is to exhaustively fit and evaluate the fit of standard
families of distributions (e.g., beta, Erlang, exponential,
gamma, lognormal, normal, Poisson, triangular, uniform,
Weibull, etc.), and then recommend as the input model the
one with the best summary measures. However, the lim-
ited shapes represented by these distributions may not be
flexible enough to represent some of the characteristics of
the observed data or some known properties of the process
that generated the data. Consequently, these input modeling
packages are improved by expanding the list of distribu-
tions. Unfortunately, if the same philosophy is applied to
modeling dependence, then the list of candidate multivariate
distributions quickly explodes as we consider all possible
combinations of the available marginal distributions.

The classical evaluation of a distribution fit is based
on the hypothesis that there is a true, correct model among
the list of candidates. In most simulation applications, the
mechanisms generating real data of interest do not yield
samples from any of the theoretical distributions under
consideration, so the basic premise is false. A perfect
goodness-of-fit test would, correctly, reject all candidates
on the list. Therefore, we adopt the position that searching
among a list of input models for the “true, correct" model
is neither a theoretically supportable nor practically useful
paradigm upon which to base general-purpose input model-
ing tools. Instead, we view input modeling as customizing
a highly flexible model that can capture the important fea-
tures present in data, while being easy to use, adjust, and
understand. Thus, we propose to develop a single, but very
general, input model, rather than a long list of more spe-
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cialized models, by using a comprehensive input-modeling
framework that can accomplish the following:

• Represent stationary multivariate time-series pro-
cesses in such a way that univariate i.i.d. pro-
cesses, stationary univariate time-series processes,
and finite-dimensional random vectors are special
cases of our model.

• Fit an input model to dependent and multivariate
data via automated and statistically valid algo-
rithms.

• Generate realizations of these input processes
quickly and accurately in order to drive computer
simulations.

• Develop a stand-alone, PC-based program that im-
plements this framework for fitting and simulating
input processes and generates random variates that
can be read into any simulation.

Currently, we have a model for representing station-
ary multivariate time-series input processes with arbitrary
autocorrelation structures and marginal distributions from
the Johnson family. In Section 2, we give a brief overview
of this model and refer the reader to Deler and Nelson
(2001a) for details of the work completed to date. In the
remainder of the paper, we address the problem of fitting
input models to dependent and multivariate data. Section 3
provides a procedure for fitting models to univariate time-
series data, and then discusses how to extend this procedure
to fit models to multivariate time-series data. Section 4
presents computational results demonstrating the suggested
algorithms. We give concluding remarks, together with the
expected impact of this study, in Section 5.

2 OVERVIEW OF THE VARTA
FRAMEWORK

We provide an input modeling framework for multivariate
time-series processes with continuous marginal distributions
by using a highly flexible model to capture the important
features present in data. We achieve flexibility by com-
bining Gaussian vector autoregressive processes and the
Johnson family of distributions to characterize the pro-
cess dependence and marginal distributions, respectively.
Specifically, our framework is based on the ability to rep-
resent, fit, and generate random variates from a station-
ary k-variate vector time series {Xt ; t = 1, 2, . . .}, where
Xt = (X1,t , X2,t , . . . , Xk,t )

′ is a (k × 1) random vector of
the observations recorded at time t . We do this by construct-
ing a standard Gaussian vector autoregressive base process
Zt and transforming it to the desired multivariate input
process Xt . To achieve the target autocorrelation structure
of the input process we adjust the autocorrelation structure
of the base process. The ability of the Gaussian vector
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autoregressive base process to characterize dependencies in
time sequence and with respect to other component series
in the input process brings a significant flexibility to our
framework.

In this paper, we are particularly interested in input
modeling problems in which data are plentiful and nearly
automated input modeling is required. Consequently, we
use a member of the Johnson translation system of dis-
tributions to characterize the marginal distribution of each
component series (Johnson 1949 and the Appendix). Our
motivation for using the Johnson system is practical, rather
than theoretical: In many applications, simulation output
performance measures are insensitive to the specific input
distribution chosen provided that enough moments of the
distribution are correct (see, for instance, Gross and Juttiju-
data 1997). The Johnson system can match any feasible first
four moments, while the standard families incorporated in
existing software packages and simulation languages often
match only one or two moments. Thus, the Johnson system
enables us to represent key features of the data at hand,
as opposed to finding the “true” distribution that was the
source of the data.

To define our framework, let {Zi,t ; t = 1, 2, . . .} be
the i th component series of Zt , the k-variate Gaussian
autoregressive base process of order p (denoted VARk(p))
with the representation

Zt =
p∑

h=1

αhZt−h + ut

(Lutkepohl 1993). The αh , h = 1, 2, . . . , p, are fixed
(k × k) autoregressive coefficient matrices and ut =
(u1,t , u2,t , . . . , uk,t )

′ is a k-dimensional white noise vector,
representing that part of Zt that is not linearly dependent
on past observations. The structure of ut is such that

E[ut ] = 0(k×1) and E[ut u′
t+h] =

{
�u if h = 0,
0(k×k) otherwise.

Choosing �u appropriately ensures that each Zi,t is
marginally standard normal.

Now let {Xi,t ; t = 1, 2, . . .} denote the i th component
time series of the desired input process, for i = 1, 2, . . . , k.
In our framework, each of these univariate series has
a Johnson marginal distribution. We reflect the desired
dependence structure within and across series via Pear-
son product-moment correlations, denoted as ρX(i, j, h) ≡
Corr[Xi,t , X j,t+h], for h = 0, 1, 2, . . . , p. The i th time se-
ries is obtained via the transformation Xi,t = F−1

Xi
[�(Zi,t )],

where FXi is the Johnson-type cumulative distribution func-
tion (cdf) suggested for the i th component series of the input
process and �(·) is the standard normal cdf. Notice that
if k = 1, then this representation defines a univariate time-
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series process; and if k > 1 but p = 0, then it defines a
finite-dimensional random vector.

We refer to processes constructed in this way as hav-
ing a VARTA (Vector-Autoregressive-To-Anything) distri-
bution. To employ VARTA distributions we are required
to match the desired correlation structure of the input pro-
cess by manipulating the correlation structure of the Gaus-
sian vector autoregressive base process. Deler and Nelson
(2001a) suggest a way of selecting the correlation struc-
ture of the base process, ρZ(i, j, h), i, j = 1, 2, . . . , k and
h = 0, 1, 2, . . . , p (except the case i = j and h = 0),
by solving correlation matching problems of the following
form: Let ρ = ρZ(i, j, h) for convenience; then we need
to find ρ such that

ci jh [ρ] =∫∞
−∞

∫∞
−∞ F−1

Xi
[�(zi )]F−1

X j
[�(z j )]ϑρ(zi ,z j )dzi dz j −µi µ j

σiσ j

= ρX(i, j, h)

where ϑρ(·) is the standard bivariate normal probabil-
ity density function with correlation ρ, µi = E[Xi,t ],
µ j = E[X j,t+h], σ 2

i = Var[Xi,t ], and σ 2
j = Var[X j,t+h].

The reason that solving these correlation matching problems
is sufficient is that the correlation between Xi,t and X j,t+h

is a function only of the correlation between Zi,t and Z j,t+h ,
which appears in the expression for ϑρ(·). Thus, the prob-
lem of adjusting the correlation structure of the VARk(p)

base process decomposes into pk2 + k(k − 1)/2 individual
correlation matching problems in which we try to find the
value ρZ(i, j, h) that makes ci jh [ρZ(i, j, h)] = ρX(i, j, h).

To summarize, the development of the VARTA frame-
work has two major challenges. The first one is solving
pk2 + k(k −1)/2 correlation matching problems, for which
Deler and Nelson (2001a) suggest a computationally feasible
method. The second challenge is fitting k Johnson marginals
to k-variate time-series data; we address this problem in
the remainder of the paper.

3 FITTING VARTA MODELS

Input modeling packages, whether they are targeted for the
simulation community or not, contain data fitting routines
for the standard families of distributions. However, these
routines typically assume i.i.d. data and they often use
maximum likelihood estimators (MLEs) for the parameters
of the distributions they fit. Unfortunately, these estimators
are no longer the MLEs when the data are dependent; the
true MLEs depend on the specification of the entire joint
distribution of the process, a specification that is usually
difficult to supply.

A robust method for fitting target distributions from
Johnson’s translation system to i.i.d. data is suggested by
Swain, Venkatraman, and Wilson (1988) and implemented
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in software called FITTR1. They demonstrate the robustness
and computational efficiency of least-squares, minimum L1
norm, and minimum L∞ norm techniques for estimating
Johnson marginals, suggesting that similar techniques can
be effectively adapted to fitting VARTA models to dependent
and multivariate data. We outline our adaptation below.

Let {xi,t ; i = 1, 2, . . . , k; t = 1, 2, . . . , n} denote
a sample from a stationary multivariate time-series input
process. Our objective is to estimate the parameters of
the Johnson marginals, λi , δi , γi , ξi , i = 1, 2, . . . , k, and
VARk(p) base process, α1,α2, . . . ,α p, and �u , so that
a VARTA process provides an accurate representation of
the input process. For ease of presenting the data fitting
procedure below, we assume that the order of the underly-
ing base process, p, and the types of Johnson marginals,
FXi , i = 1, 2, . . . , k, are known. Clearly, these also need
to be determined in general. First we present a two-stage
algorithm developed particularly for a univariate time-series
input process and then discuss how to extend it to a mul-
tivariate time-series input process, which is more general
and difficult.

3.1 The Univariate Case

Given a sample {xt; t = 1, 2, . . . , n} from a univariate input
process, we would like to determine the parameters of the
Johnson marginal F , λ, δ, γ, ξ , and the system parameters
of the base process, α1, α2, . . . , αp and σu , such that the
following model is a good fit:

Xt = F−1
[
�−1(Zt )

]
= ξ + λ f −1

[
Zt − γ

δ

]

where the base process is given by

Zt =
p∑

h=1

αh Zt−h + ut with ut/σu
i.i.d .∼ N(0, 1).

The central idea is that if we have all of the parameter
values correct, then

ut = zt −
p∑

h=1

αh zt−h =

γ + δ f
[

xt−ξ
λ

]
−∑p

h=1 αh

(
γ + δ f

[
xt−h−ξ

λ

])
(1)

for t = p + 1, p + 2, . . . , n, will appear to be inde-
pendent and identically distributed N(0, σ 2

u ) random
variables. We work iteratively between improving the esti-
mates of

(
α1, α2, . . . , αp, σu

)
and of (γ, δ, λ, ξ), as follows:
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Stage 0 The objective is to obtain starting values
for the parameters of the Johnson marginal. We let
x(1) ≤ x(2) ≤ · · · ≤ x(n) denote the order statistics based
on the given sample and solve the following diagonally-
weighted least-squares (DWLS) problem suggested by
Swain, Venkatraman, and Wilson (1988):

minimize
γ, δ, λ, ξ

n∑
t=1

(
�
{
γ + δ f

[
x(t)−ξ

λ

]}
− t

n+1

)2

t (n+1−t)
(n+1)2(n+2)

subject to δ > 0

λ

{
> 0, for SU ,
> x(n) − ξ, for SB ,
= 1, for SL and SN .

ξ

{
< x(1), for SL and SB ,
= 0, for SN .

(2)

Stage 1 Keeping the estimates for the parameters of the
Johnson marginal, γ̂ , δ̂, λ̂, ξ̂ , fixed, we find the conditional
least-squares estimators for the autoregressive coefficients
of the base process, α1, . . . , αp , and the residual variance,
σ 2

u , by minimizing
∑n

t=p+1 u2
t , where ut is defined in (1).

In order to ensure a stationary base process, we require the
roots of 1 − α1 B − α2 B2 − · · · − αp B p = 0 to lie outside
the unit circle (Lutkepohl 1993), where B is the backshift
operator.
Stage 2 Keeping the estimates for the system parameters
of the base process, α̂1, . . . , α̂p, σ̂u , fixed, we solve the
following conditional DWLS problem for the parameters of
the Johnson marginal distribution:

minimize
γ, δ, λ, ξ

n∑
t=p+1

(
�
{

u(t)
σ̂u

}
− t

n+1

)2

t (n+1−t)
(n+1)2(n+2)

subject to (2)

(3)

where u(p+1), u(p+2), . . . , u(n) are the order statistics of
the residuals (1). If the fit has improved significantly
since the last iteration, then go to Stage 1; else, stop the
procedure and report the result.

We now briefly explain each stage of the procedure:
Stage 0 performs least-squares fitting, as suggested by Swain,
Venkatraman, and Wilson (1988), by treating the given
sample points as independent. If the model is correct, then
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the transformed random variate �
{
γ + δ f [(x(t) − ξ)/λ]},

which is equivalent to F[x(t)], has the distribution of the
t th uniform order statistic—that is, the smallest observation
in a random sample of size n from the uniform distribution
on the unit interval (0,1); thus, its mean and variance are
given by t/(n + 1) and t (n + 1 − t)/

(
(n + 1)2(n + 2)

)
,

respectively (Kendall and Stuart 1979). The fitting is based
on minimizing the quadratic distance between the parametric
approximation of the transformed random variate to the
uniformized order statistics and the corresponding expected
value. We also incorporate a diagonal weight matrix, whose
diagonal entries are reciprocals of the variances of the
uniform order statistics, into the corresponding objective
function. Motivation comes from the discussion in Kuhl
and Wilson (1999) on the performance of the weighted
least-squares and the ordinary least-squares procedures, and
also the empirical evidence supporting the superiority of
the DWLS fitting procedure (particularly for the Johnson
translation system) to the fits based on the conventional
weighted least-squares procedures (Swain, Venkatraman,
and Wilson 1988).

Stage 1 estimates the autoregressive coefficients,
α1, α2, . . . , αp , and the residual variance, σ 2

u , which im-
ply a stationary autoregressive process. Asymptotically, the
least-squares estimators fall into the stability region of the
corresponding base process. However, we have observed
that whether or not the least-squares estimators correspond
to a stationary process depends on the sample size, n. There-
fore, we carry out this stage in such a way that it always
ensures stationarity of the underlying base process.

In Stage 2, we solve the DWLS procedure to estimate the
parameters of the Johnson distribution of the input process.
The formulation (3) is based on the fact that if the model
is correct, then ut/σu forms a sequence of independent and
identically distributed standard normal random variables.

3.2 The Multivariate Case

With multivariate time-series data, the fitting process is
complicated by the need to compute not only the serial
dependence within the component series, but also the
interdependence among the component series. Below, we
briefly discuss how to extend the procedure in Section 3.1
to the multivariate case:

Stage 0 We obtain starting values for the parameters of the
Johnson marginals by implementing Stage 0 of the univariate
procedure for each component series. For i = 1, 2, . . . , k,
we let xi,(1) ≤ xi,(2) ≤ · · · ≤ xi,(n) denote the order statistics
based on the sample given for the i th component series and
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solve the following DWLS problem:

minimize
γi , δi , λi , ξi

n∑
t=1

(
�
{
γi + δi f

[
xi,(t)−ξi

λi

]}
− t

n+1

)2

t (n+1−t)
(n+1)2(n+2)

subject to δi > 0

λi

{
> 0, for SU ,
> xi,(n) − ξi , for SB ,
= 1, for SL and SN .

ξi

{
< xi,(1), for SL and SB ,
= 0, for SN .

(4)

Stage 1 Keeping the estimates for the parameters of

the Johnson marginals, γ̂i , δ̂i , λ̂i , ξ̂i , for i = 1, 2, . . . , k,
fixed, we find the multivariate least-squares estimators of
α1,α2, . . . ,α p , and �u by minimizing

∑n
t=p+1 ut u

′
t . In

order to ensure a stationary base process, we require the
roots of |I(k×k) − α1 B − α2 B2 − · · · − α p B p| = 0 to lie
outside the unit circle (I(k×k) is the (k ×k) identity matrix).
Stage 2 Keeping the estimates for the system parameters of

the VARk(p) base process, α̂1, α̂2, . . . , α̂ p, �̂u , fixed, we
modify the Johnson parameters for each component series
by implementing Stage 2 of the univariate procedure. For
i = 1, 2, . . . , k, we solve the following conditional DWLS
problem:

minimize
γi , δi , λi , ξi

n∑
t=p+1

(
�

{
ui,(t)√
�̂u (i,i)

}
− t

n+1

)2

t (n+1−t)
(n+1)2(n+2)

subject to (4)

where �̂u(i, i) corresponds to the estimate for the residual
variance of the i th component series. If the fit has improved
significantly since the last iteration, then go to Stage 1; else,
stop the procedure and report the result.

4 IMPLEMENTATION

In this section, we present computational results obtained
from the implementation of the fitting procedures. In these
preliminary results, we assume autoregressive base processes
of orders 1 and 2 for the univariate case, and of order 1 for the
multivariate case. In all of these experiments, we generate
1000 observations from a stationary VARTA process, then
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Table 1: Absolute Difference and Relative Percent Differ-
ence between the Estimates and the True Parameters when
p = 1

ρX 0.90 0.55
E1 E2 E1 E2

ρ̂Z (1) 4.129 × 10−3 0.453 3.249 × 10−3 0.499
γ̂ 14.686 × 10−3 2.084 13.314 × 10−3 1.889
δ̂ 19.407 × 10−3 1.778 16.567 × 10−3 1.518
λ̂ 4.708 × 10−3 0.898 4.338 × 10−3 0.828
ξ̂ 10.215 × 10−3 1.851 3.605 × 10−3 0.653

ρX −0.55 −0.30
E1 E2 E1 E2

ρ̂Z (1) 4.875 × 10−3 0.636 3.832 × 10−3 0.909
γ̂ 18.922 × 10−3 2.685 14.954 × 10−3 2.122
δ̂ 41.247 × 10−3 3.779 16.615 × 10−3 1.523
λ̂ 14.138 × 10−3 2.698 8.731 × 10−3 1.666
ξ̂ 21.645 × 10−3 3.923 15.268 × 10−3 2.767

Table 2: KS and PM Tests when p = 1

X t Zt
ρX KS PM KS

0.90 15.643 × 10−3 6.544 0.638
0.55 2.021 × 10−3 7.031 0.664

−0.55 11.142 × 10−3 7.095 0.443
−0.30 13.300 × 10−3 7.105 0.452

see how well our procedures recover the true parameters of
the process.

4.1 The Univariate Case

Using the procedure in Section 3.1, we fit a VARTA
model to a sample of 1000 observations of a univari-
ate VARTA process of order p = 1 or 2 with Johnson
unbounded (SU ) marginal distribution having parameters
(γ, δ, λ, ξ) = (−0.705, 1.091, 0.524,−0.552). The eight
experiments reported here differ in their correlation struc-
tures. Tables 1 and 3 report the absolute difference (E1) and
relative percent difference (E2) between the fitted Johnson
parameters/base correlation structures and the true John-
son parameters/base correlation structures used to generate
the sample data. Tables 2 and 4 present the results of the
Kolmogorov-Smirnov (KS) test and the diagnostic checking
on the residuals. We use the KS test to check whether the
fitted distribution �

{
γ̂ + δ̂ f [(x − ξ̂ )/̂λ]} differs from the

true Johnson SU distribution that generated the data, and to
check whether the ût ’s are normally distributed; we use the
Portmanteau (PM) test for checking whether the ût ’s are
uncorrelated random shocks with zero mean and constant
variance, that is, {̂ut ; t = p + 1, p + 2, . . . , n} is white
noise.
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Table 3: Absolute Difference and Relative Percent Differ-
ence between the Estimates and the True Parameters when
p = 2

ρX (0.50, 0.10)
′

(0.55, −0.10)
′

E1 E2 E1 E2
ρ̂Z (1) 6.164 × 10−3 1.028 9.799 × 10−3 1.508
ρ̂Z (2) 0.990 × 10−3 0.739 1.688 × 10−3 1.227

γ̂ 10.256 × 10−3 1.455 23.524 × 10−3 3.338
δ̂ 21.477 × 10−3 1.968 36.507 × 10−3 3.346
λ̂ 11.476 × 10−3 2.189 11.278 × 10−3 2.152
ξ̂ 12.265 × 10−3 2.223 10.744 × 10−3 1.947

ρX (−0.25, −0.20)
′

(−0.40, −0.10)
′

E1 E2 E1 E2
ρ̂Z (1) 10.596 × 10−3 3.032 9.159 × 10−3 1.625
ρ̂Z (2) 10.804 × 10−3 3.885 2.341 × 10−3 1.701

γ̂ 34.952 × 10−3 4.959 35.354 × 10−3 5.016
δ̂ 66.617 × 10−3 6.105 31.403 × 10−3 2.878
λ̂ 29.088 × 10−3 5.549 24.158 × 10−3 4.609
ξ̂ 23.045 × 10−3 4.177 32.614 × 10−3 5.911

Table 4: KS and PM Tests when p = 2

X t Zt
ρX KS PM KS

(0.50, 0.10)
′

12.841 × 10−3 8.922 0.772
(0.55, −0.10)

′
5.200 × 10−3 53.856 0.593

(−0.25, −0.20)
′

29.204 × 10−3 8.055 0.825
(−0.40, −0.10)

′
2.569 × 10−3 7.276 0.713

The results in Tables 1 and 2 and in Tables 3 and
4 are obtained by performing three and five iterations of
the procedure, respectively. During the execution of the
procedure, the estimates for the parameters of the marginal
distribution were observed to be sensitive to changes in the
characterization of the base process. On the other hand, the
estimated correlation structure was found to be relatively
insensitive to adjustments in the parameters of the marginal
distribution. This observation suggests that the procedure
gives pretty robust fits for the correlation structure of the
base process quickly, while the success of getting the right
marginals in the second stage is slower to converge.

In the second columns of Tables 2 and 4, we report
the KS test statistics indicating the maximum absolute dif-
ferences between the cdfs of the fitted and the true John-
son distributions. Comparison of these statistics to the
distribution-free critical value, 1.358, at a significance level
of 5%, suggests that the fitted Johnson marginals are good
representations of the true distributions. Although the crit-
ical value of 1.358 is for a test based on i.i.d. data, it still
provides a rough guide for judging the adequacy of our fit.

The last columns of Tables 2 and 4 give KS test statistics
for the normality of the residuals. At a significance level
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Table 5: Estimated Residual Correlations for Lags h =
1, 2, . . . , 10

h ρ̂u(h) h ρ̂u(h)

1 0.067 6 0.026
2 −0.033 7 0.096
3 −0.087 8 0.079
4 −0.123 9 0.037
5 −0.083 10 −0.027

of 5%, we expect them to be less than 0.895 and, in all
cases, we find the residuals of the base process statistically
normal.

Finally, in the third columns of Tables 2 and 4, we
present the PM test statistics that measure departures of
the residuals from being white noise. At a significance
level of 5%, the test statistics are expected to be less than
16.919 for p = 1 and 15.507 for p = 2 to support the
white noise hypothesis for the residuals. We find that the
residuals are statistically white noise in all cases except
when ρX = (0.55,−0.10)

′
. However, a close look at the

estimated residual correlations in Table 5 indicates that we
still have a reasonably good fit for the corresponding base
process. Thus, the algorithm suggested for the univari-
ate case can successfully capture the underlying VARTA
framework incorporated into the sample data.

4.2 The Multivariate Case

In this section, we fit a VARTA model to a sample of
1000 trivariate (k = 3) VARTA order 1 ( p = 1) obser-
vations with Johnson marginals that are lognormal (γ1 =
−1.462, δ1 = 2.236, λ1 = 1, ξ1 = −2.125); unbounded
(γ2 = −0.730, δ2 = 1.905, λ2 = 1.521, ξ2 = −0.686);
and bounded (γ3 = 1.258, δ3 = 0.426, λ3 = 4.421, ξ3 =
−0.694). Further, the base correlation matrices are specified
at lags 0 and 1 as

�Z (0) =
 1.00000 0.37671 0.46049

0.37671 1.00000 0.29906
0.46049 0.29906 1.00000


and

�Z (1) =
 0.30689 0.24408 0.12449

0.13745 0.28600 0.33600
0.14104 0.30177 0.21864

 .

This example is taken from Deler and Nelson (2001a). As
in the previous section, we report the absolute difference
and relative percent difference between the estimates for
the Johnson parameters and the base correlation structure
and the true values used to generate the sample data; see
Tables 6 and 8. These results are obtained at the end of
the 7th iteration.
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Table 6: Absolute Difference and Relative Percent Differ-
ence between the Estimates and the True Parameters for the
Johnson Marginals

X1 X2 X3
E1 E2 E1 E2 E1 E2

γ̂ 0.016 1.094 0.017 2.329 0.060 4.769
δ̂ 0.065 2.907 0.111 5.827 0.024 5.634
λ̂ 0.000 0.000 0.059 3.879 0.002 0.045
ξ̂ 0.076 3.576 0.029 4.227 0.000 0.000

Table 7: KS Tests for each Component Series

KSX KSZ
X1 2.177 × 10−2 0.662
X2 4.039 × 10−2 0.423
X3 1.562 × 10−2 0.656

Table 8: Absolute Difference and Relative Percent Differ-
ence between the Estimates and the True Parameters for the
Base Correlation Structure

ρZ(i, j, h) E1 E2 ρZ(i, j, h) E1 E2
ρZ(1, 2, 0) 0.022 5.836 ρZ(2, 1, 1) 0.022 16.058
ρZ(1, 3, 0) 0.011 2.391 ρZ(2, 2, 1) 0.004 1.399
ρZ(2, 3, 0) 0.001 0.334 ρZ(2, 3, 1) 0.016 4.762
ρZ(1, 1, 1) 0.004 1.303 ρZ(3, 1, 1) 0.024 17.021
ρZ(1, 2, 1) 0.003 1.229 ρZ(3, 2, 1) 0.007 2.318
ρZ(1, 3, 1) 0.004 3.226 ρZ(3, 3, 1) 0.002 0.913

The results of the KS tests in Table 7 indicate that the
residuals of the base process are statistically normal and
the characterizations of the components using the estimated
Johnson marginals provide adequate representations of the
true marginals, while the PM test does not support the
hypothesis that the residuals are white noise. However, the
estimated residual correlation matrices for lags 1 through 4
in Table 9 show that the fitted VAR3(1) model might still
adequately represent the underlying base process.

Fitting an input model to multivariate data by our frame-
work requires the validation of a Gaussian base process.
The two-stage algorithm suggested in Section 3.2 ensures
the normality and the independence of the residuals of the

Table 9: Estimated Residual Correlation Matrices for Lags
h = 1, 2, 3, 4

h ρ̂u(h) h ρ̂u(h)

1 −0.07 0.03 −0.13 3 0.00 0.02 0.01
−0.16 0.04 −0.36 −0.01 0.00 −0.01
−0.04 0.14 −0.05 0.00 0.01 −0.02

2 0.00 0.00 −0.01 4 0.01 −0.04 0.02
−0.07 −0.02 −0.14 −0.01 −0.03 0.01

0.00 0.01 −0.09 0.02 0.03 0.02
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base process at the component level in Stage 2, while the
cross-correlations are incorporated into the model at Stage
1. This approach results in robust fits for the base process,
leading to statistically acceptable marginal fits; thus, we
get a reasonably good VARTA fit to the trivariate system
of this section. However, in a VARk(p) process, individ-
ually each component series follows a univariate mixed
autoregressive/moving-average model up to a maximum or-
der (kp, (k − 1)p), while the procedure assumes that the
underlying base process follows an autoregressive model of
order p. Therefore, assessing the significance of the normal-
ity and the independence of the residuals at the component
level, rather than the multivariate level, is an issue that we
look into for further validation of the theoretical framework
on which our fitting procedure is based. Exploration of
alternative procedures for the multivariate case is the major
focus of our ongoing research (Deler and Nelson 2001b).

5 CONCLUSION

In this paper, we focus on developing automated and sta-
tistically valid algorithms to fit stochastic input models to
multivariate input processes. In order to demonstrate the
validity of our algorithms, we fit input models to data, which
are simply generated by true VARTA distributions. How-
ever, it is essential that we use real data and measure the
(possible) systematic deviation from the VARTA distribu-
tion, which we propose as a flexible alternative to capturing
the true distribution. This is one of the major issues that we
aim to explore through a comprehensive numerical analysis
on the suggested procedure in Deler and Nelson (2001b).

At the end of our ongoing research, we will have
developed a stand-alone, PC-based program that implements
the VARTA framework with the suggested data fitting and
data generation techniques for simulating input processes.
The key computational components of the software are
written in portable C code in such a way that we can
make them available individually for incorporation into
commercial products. This way, we expect the product
of this research to take reliable input modeling out of the
domain of statistical specialists and put it into the hands of
everyday simulation users.
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APPENDIX: JOHNSON FAMILY OF
DISTRIBUTIONS

The Johnson translation system for a random variable X ,
whose range depends on the family of interest, is defined
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by a cumulative distribution function (cdf) of the form
FX (x) = �{γ +δ f [(x −ξ)/λ]}, where �(·) is the cdf of the
standard normal distribution, γ and δ are shape parameters,
ξ is a location parameter, λ is a scale parameter, and f (·)
is one of the following transformations:

f (y) =



log (y) for the SL (lognormal) family,

sinh−1 (y) for the SU (unbounded) family,

log
(

y
1−y

)
for the SB (bounded) family,

y for the SN (normal) family.

There is a unique family (choice of f ) for each feasible
combination of the skewness and the kurtosis, which de-
termine the parameters γ and δ. Any mean and (positive)
variance can be attained by any one of the families by ma-
nipulation of the parameters λ and ξ . Within each family,
a distribution is completely specified by the values of the
parameters γ , δ, λ, and ξ .

In our framework, the characterization of the input
process using the Johnson system simplifies the evaluation
of the composite function F−1

X [�(z)] significantly because
F−1

X [�(z)] = ξ + λ f −1[(z − γ )/δ], where

f −1(y) =



ey for the SL (lognormal) family,

ey−e−y

2 for the SU (unbounded) family,

1
1+e−y for the SB (bounded) family,

y for the SN (normal) family.
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